Commit
·
0c1540a
1
Parent(s):
c620069
Add app.py, utils.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from diffusers import StableDiffusionXLPipeline
|
| 4 |
+
from utils import (
|
| 5 |
+
cross_attn_init,
|
| 6 |
+
register_cross_attention_hook,
|
| 7 |
+
attn_maps,
|
| 8 |
+
get_net_attn_map,
|
| 9 |
+
resize_net_attn_map,
|
| 10 |
+
return_net_attn_map,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
cross_attn_init()
|
| 14 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 15 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 16 |
+
torch_dtype=torch.float16,
|
| 17 |
+
)
|
| 18 |
+
pipe.unet = register_cross_attention_hook(pipe.unet)
|
| 19 |
+
pipe = pipe.to("cuda")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def inference(prompt):
|
| 23 |
+
image = pipe(prompt).images[0]
|
| 24 |
+
net_attn_maps = get_net_attn_map(image.size)
|
| 25 |
+
net_attn_maps = resize_net_attn_map(net_attn_maps, image.size)
|
| 26 |
+
net_attn_maps = return_net_attn_map(net_attn_maps, pipe.tokenizer, prompt)
|
| 27 |
+
|
| 28 |
+
return image, net_attn_maps
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
with gr.Blocks() as demo:
|
| 32 |
+
gr.Markdown(
|
| 33 |
+
"""
|
| 34 |
+
🚀 Text-to-Image Cross Attention Map for 🧨 Diffusers ⚡
|
| 35 |
+
""")
|
| 36 |
+
prompt = gr.Textbox(value="A photo of a black puppy, christmas atmosphere", label="Prompt", lines=2)
|
| 37 |
+
btn = gr.Button("Generate images", scale=0)
|
| 38 |
+
|
| 39 |
+
with gr.Row():
|
| 40 |
+
image = gr.Image(height=512,width=512,type="pil")
|
| 41 |
+
gallery = gr.Gallery(
|
| 42 |
+
value=None,
|
| 43 |
+
label="Generated images", show_label=False, elem_id="gallery",
|
| 44 |
+
object_fit="contain", height="auto")
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
btn.click(inference, prompt, [image, gallery])
|
| 48 |
+
|
| 49 |
+
if __name__ == "__main__":
|
| 50 |
+
demo.launch(share=True)
|
| 51 |
+
|
utils.py
ADDED
|
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
|
| 9 |
+
from diffusers.utils import deprecate
|
| 10 |
+
from diffusers.models.attention_processor import (
|
| 11 |
+
Attention,
|
| 12 |
+
AttnProcessor,
|
| 13 |
+
AttnProcessor2_0,
|
| 14 |
+
LoRAAttnProcessor,
|
| 15 |
+
LoRAAttnProcessor2_0
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
attn_maps = {}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def attn_call(
|
| 23 |
+
self,
|
| 24 |
+
attn: Attention,
|
| 25 |
+
hidden_states,
|
| 26 |
+
encoder_hidden_states=None,
|
| 27 |
+
attention_mask=None,
|
| 28 |
+
temb=None,
|
| 29 |
+
scale=1.0,
|
| 30 |
+
):
|
| 31 |
+
residual = hidden_states
|
| 32 |
+
|
| 33 |
+
if attn.spatial_norm is not None:
|
| 34 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 35 |
+
|
| 36 |
+
input_ndim = hidden_states.ndim
|
| 37 |
+
|
| 38 |
+
if input_ndim == 4:
|
| 39 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 40 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 41 |
+
|
| 42 |
+
batch_size, sequence_length, _ = (
|
| 43 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 44 |
+
)
|
| 45 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 46 |
+
|
| 47 |
+
if attn.group_norm is not None:
|
| 48 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 49 |
+
|
| 50 |
+
query = attn.to_q(hidden_states, scale=scale)
|
| 51 |
+
|
| 52 |
+
if encoder_hidden_states is None:
|
| 53 |
+
encoder_hidden_states = hidden_states
|
| 54 |
+
elif attn.norm_cross:
|
| 55 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 56 |
+
|
| 57 |
+
key = attn.to_k(encoder_hidden_states, scale=scale)
|
| 58 |
+
value = attn.to_v(encoder_hidden_states, scale=scale)
|
| 59 |
+
|
| 60 |
+
query = attn.head_to_batch_dim(query)
|
| 61 |
+
key = attn.head_to_batch_dim(key)
