Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,123 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
-
)
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer, AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
+
import random
|
| 5 |
+
import torch
|
| 6 |
+
import groq # Assuming you are using the Groq library
|
| 7 |
+
import os
|
| 8 |
+
from dotenv import load_dotenv
|
| 9 |
+
from huggingface_hub import login
|
| 10 |
+
|
| 11 |
+
# Load environment variables from .env file
|
| 12 |
+
load_dotenv()
|
| 13 |
+
HUGGING_FACE_TOKEN = os.getenv("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")
|
| 14 |
+
|
| 15 |
+
# Authenticate with Hugging Face (use your token)
|
| 16 |
+
login(HUGGING_FACE_TOKEN)
|
| 17 |
+
|
| 18 |
+
# Load the mental health counseling conversations dataset
|
| 19 |
+
ds = load_dataset("Amod/mental_health_counseling_conversations")
|
| 20 |
+
context = ds["train"]["Context"]
|
| 21 |
+
response = ds["train"]["Response"]
|
| 22 |
+
|
| 23 |
+
GROQ_API_KEY = "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"
|
| 24 |
+
|
| 25 |
+
client = groq.Groq(api_key=GROQ_API_KEY)
|
| 26 |
+
|
| 27 |
+
# Load FLAN-T5 model and tokenizer for primary RAG
|
| 28 |
+
flan_tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
|
| 29 |
+
flan_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small")
|
| 30 |
+
|
| 31 |
+
# Load sentiment analysis model
|
| 32 |
+
sentiment_tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
| 33 |
+
sentiment_model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
| 34 |
+
|
| 35 |
+
# Groq client setup (assuming you have an API key)
|
| 36 |
+
client = groq.Groq(api_key=GROQ_API_KEY) # Corrected Groq client initialization
|
| 37 |
+
# Function for sentiment analysis
|
| 38 |
+
def analyze_sentiment(text):
|
| 39 |
+
inputs = sentiment_tokenizer(text, return_tensors="pt")
|
| 40 |
+
outputs = sentiment_model(**inputs)
|
| 41 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 42 |
+
sentiment = "positive" if torch.argmax(probs) == 1 else "negative"
|
| 43 |
+
confidence = probs.max().item()
|
| 44 |
+
return sentiment, confidence
|
| 45 |
+
|
| 46 |
+
# Function to generate response based on sentiment and user input
|
| 47 |
+
def generate_response(sentiment, user_input):
|
| 48 |
+
prompt = f"The user feels {sentiment}. Respond with supportive advice based on: {user_input}"
|
| 49 |
+
inputs = flan_tokenizer(prompt, return_tensors="pt")
|
| 50 |
+
response = flan_model.generate(**inputs, max_length=150)
|
| 51 |
+
return flan_tokenizer.decode(response[0], skip_special_tokens=True)
|
| 52 |
+
# Main chatbot function
|
| 53 |
+
def chatbot(user_input):
|
| 54 |
+
if not user_input.strip():
|
| 55 |
+
return "Please enter a question or concern to receive guidance."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
# Word count limit
|
| 58 |
+
word_count = len(user_input.split())
|
| 59 |
+
max_words = 50
|
| 60 |
+
remaining_words = max_words - word_count
|
| 61 |
+
if remaining_words < 0:
|
| 62 |
+
return f"Your input is too long. Please limit it to {max_words} words."
|
| 63 |
+
|
| 64 |
+
# Sentiment analysis
|
| 65 |
+
sentiment, confidence = analyze_sentiment(user_input)
|
| 66 |
+
|
| 67 |
+
# Groq API fallback for a personalized response
|
| 68 |
+
try:
|
| 69 |
+
brief_response = client.chat.completions.create(
|
| 70 |
+
messages=[{
|
| 71 |
+
"role": "user",
|
| 72 |
+
"content": user_input,
|
| 73 |
+
}],
|
| 74 |
+
model="llama3-8b-8192", # Change model if needed
|
| 75 |
+
)
|
| 76 |
+
brief_response = brief_response.choices[0].message.content
|
| 77 |
+
except Exception as e:
|
| 78 |
+
brief_response = None
|
| 79 |
+
|
| 80 |
+
if brief_response:
|
| 81 |
+
return f"**Personalized Response from Groq:** {brief_response}"
|
| 82 |
+
|
| 83 |
+
# Fallback to FLAN-T5 model for response generation
|
| 84 |
+
response_text = generate_response(sentiment, user_input)
|
| 85 |
+
def generate_response(user_input):
|
| 86 |
+
# Generate response using FLAN-T5
|
| 87 |
+
inputs = flan_tokenizer.encode("summarize: " + user_input, return_tensors="pt", max_length=512, truncation=True)
|
| 88 |
+
summary_ids = flan_model.generate(inputs, max_length=100, num_beams=4, early_stopping=True)
|
| 89 |
+
generated_response = flan_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 90 |
+
|
| 91 |
+
if not generated_response:
|
| 92 |
+
return "I'm sorry, I don't have information specific to your concern. Please consult a professional."
|
| 93 |
+
|
| 94 |
+
# Final response with different sources
|
| 95 |
+
complete_response = (
|
| 96 |
+
f"**Sentiment Analysis:** {sentiment} (Confidence: {confidence:.2f})\n\n"
|
| 97 |
+
f"**Generated Response:**\n{generated_response}\n\n"
|
| 98 |
+
f"**Contextual Information:**\n{context_text}\n\n"
|
| 99 |
+
f"**Additional Dataset Response:**\n{dataset_response}\n\n"
|
| 100 |
+
f"Words entered: {word_count}, Words remaining: {remaining_words}"
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
return complete_response
|
| 104 |
+
|
| 105 |
+
# Example call to the function
|
| 106 |
+
response = generate_response("This is an example input.")
|
| 107 |
+
print(response)
|
| 108 |
+
# Set up Gradio interface
|
| 109 |
+
interface = gr.Interface(
|
| 110 |
+
fn=chatbot,
|
| 111 |
+
inputs=gr.Textbox(
|
| 112 |
+
label="Ask your question:",
|
| 113 |
+
placeholder="Describe how you're feeling today...",
|
| 114 |
+
lines=4
|
| 115 |
+
),
|
| 116 |
+
outputs=gr.Markdown(label="Psychologist Assistant Response"),
|
| 117 |
+
title="Virtual Psychiatrist Assistant",
|
| 118 |
+
description="Enter your mental health concerns, and receive guidance and responses from a trained assistant.",
|
| 119 |
+
theme="huggingface"
|
| 120 |
+
)
|
| 121 |
|
| 122 |
+
# Launch the app
|
| 123 |
+
interface.launch()
|