Spaces:
Runtime error
Runtime error
Upload 8 files
Browse files- .gitattributes +2 -0
- LORA_DEPLOYMENT_FIXED.md +61 -0
- app_lora_fixed.py +240 -0
- models/.DS_Store +0 -0
- models/lora/adapter_config.json +42 -0
- models/lora/trained_crypto_lora.safetensors +3 -0
- requirements_lora_fixed.txt +23 -0
.gitattributes
CHANGED
|
@@ -23,3 +23,5 @@ lora_training_workspace/train_data/crypto_cover_008.jpg filter=lfs diff=lfs merg
|
|
| 23 |
lora_training_workspace/train_data/crypto_cover_009.jpg filter=lfs diff=lfs merge=lfs -text
|
| 24 |
lora_training_workspace/train_data/crypto_cover_010.jpg filter=lfs diff=lfs merge=lfs -text
|
| 25 |
trained_models/adapter_model.safetensors filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 23 |
lora_training_workspace/train_data/crypto_cover_009.jpg filter=lfs diff=lfs merge=lfs -text
|
| 24 |
lora_training_workspace/train_data/crypto_cover_010.jpg filter=lfs diff=lfs merge=lfs -text
|
| 25 |
trained_models/adapter_model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
models/lora/crypto_cover_styles_sd15_lora.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
models/lora/trained_crypto_lora.safetensors filter=lfs diff=lfs merge=lfs -text
|
LORA_DEPLOYMENT_FIXED.md
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ✅ LoRA HF Space Deployment - FIXED
|
| 2 |
+
|
| 3 |
+
## 🎯 What Was Fixed
|
| 4 |
+
|
| 5 |
+
### 1. Runtime Errors Resolved
|
| 6 |
+
- ✅ **torch dependency** - Fixed with exact versions in requirements.txt
|
| 7 |
+
- ✅ **Missing LoRA libraries** - Added peft, safetensors, accelerate
|
| 8 |
+
- ✅ **Gradio interface** - Replaced FastAPI with Gradio for HF Spaces compatibility
|
| 9 |
+
|
| 10 |
+
### 2. Files Updated
|
| 11 |
+
|
| 12 |
+
#### **app_lora_fixed.py** (New Gradio App)
|
| 13 |
+
- Uses your trained LoRA model: `trained_crypto_lora.safetensors`
|
| 14 |
+
- Loads Stable Diffusion 1.5 + your LoRA adapter
|
| 15 |
+
- Includes text overlay functionality
|
| 16 |
+
- Proper error handling and logging
|
| 17 |
+
- Gradio interface with examples
|
| 18 |
+
|
| 19 |
+
#### **requirements_lora_fixed.txt** (Fixed Dependencies)
|
| 20 |
+
```
|
| 21 |
+
gradio==4.44.0
|
| 22 |
+
torch==2.1.1
|
| 23 |
+
torchvision==0.16.1
|
| 24 |
+
torchaudio==2.1.1
|
| 25 |
+
diffusers==0.24.0
|
| 26 |
+
transformers==4.36.0
|
| 27 |
+
peft==0.7.1
|
| 28 |
+
safetensors==0.4.1
|
| 29 |
+
accelerate==0.25.0
|
| 30 |
+
Pillow==10.1.0
|
| 31 |
+
numpy==1.24.3
|
| 32 |
+
huggingface-hub==0.19.4
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
#### **models/lora/** (LoRA Models)
|
| 36 |
+
- `trained_crypto_lora.safetensors` - Your trained model
|
| 37 |
+
- `adapter_config.json` - LoRA configuration
|
| 38 |
+
- `crypto_cover_styles_lora.safetensors` - Backup model
|
| 39 |
+
|
| 40 |
+
## 🚀 Deployment Instructions
|
| 41 |
+
|
| 42 |
+
### For HF Spaces:
|
| 43 |
+
1. Upload `app_lora_fixed.py` as `app.py`
|
| 44 |
+
2. Upload `requirements_lora_fixed.txt` as `requirements.txt`
|
| 45 |
+
3. Upload entire `models/lora/` folder
|
| 46 |
+
4. Set hardware to GPU Basic (recommended)
|
| 47 |
+
|
| 48 |
+
### Key Features:
|
| 49 |
+
- **LoRA Integration**: Uses your trained crypto cover style model
|
| 50 |
+
- **Text Overlay**: Adds titles to generated images
|
| 51 |
+
- **Gradio UI**: Clean interface with examples
|
| 52 |
+
- **Error Handling**: Graceful fallbacks if model fails
|
| 53 |
+
- **Memory Optimization**: Efficient for HF Spaces hardware
|
| 54 |
+
|
| 55 |
+
## 🎨 Usage Examples:
|
| 56 |
+
- Prompt: "Bitcoin bull market celebration, golden coins"
|
| 57 |
+
- Title: "Bitcoin Breaks $100K!"
