File size: 3,627 Bytes
59f4cee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e13d87
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import io
import pickle
import numpy as np
import torch
from fastapi import FastAPI, UploadFile, File, Form
from fastapi.middleware.cors import CORSMiddleware
from PIL import Image
from transformers import AutoTokenizer, AutoModel
import open_clip
import re

device = "cuda" if torch.cuda.is_available() else "cpu"

TEXT_MODEL_NAME = "indobenchmark/indobert-large-p1"
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_NAME)
text_model = AutoModel.from_pretrained(TEXT_MODEL_NAME).to(device)
text_model.eval()

clip_model, _, clip_preprocess = open_clip.create_model_and_transforms(
    "EVA01-g-14-plus",
    pretrained="merged2b_s11b_b114k"
)
clip_model.to(device)
clip_model.eval()

with open("xgb_full.pkl", "rb") as f:
    xgb_model = pickle.load(f)

def preprocess_text(text: str) -> str:
    text = str(text).lower()                                      
    text = re.sub(r'http\S+|www\.\S+', '', text)                  
    text = re.sub(r'@\w+|#\w+', '', text)                         
    text = re.sub(r'[^a-z\s]', ' ', text)                        
    text = re.sub(r'\s+', ' ', text).strip()
    return " ".join(text.split())

app = FastAPI(
    title="Multimodal Water Pollution Risk API",
    description=(
        "Input: text + image + geospatial + time\n"
        "Model: IndoBERT + EVA-CLIP (HF Hub) + XGBoost (xgb.pkl)\n"
    ),
    version="1.0.0",
)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.get("/")
def root():
    return {
        "status": "OK",
        "message": "Multimodal Water Pollution Risk API is running.",
        "info": "Use POST /predict with text, image, and features.",
    }

@app.post("/predict")
async def predict(
    text: str = Form(...),
    longitude: float = Form(...),
    latitude: float = Form(...),
    location_cluster: int = Form(...),
    hour: int = Form(...),
    dayofweek: int = Form(...),
    month: int = Form(...),
    image: UploadFile = File(...),
):
    # 1. preprocess text
    cleaned_text = preprocess_text(text)

    # 2. encode text (ambil CLS token-nya)
    text_inputs = tokenizer(
        cleaned_text,
        return_tensors="pt",
        padding="max_length",
        truncation=True,
        max_length=128,
    )
    text_inputs = {k: v.to(device) for k, v in text_inputs.items()}
    with torch.no_grad():
        text_emb = text_model(**text_inputs).last_hidden_state[:, 0, :] # take the CLS token only
    text_emb = text_emb.cpu().numpy()

    # 3. encode image (EVA-CLIP image embedding)
    img_bytes = await image.read()
    pil_img = Image.open(io.BytesIO(img_bytes)).convert("RGB")
    img_tensor = clip_preprocess(pil_img).unsqueeze(0).to(device)

    with torch.no_grad():
        img_emb = clip_model.encode_image(img_tensor)
    img_emb = img_emb.cpu().numpy()

    # 4. additional numeric features (longitude, latitude, location_cluster, hour, dayofweek, month)
    add_feats = np.array(
        [[longitude, latitude, location_cluster, hour, dayofweek, month]],
        dtype=np.float32,
    )

    # 5. concatenate (early fusion): [image_emb, text_emb, add_feats]
    fused = np.concatenate([img_emb, text_emb, add_feats], axis=1)

    # 6. predict
    proba = xgb_model.predict_proba(fused)[0]
    pred_idx = int(np.argmax(proba))
    label = "KRITIS" if pred_idx == 1 else "WASPADA"

    return {
        "prediction": label,
        "probabilities": {
            "WASPADA": float(proba[0]),
            "KRITIS": float(proba[1]),
        },
    }

if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="0.0.0.0", port=7860)