xiaoyuxi
vggt_da
e43b66a
raw
history blame
9.6 kB
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Dataloader for preprocessed ARKitScenes
# dataset at https://github.com/facebookresearch/co3d - Creative Commons Attribution-NonCommercial 4.0 International
# See datasets_preprocess/preprocess_co3d.py
# --------------------------------------------------------
import os.path as osp
import os
import sys
import json
import itertools
import time
from collections import deque
import torch
import tqdm
import concurrent.futures
import psutil
import io
import cv2
from PIL import Image
import numpy as np
from models.SpaTrackV2.datasets.base_sfm_dataset import BaseSfMViewDataset
from models.SpaTrackV2.models.utils import (
camera_to_pose_encoding, pose_encoding_to_camera
)
from models.SpaTrackV2.models.camera_transform import normalize_cameras
try:
from pcache_fileio import fileio
except Exception:
fileio = None
try:
import fsspec
#NOTE: stable version (not public)
PCACHE_HOST = "vilabpcacheproxyi-pool.cz50c.alipay.com"
PCACHE_PORT = 39999
pcache_kwargs = {"host": PCACHE_HOST, "port": PCACHE_PORT}
pcache_fs = fsspec.filesystem("pcache", pcache_kwargs=pcache_kwargs)
except Exception:
fsspec = None
from models.SpaTrackV2.datasets.dataset_util import imread_cv2, npz_loader
def bytes_to_gb(bytes):
return bytes / (1024 ** 3)
def get_total_size(obj, seen=None):
size = sys.getsizeof(obj)
if seen is None:
seen = set()
obj_id = id(obj)
if obj_id in seen:
return 0
seen.add(obj_id)
if isinstance(obj, dict):
size += sum([get_total_size(v, seen) for v in obj.values()])
size += sum([get_total_size(k, seen) for k in obj.keys()])
elif hasattr(obj, '__dict__'):
size += get_total_size(obj.__dict__, seen)
elif hasattr(obj, '__iter__') and not isinstance(obj, (str, bytes, bytearray)):
size += sum([get_total_size(i, seen) for i in obj])
return size
class ARKitScenes(BaseSfMViewDataset):
def __init__(self, mask_bg=False, scene_st=None, scene_end=None,
debug=False, *args, ROOT, **kwargs):
self.ROOT = ROOT
super().__init__(*args, **kwargs)
assert mask_bg in (True, False, 'rand')
self.mask_bg = mask_bg
self.dataset_label = 'ARKitScenes'
# load all scenes
with open(osp.join(self.ROOT, self.split, f'scene_list.json'), 'r') as f:
self.scene_list = json.load(f)
# for each scene, we have 100 images ==> 360 degrees (so 25 frames ~= 90 degrees)x
# self.combinations = [sorted(np.random.choice(np.arange(0, int(self.num_views*2)),
# size=self.num_views, replace=False)) for i in np.arange(25)]
self.combinations = [None]
self.invalidate = {scene: {} for scene in self.scene_list}
def __len__(self):
return len(self.scene_list) * len(self.combinations)
def _get_metadatapath(self, obj, instance, view_idx):
return osp.join(self.ROOT, obj, instance, 'images', f'frame{view_idx:06n}.npz')
def _get_impath(self, obj, instance, view_idx):
return osp.join(self.ROOT, obj, instance, 'images', f'frame{view_idx:06n}.jpg')
def _get_depthpath(self, obj, instance, view_idx):
return osp.join(self.ROOT, obj, instance, 'depths', f'frame{view_idx:06n}.jpg.geometric.png')
def _get_maskpath(self, obj, instance, view_idx):
return osp.join(self.ROOT, obj, instance, 'masks', f'frame{view_idx:06n}.png')
def _read_depthmap(self, depthpath, input_metadata=None):
depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED)
depthmap = depthmap.astype(np.float32)
return depthmap
def _get_views(self, idx, resolution, rng):
sclae_num = np.random.uniform(1, 2)
# choose a scene
instance = self.scene_list[idx // len(self.combinations)]
scene_meta_dir = osp.join(self.ROOT, self.split,
instance, "scene_metadata.npz")
if (fileio is not None)&("pcache://" in scene_meta_dir):
input_metadata = npz_loader(scene_meta_dir)
image_pool = input_metadata["images"].tolist()