|
| 58 |
+
- Steps: 20-30 for good quality
|
| 59 |
+
- Guidance: 7.5 for balanced creativity
|
| 60 |
+
|
| 61 |
+
## ✅ Status: Ready for Deployment!
|
app_lora_fixed.py
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Crypto News LoRA Generator - Uses Your Trained Model
|
| 4 |
+
"""
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import os
|
| 7 |
+
import random
|
| 8 |
+
import torch
|
| 9 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 10 |
+
import numpy as np
|
| 11 |
+
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
| 12 |
+
from peft import PeftModel
|
| 13 |
+
import logging
|
| 14 |
+
|
| 15 |
+
# Set up logging
|
| 16 |
+
logging.basicConfig(level=logging.INFO)
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
# Global pipeline
|
| 20 |
+
_pipeline = None
|
| 21 |
+
_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
+
|
| 23 |
+
def load_lora_pipeline():
|
| 24 |
+
"""Load the trained LoRA model pipeline"""
|
| 25 |
+
global _pipeline
|
| 26 |
+
|
| 27 |
+
if _pipeline is not None:
|
| 28 |
+
return _pipeline
|
| 29 |
+
|
| 30 |
+
try:
|
| 31 |
+
logger.info(f"🚀 Loading pipeline on {_device}")
|
| 32 |
+
|
| 33 |
+
# Load base Stable Diffusion 1.5 model
|
| 34 |
+
base_model = "runwayml/stable-diffusion-v1-5"
|
| 35 |
+
|
| 36 |
+
# Load pipeline
|
| 37 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
| 38 |
+
base_model,
|
| 39 |
+
torch_dtype=torch.float16 if _device == "cuda" else torch.float32,
|
| 40 |
+
safety_checker=None,
|
| 41 |
+
requires_safety_checker=False
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
# Load your trained LoRA adapter
|
| 45 |
+
lora_path = "models/lora"
|
| 46 |
+
if os.path.exists(os.path.join(lora_path, "trained_crypto_lora.safetensors")):
|
| 47 |
+
logger.info("📚 Loading trained LoRA model...")
|
| 48 |
+
pipeline.unet = PeftModel.from_pretrained(
|
| 49 |
+
pipeline.unet,
|
| 50 |
+
lora_path,
|
| 51 |
+
adapter_name="crypto_lora"
|
| 52 |
+
)
|
| 53 |
+
logger.info("✅ LoRA model loaded successfully!")
|
| 54 |
+
else:
|
| 55 |
+
logger.warning("⚠️ Trained LoRA model not found, using base model")
|
| 56 |
+
|
| 57 |
+
# Optimize pipeline
|
| 58 |
+
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
| 59 |
+
pipeline = pipeline.to(_device)
|
| 60 |
+
|
| 61 |
+
if _device == "cuda":
|
| 62 |
+
pipeline.enable_memory_efficient_attention()
|
| 63 |
+
pipeline.enable_vae_slicing()
|
| 64 |
+
|
| 65 |
+
_pipeline = pipeline
|
| 66 |
+
logger.info("🎉 Pipeline loaded successfully!")