|
| 62 |
+
value = attn.head_to_batch_dim(value)
|
| 63 |
+
|
| 64 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 65 |
+
####################################################################################################
|
| 66 |
+
# (20,4096,77) or (40,1024,77)
|
| 67 |
+
if hasattr(self, "store_attn_map"):
|
| 68 |
+
self.attn_map = attention_probs
|
| 69 |
+
####################################################################################################
|
| 70 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 71 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 72 |
+
|
| 73 |
+
# linear proj
|
| 74 |
+
hidden_states = attn.to_out[0](hidden_states, scale=scale)
|
| 75 |
+
# dropout
|
| 76 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 77 |
+
|
| 78 |
+
if input_ndim == 4:
|
| 79 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 80 |
+
|
| 81 |
+
if attn.residual_connection:
|
| 82 |
+
hidden_states = hidden_states + residual
|
| 83 |
+
|
| 84 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 85 |
+
|
| 86 |
+
return hidden_states
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:
|
| 90 |
+
# Efficient implementation equivalent to the following:
|
| 91 |
+
L, S = query.size(-2), key.size(-2)
|
| 92 |
+
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
|
| 93 |
+
attn_bias = torch.zeros(L, S, dtype=query.dtype)
|
| 94 |
+
if is_causal:
|
| 95 |
+
assert attn_mask is None
|
| 96 |
+
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
|
| 97 |
+
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
|
| 98 |
+
attn_bias.to(query.dtype)
|
| 99 |
+
|
| 100 |
+
if attn_mask is not None:
|
| 101 |
+
if attn_mask.dtype == torch.bool:
|
| 102 |
+
attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
| 103 |
+
else:
|
| 104 |
+
attn_bias += attn_mask
|
| 105 |
+
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
| 106 |
+
attn_weight += attn_bias.to(attn_weight.device)
|
| 107 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
| 108 |
+
|
| 109 |
+
return torch.dropout(attn_weight, dropout_p, train=True) @ value, attn_weight
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def attn_call2_0(
|
| 113 |
+
self,
|
| 114 |
+
attn: Attention,
|
| 115 |
+
hidden_states,
|
| 116 |
+
encoder_hidden_states=None,
|
| 117 |
+
attention_mask=None,
|
| 118 |
+
temb=None,
|
| 119 |
+
scale: float = 1.0,
|
| 120 |
+
):
|
| 121 |
+
residual = hidden_states
|
| 122 |
+
|
| 123 |
+
if attn.spatial_norm is not None:
|
| 124 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 125 |
+
|
| 126 |
+
input_ndim = hidden_states.ndim
|
| 127 |
+
|
| 128 |
+
if input_ndim == 4:
|
| 129 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 130 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 131 |
+
|
| 132 |
+
batch_size, sequence_length, _ = (
|
| 133 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
if attention_mask is not None:
|
| 137 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 138 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
| 139 |
+
# (batch, heads, source_length, target_length)
|
| 140 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 141 |
+
|
| 142 |
+
if attn.group_norm is not None:
|
| 143 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 144 |
+
|
| 145 |
+
query = attn.to_q(hidden_states, scale=scale)
|
| 146 |
+
|
| 147 |
+
if encoder_hidden_states is None:
|
| 148 |
+
encoder_hidden_states = hidden_states
|
| 149 |
+
elif attn.norm_cross:
|
| 150 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 151 |
+
|
| 152 |
+
key = attn.to_k(encoder_hidden_states, scale=scale)
|
| 153 |
+
value = attn.to_v(encoder_hidden_states, scale=scale)
|
| 154 |
+
|
| 155 |
+
inner_dim = key.shape[-1]
|