intr_pool = input_metadata["intrinsics"].tolist()
poses_pool = input_metadata["trajectories"].tolist()
else:
with open(scene_meta_dir, 'rb') as f:
file_content = f.read()
with io.BytesIO(file_content) as bio:
input_metadata = np.load(bio)
image_pool = input_metadata["images"].tolist()
intr_pool = input_metadata["intrinsics"].tolist()
poses_pool = input_metadata["trajectories"].tolist()
start = np.random.choice(np.arange(0, max(len(image_pool) - sclae_num*self.num_views, 1)))
img_idxs = sorted(
np.random.choice(np.arange(start, start+sclae_num*self.num_views),
size=self.num_views, replace=False)
)
# img_idxs = [int(len(image_pool)*i/(self.num_views*2)) for i in img_idxs]
# add a bit of randomness
last = len(image_pool) - 1
views = []
imgs_idxs = [int(max(0, min(im_idx, last))) for im_idx in img_idxs]
imgs_idxs = deque(imgs_idxs)
# output: {rgbs, depths, camera_enc, principal_point, image_size }
rgbs = None
depths = None
Extrs = None
Intrs = None
while len(imgs_idxs) > 0: # some images (few) have zero depth
im_idx = imgs_idxs.pop()
img_name = image_pool[im_idx]
depthpath = osp.join(self.ROOT, self.split,
instance, "lowres_depth", img_name)
impath = depthpath.replace("lowres_depth", "vga_wide").replace(".png", ".jpg")
camera_pose = np.array(poses_pool[im_idx]).astype(np.float32)
intr_pool[im_idx]
f_x, f_y, c_x, c_y = intr_pool[im_idx][2:]
intrinsics = np.float32([[f_x * 2 * 810 / 1920, 0, c_x], [0, f_y, c_y], [0, 0, 1]])
# intrinsics = np.array([[f_x, 0, c_x], [0, f_y, c_y], [0, 0, 1]]).astype(np.float32)
# load image and depth
rgb_image = imread_cv2(impath)
depthmap = self._read_depthmap(depthpath)
depthmap = depthmap.astype(np.float32) / 1000
depthmap[~np.isfinite(depthmap)] = 0 # invalid
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath)
if rgbs is None:
rgbs = torch.from_numpy(
np.array(rgb_image)).permute(2, 0, 1).unsqueeze(0)
depths = torch.from_numpy(
np.array(depthmap)).unsqueeze(0).unsqueeze(0)
Extrs = torch.from_numpy(camera_pose).unsqueeze(0)
Intrs = torch.from_numpy(intrinsics).unsqueeze(0)
else:
rgbs = torch.cat([rgbs, torch.from_numpy(
np.array(rgb_image)).permute(2, 0, 1).unsqueeze(0)], dim=0)
depths = torch.cat([depths, torch.from_numpy(
np.array(depthmap)).unsqueeze(0).unsqueeze(0)], dim=0)
Extrs = torch.cat([Extrs,
torch.from_numpy(camera_pose).unsqueeze(0)], dim=0)
Intrs = torch.cat([Intrs,
torch.from_numpy(intrinsics).unsqueeze(0)], dim=0)
# encode the camera poses
# C2W to W2C
camera_poses = torch.inverse(Extrs)
focal0 = Intrs[:, 0, 0] / resolution[0]
focal1 = Intrs[:, 1, 1] / resolution[1]
focal = (focal0.unsqueeze(1)+focal1.unsqueeze(1))/2
# principle
R = camera_poses[:, :3, :3]
T = camera_poses[:, :3, 3]
K = torch.zeros((Intrs.shape[0],4,4))
K[:,:2,:3] = Intrs[:,:2,:3]
K[:,2,3] = K[:,3,2] = 1
Camera = PerspectiveCameras(
R=R, T=T, in_ndc=False,K=K,focal_length=focal
)
POSE_MODE = "W2C"
Camera, _, scale = normalize_cameras(Camera, compute_optical=False,
normalize_trans=True, max_norm=True, scale=5,
first_camera=True, pose_mode=POSE_MODE)
pose_enc = camera_to_pose_encoding(Camera,
"absT_quaR_OneFL")
views = dict(
rgbs=rgbs,
depths=depths/scale,
pose_enc=pose_enc,
)
return views
if __name__ == "__main__":
from models.videocam.datasets.base_sfm_dataset import view_name
from functools import partial
# from dust3r.viz import SceneViz, auto_cam_size
# from dust3r.utils.image import rgb
if fileio is not None:
DATA_DIR = "pcache://vilabpcacheproxyi-pool.cz50c.alipay.com:39999/mnt/antsys-vilab_datasets_pcache_datasets/GTAV_540/GTAV_540"
else:
DATA_DIR = "/nas3/xyx/arkitscenes_processed"
dataset = ARKitScenes(split='Training', ROOT=DATA_DIR, resolution=518, aug_crop=16, num_views=48)
rng = np.random.default_rng(seed=0)
dataset._get_views(0,(518,518),rng)