|
| 67 |
+
return _pipeline
|
| 68 |
+
|
| 69 |
+
except Exception as e:
|
| 70 |
+
logger.error(f"❌ Error loading pipeline: {str(e)}")
|
| 71 |
+
raise e
|
| 72 |
+
|
| 73 |
+
def add_text_overlay(image, title, subtitle=""):
|
| 74 |
+
"""Add text overlay to generated image"""
|
| 75 |
+
draw = ImageDraw.Draw(image)
|
| 76 |
+
width, height = image.size
|
| 77 |
+
|
| 78 |
+
try:
|
| 79 |
+
# Try to use a nice font, fallback to default
|
| 80 |
+
title_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 48)
|
| 81 |
+
subtitle_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 32)
|
| 82 |
+
except:
|
| 83 |
+
title_font = ImageFont.load_default()
|
| 84 |
+
subtitle_font = ImageFont.load_default()
|
| 85 |
+
|
| 86 |
+
# Add semi-transparent background for text
|
| 87 |
+
overlay = Image.new('RGBA', image.size, (0, 0, 0, 0))
|
| 88 |
+
overlay_draw = ImageDraw.Draw(overlay)
|
| 89 |
+
|
| 90 |
+
# Calculate text positions
|
| 91 |
+
title_bbox = draw.textbbox((0, 0), title, font=title_font)
|
| 92 |
+
title_width = title_bbox[2] - title_bbox[0]
|
| 93 |
+
title_height = title_bbox[3] - title_bbox[1]
|
| 94 |
+
|
| 95 |
+
# Position title at bottom
|
| 96 |
+
title_x = (width - title_width) // 2
|
| 97 |
+
title_y = height - title_height - 60
|
| 98 |
+
|
| 99 |
+
# Background rectangle for title
|
| 100 |
+
overlay_draw.rectangle([
|
| 101 |
+
(title_x - 20, title_y - 10),
|
| 102 |
+
(title_x + title_width + 20, title_y + title_height + 10)
|
| 103 |
+
], fill=(0, 0, 0, 180))
|
| 104 |
+
|
| 105 |
+
# Composite overlay
|
| 106 |
+
image = Image.alpha_composite(image.convert('RGBA'), overlay)
|
| 107 |
+
draw = ImageDraw.Draw(image)
|
| 108 |
+
|
| 109 |
+
# Draw title text
|
| 110 |
+
draw.text((title_x, title_y), title, font=title_font, fill=(255, 255, 255))
|
| 111 |
+
|
| 112 |
+
# Add subtitle if provided
|
| 113 |
+
if subtitle:
|
| 114 |
+
subtitle_bbox = draw.textbbox((0, 0), subtitle, font=subtitle_font)
|
| 115 |
+
subtitle_width = subtitle_bbox[2] - subtitle_bbox[0]
|
| 116 |
+
subtitle_x = (width - subtitle_width) // 2
|
| 117 |
+
subtitle_y = title_y + title_height + 15
|
| 118 |
+
draw.text((subtitle_x, subtitle_y), subtitle, font=subtitle_font, fill=(200, 200, 200))
|
| 119 |
+
|
| 120 |
+
return image.convert('RGB')
|
| 121 |
+
|
| 122 |
+
def generate_crypto_cover(prompt, title="", negative_prompt="", num_steps=20, guidance_scale=7.5):
|
| 123 |
+
"""Generate crypto news cover using trained LoRA model"""
|
| 124 |
+
try:
|
| 125 |
+
logger.info(f"🎨 Generating image with prompt: {prompt}")
|
| 126 |
+
|
| 127 |
+
# Load pipeline if not already loaded
|
| 128 |
+
pipeline = load_lora_pipeline()
|
| 129 |
+
|
| 130 |
+
# Enhanced prompt with LoRA trigger words
|
| 131 |
+
enhanced_prompt = f"crypto cover art style, {prompt}, professional design, high quality, detailed"
|
| 132 |
+
|
| 133 |
+
# Default negative prompt
|
| 134 |
+
if not negative_prompt:
|
| 135 |
+
negative_prompt = "low quality, blurry, text, watermark, signature, bad anatomy"
|
| 136 |
+
|
| 137 |
+
# Generate image
|
| 138 |
+
with torch.autocast(_device):
|
| 139 |
+
result = pipeline(
|
| 140 |
+
prompt=enhanced_prompt,
|
| 141 |
+
negative_prompt=negative_prompt,
|
| 142 |
+
num_inference_steps=num_steps,
|
| 143 |
+
guidance_scale=guidance_scale,
|
| 144 |
+
width=768,
|
| 145 |
+
height=768,
|
| 146 |
+
generator=torch.Generator(device=_device).manual_seed(random.randint(0, 2**32-1))
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
image = result.images[0]
|
| 150 |
+
|
| 151 |
+
# Add text overlay if title provided
|
| 152 |
+
if title.strip():
|
| 153 |
+
image = add_text_overlay(image, title.strip())
|
| 154 |
+
|
| 155 |
+
logger.info("✅ Image generated successfully!")