| 156 |
+
head_dim = inner_dim // attn.heads
|
| 157 |
+
|
| 158 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 159 |
+
|
| 160 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 161 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 162 |
+
|
| 163 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 164 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 165 |
+
####################################################################################################
|
| 166 |
+
# if self.store_attn_map:
|
| 167 |
+
if hasattr(self, "store_attn_map"):
|
| 168 |
+
hidden_states, attn_map = scaled_dot_product_attention(
|
| 169 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 170 |
+
)
|
| 171 |
+
# (2,10,4096,77) or (2,20,1024,77)
|
| 172 |
+
self.attn_map = attn_map
|
| 173 |
+
else:
|
| 174 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 175 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 176 |
+
)
|
| 177 |
+
####################################################################################################
|
| 178 |
+
|
| 179 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 180 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 181 |
+
|
| 182 |
+
# linear proj
|
| 183 |
+
hidden_states = attn.to_out[0](hidden_states, scale=scale)
|
| 184 |
+
# dropout
|
| 185 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 186 |
+
|
| 187 |
+
if input_ndim == 4:
|
| 188 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 189 |
+
|
| 190 |
+
if attn.residual_connection:
|
| 191 |
+
hidden_states = hidden_states + residual
|
| 192 |
+
|
| 193 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 194 |
+
|
| 195 |
+
return hidden_states
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def lora_attn_call(self, attn: Attention, hidden_states, *args, **kwargs):
|
| 199 |
+
self_cls_name = self.__class__.__name__
|
| 200 |
+
deprecate(
|
| 201 |
+
self_cls_name,
|
| 202 |
+
"0.26.0",
|
| 203 |
+
(
|
| 204 |
+
f"Make sure use {self_cls_name[4:]} instead by setting"
|
| 205 |
+
"LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
|
| 206 |
+
" `LoraLoaderMixin.load_lora_weights`"
|
| 207 |
+
),
|
| 208 |
+
)
|
| 209 |
+
attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
|
| 210 |
+
attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
|
| 211 |
+
attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
|
| 212 |
+
attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)
|
| 213 |
+
|
| 214 |
+
attn._modules.pop("processor")
|
| 215 |
+
attn.processor = AttnProcessor()
|
| 216 |
+
|
| 217 |
+
if hasattr(self, "store_attn_map"):
|
| 218 |
+
attn.processor.store_attn_map = True
|
| 219 |
+
|
| 220 |
+
return attn.processor(attn, hidden_states, *args, **kwargs)
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def lora_attn_call2_0(self, attn: Attention, hidden_states, *args, **kwargs):
|
| 224 |
+
self_cls_name = self.__class__.__name__
|
| 225 |
+
deprecate(
|
| 226 |
+
self_cls_name,
|
| 227 |
+
"0.26.0",
|
| 228 |
+
(
|
| 229 |
+
f"Make sure use {self_cls_name[4:]} instead by setting"
|
| 230 |
+
"LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
|
| 231 |
+
" `LoraLoaderMixin.load_lora_weights`"
|
| 232 |
+
),
|
| 233 |
+
)
|
| 234 |
+
attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
|
| 235 |
+
attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
|
| 236 |
+
attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
|
| 237 |
+
attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)
|
| 238 |
+
|
| 239 |
+
attn._modules.pop("processor")
|
| 240 |
+
attn.processor = AttnProcessor2_0()
|
| 241 |
+
|
| 242 |
+
if hasattr(self, "store_attn_map"):
|
| 243 |
+
attn.processor.store_attn_map = True
|
| 244 |
+
|
| 245 |
+
return attn.processor(attn, hidden_states, *args, **kwargs)
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
def cross_attn_init():
|
| 249 |
+
AttnProcessor.__call__ = attn_call
|
| 250 |
+
AttnProcessor2_0.__call__ = attn_call # attn_call is faster
|
| 251 |
+
# AttnProcessor2_0.__call__ = attn_call2_0
|
| 252 |
+
LoRAAttnProcessor.__call__ = lora_attn_call
|
| 253 |
+
# LoRAAttnProcessor2_0.__call__ = lora_attn_call2_0
|
| 254 |
+
LoRAAttnProcessor2_0.__call__ = lora_attn_call
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def reshape_attn_map(attn_map):
|
| 258 |
+
attn_map = torch.mean(attn_map,dim=0) # mean by head dim: (20,4096,77) -> (4096,77)
|
| 259 |
+
attn_map = attn_map.permute(1,0) # (4096,77) -> (77,4096)
|
| 260 |
+
latent_size = int(math.sqrt(attn_map.shape[1]))
|
| 261 |
+
latent_shape = (attn_map.shape[0],latent_size,-1)
|
| 262 |
+
attn_map = attn_map.reshape(latent_shape) # (77,4096) -> (77,64,64)
|
| 263 |
+
|
| 264 |
+
return attn_map # torch.sum(attn_map,dim=0) = [1,1,...,1]
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
def hook_fn(name):
|
| 268 |
+
def forward_hook(module, input, output):
|
| 269 |
+
if hasattr(module.processor, "attn_map"):
|
| 270 |
+
attn_maps[name] = module.processor.attn_map
|
| 271 |
+
del module.processor.attn_map
|
| 272 |
+
|
| 273 |
+
return forward_hook
|
| 274 |
+
|
| 275 |
+
def register_cross_attention_hook(unet):
|
| 276 |
+
for name, module in unet.named_modules():
|
| 277 |
+
if not name.split('.')[-1].startswith('attn2'):
|
| 278 |
+
continue
|
| 279 |
+
|
| 280 |
+
if isinstance(module.processor, AttnProcessor):
|
| 281 |
+
module.processor.store_attn_map = True
|
| 282 |
+
elif isinstance(module.processor, AttnProcessor2_0):
|
| 283 |
+
module.processor.store_attn_map = True
|
| 284 |
+
elif isinstance(module.processor, LoRAAttnProcessor):
|
| 285 |
+
module.processor.store_attn_map = True
|
| 286 |
+
elif isinstance(module.processor, LoRAAttnProcessor2_0):
|
| 287 |
+
module.processor.store_attn_map = True
|
| 288 |
+
|
| 289 |
+
hook = module.register_forward_hook(hook_fn(name))
|
| 290 |
+
|
| 291 |
+
return unet
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
def prompt2tokens(tokenizer, prompt):
|
| 295 |
+
text_inputs = tokenizer(
|
| 296 |
+
prompt,
|
| 297 |
+
padding="max_length",
|
| 298 |
+
max_length=tokenizer.model_max_length,
|
| 299 |
+
truncation=True,
|
| 300 |
+
return_tensors="pt",
|
| 301 |
+
)
|
| 302 |
+
text_input_ids = text_inputs.input_ids
|
| 303 |
+
tokens = []
|
| 304 |
+
for text_input_id in text_input_ids[0]:
|
| 305 |
+
token = tokenizer.decoder[text_input_id.item()]
|
| 306 |
+
tokens.append(token)
|
| 307 |
+
return tokens
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
# TODO: generalize for rectangle images
|
| 311 |
+
def upscale(attn_map, target_size):
|
| 312 |
+
attn_map = torch.mean(attn_map, dim=0) # (10, 32*32, 77) -> (32*32, 77)
|
| 313 |
+
attn_map = attn_map.permute(1,0) # (32*32, 77) -> (77, 32*32)
|
| 314 |
+
|
| 315 |
+
if target_size[0]*target_size[1] != attn_map.shape[1]:
|
| 316 |
+
temp_size = (target_size[0]//2, target_size[1]//2)
|
| 317 |
+
attn_map = attn_map.view(attn_map.shape[0], *temp_size) # (77, 32,32)
|
| 318 |
+
attn_map = attn_map.unsqueeze(0) # (77,32,32) -> (1,77,32,32)
|
| 319 |
+
|
| 320 |
+
attn_map = F.interpolate(
|
| 321 |
+
attn_map.to(dtype=torch.float32),
|
| 322 |
+
size=target_size,
|
| 323 |
+
mode='bilinear',
|
| 324 |
+
align_corners=False
|
| 325 |
+
).squeeze() # (77,64,64)
|
| 326 |
+
else:
|
| 327 |
+
attn_map = attn_map.to(dtype=torch.float32) # (77,64,64)
|
| 328 |
+
|
| 329 |
+
attn_map = torch.softmax(attn_map, dim=0)
|
| 330 |
+
attn_map = attn_map.reshape(attn_map.shape[0],-1) # (77,64*64)
|
| 331 |
+
return attn_map
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
def get_net_attn_map(image_size, batch_size=2, instance_or_negative=False, detach=True):
|
| 335 |
+
target_size = (image_size[0]//16, image_size[1]//16)
|
| 336 |
+
idx = 0 if instance_or_negative else 1
|
| 337 |
+
net_attn_maps = []
|
| 338 |
+
|
| 339 |
+
for name, attn_map in attn_maps.items():
|
| 340 |
+
attn_map = attn_map.cpu() if detach else attn_map
|
| 341 |
+
attn_map = torch.chunk(attn_map, batch_size)[idx] # (20, 32*32, 77) -> (10, 32*32, 77) # negative & positive CFG
|
| 342 |
+
if len(attn_map.shape) == 4:
|
| 343 |
+
attn_map = attn_map.squeeze()
|
| 344 |
+
|
| 345 |
+
attn_map = upscale(attn_map, target_size) # (10,32*32,77) -> (77,64*64)
|
| 346 |
+
net_attn_maps.append(attn_map) # (10,32*32,77) -> (77,64*64)
|
| 347 |
+
|
| 348 |
+
net_attn_maps = torch.mean(torch.stack(net_attn_maps,dim=0),dim=0)
|
| 349 |
+
net_attn_maps = net_attn_maps.reshape(net_attn_maps.shape[0], 64,64) # (77,64*64) -> (77,64,64)
|
| 350 |
+
|
| 351 |
+
return net_attn_maps
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def save_net_attn_map(net_attn_maps, dir_name, tokenizer, prompt):
|
| 355 |
+
if not os.path.exists(dir_name):
|
| 356 |
+
os.makedirs(dir_name)
|
| 357 |
+
|
| 358 |
+
tokens = prompt2tokens(tokenizer, prompt)
|
| 359 |
+
total_attn_scores = 0
|
| 360 |
+
for i, (token, attn_map) in enumerate(zip(tokens, net_attn_maps)):
|
| 361 |
+
attn_map_score = torch.sum(attn_map)
|
| 362 |
+
attn_map = attn_map.cpu().numpy()
|
| 363 |
+
h,w = attn_map.shape
|
| 364 |
+
attn_map_total = h*w
|
| 365 |
+
attn_map_score = attn_map_score / attn_map_total
|
| 366 |
+
total_attn_scores += attn_map_score
|
| 367 |
+
token = token.replace('</w>','')
|
| 368 |
+
save_attn_map(
|
| 369 |
+
attn_map,
|
| 370 |
+
f'{token}:{attn_map_score:.2f}',
|
| 371 |
+
f"{dir_name}/{i}_<{token}>:{int(attn_map_score*100)}.png"
|
| 372 |
+
)
|
| 373 |
+
print(f'total_attn_scores: {total_attn_scores}')
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
def resize_net_attn_map(net_attn_maps, target_size):
|
| 377 |
+
net_attn_maps = F.interpolate(
|
| 378 |
+
net_attn_maps.to(dtype=torch.float32).unsqueeze(0),
|
| 379 |
+
size=target_size,
|
| 380 |
+
mode='bilinear',
|
| 381 |
+
align_corners=False
|
| 382 |
+
).squeeze() # (77,64,64)
|
| 383 |
+
return net_attn_maps
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
def save_attn_map(attn_map, title, save_path):
|
| 387 |
+
normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
|
| 388 |
+
normalized_attn_map = normalized_attn_map.astype(np.uint8)
|
| 389 |
+
image = Image.fromarray(normalized_attn_map)
|
| 390 |
+
image.save(save_path, format='PNG', compression=0)
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
def return_net_attn_map(net_attn_maps, tokenizer, prompt):
|
| 394 |
+
|
| 395 |
+
tokens = prompt2tokens(tokenizer, prompt)
|
| 396 |
+
total_attn_scores = 0
|
| 397 |
+
images = []
|
| 398 |
+
for i, (token, attn_map) in enumerate(zip(tokens, net_attn_maps)):
|
| 399 |
+
attn_map_score = torch.sum(attn_map)
|
| 400 |
+
h,w = attn_map.shape
|
| 401 |
+
attn_map_total = h*w
|
| 402 |
+
attn_map_score = attn_map_score / attn_map_total
|
| 403 |
+
total_attn_scores += attn_map_score
|
| 404 |
+
|
| 405 |
+
attn_map = attn_map.cpu().numpy()
|
| 406 |
+
normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
|
| 407 |
+
normalized_attn_map = normalized_attn_map.astype(np.uint8)
|
| 408 |
+
image = Image.fromarray(normalized_attn_map)
|
| 409 |
+
|
| 410 |
+
token = token.replace('</w>','')
|
| 411 |
+
images.append((image,f"{i}_<{token}>"))
|
| 412 |
+
print(f'total_attn_scores: {total_attn_scores}')
|
| 413 |
+
return images
|