|
| 156 |
+
return image
|
| 157 |
+
|
| 158 |
+
except Exception as e:
|
| 159 |
+
logger.error(f"❌ Error generating image: {str(e)}")
|
| 160 |
+
# Return error image
|
| 161 |
+
error_img = Image.new('RGB', (768, 768), color='red')
|
| 162 |
+
draw = ImageDraw.Draw(error_img)
|
| 163 |
+
draw.text((50, 350), f"Error: {str(e)}", fill='white')
|
| 164 |
+
return error_img
|
| 165 |
+
|
| 166 |
+
# Gradio interface
|
| 167 |
+
def create_interface():
|
| 168 |
+
"""Create Gradio interface"""
|
| 169 |
+
|
| 170 |
+
with gr.Blocks(title="Crypto News LoRA Generator", theme=gr.themes.Soft()) as demo:
|
| 171 |
+
gr.Markdown("# 🚀 Crypto News Cover Generator")
|
| 172 |
+
gr.Markdown("*Powered by your trained LoRA model*")
|
| 173 |
+
|
| 174 |
+
with gr.Row():
|
| 175 |
+
with gr.Column(scale=1):
|
| 176 |
+
prompt_input = gr.Textbox(
|
| 177 |
+
label="📝 Image Prompt",
|
| 178 |
+
placeholder="Bitcoin reaching new heights, bull market celebration...",
|
| 179 |
+
lines=3
|
| 180 |
+
)
|
| 181 |
+
title_input = gr.Textbox(
|
| 182 |
+
label="🏷️ Cover Title (Optional)",
|
| 183 |
+
placeholder="Bitcoin Breaks $100K!"
|
| 184 |
+
)
|
| 185 |
+
negative_prompt = gr.Textbox(
|
| 186 |
+
label="🚫 Negative Prompt (Optional)",
|
| 187 |
+
placeholder="low quality, blurry, text...",
|
| 188 |
+
lines=2
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
with gr.Row():
|
| 192 |
+
steps_slider = gr.Slider(
|
| 193 |
+
minimum=10, maximum=50, value=20, step=1,
|
| 194 |
+
label="🔄 Inference Steps"
|
| 195 |
+
)
|
| 196 |
+
guidance_slider = gr.Slider(
|
| 197 |
+
minimum=1.0, maximum=20.0, value=7.5, step=0.5,
|
| 198 |
+
label="🎯 Guidance Scale"
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
generate_btn = gr.Button("🎨 Generate Cover", variant="primary", scale=1)
|
| 202 |
+
|
| 203 |
+
with gr.Column(scale=1):
|
| 204 |
+
output_image = gr.Image(label="Generated Cover", type="pil", height=400)
|
| 205 |
+
|
| 206 |
+
# Example prompts
|
| 207 |
+
gr.Markdown("## 💡 Example Prompts")
|
| 208 |
+
examples = [
|
| 209 |
+
["Bitcoin bull market celebration, golden coins, upward trending chart", "Bitcoin Soars to New Heights"],
|
| 210 |
+
["Ethereum network visualization, blue digital art, blockchain nodes", "Ethereum 2.0 Launch"],
|
| 211 |
+
["Cryptocurrency exchange interface, trading charts, neon lights", "Crypto Trading Guide"],
|
| 212 |
+
["DeFi protocol illustration, interconnected finance, futuristic", "DeFi Revolution"],
|
| 213 |
+
]
|
| 214 |
+
|
| 215 |
+
gr.Examples(
|
| 216 |
+
examples=examples,
|
| 217 |
+
inputs=[prompt_input, title_input],
|
| 218 |
+
outputs=output_image,
|
| 219 |
+
fn=generate_crypto_cover,
|
| 220 |
+
cache_examples=False
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
# Connect generate button
|
| 224 |
+
generate_btn.click(
|
| 225 |
+
fn=generate_crypto_cover,
|
| 226 |
+
inputs=[prompt_input, title_input, negative_prompt, steps_slider, guidance_slider],
|
| 227 |
+
outputs=output_image
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
return demo
|
| 231 |
+
|
| 232 |
+
# Launch the app
|
| 233 |
+
if __name__ == "__main__":
|
| 234 |
+
logger.info("🌟 Starting Crypto News LoRA Generator...")
|
| 235 |
+
demo = create_interface()
|
| 236 |
+
demo.launch(
|
| 237 |
+
server_name="0.0.0.0",
|
| 238 |
+
server_port=7860,
|
| 239 |
+
share=True
|
| 240 |
+
)
|
models/.DS_Store
CHANGED
|
Binary files a/models/.DS_Store and b/models/.DS_Store differ
|
|
|
models/lora/adapter_config.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": {
|
| 4 |
+
"base_model_class": "UNet2DConditionModel",
|
| 5 |
+
"parent_library": "diffusers.models.unets.unet_2d_condition"
|
| 6 |
+
},
|
| 7 |
+
"base_model_name_or_path": null,
|
| 8 |
+
"bias": "none",
|
| 9 |
+
"corda_config": null,
|
| 10 |
+
"eva_config": null,
|
| 11 |
+
"exclude_modules": null,
|
| 12 |
+
"fan_in_fan_out": false,
|
| 13 |
+
"inference_mode": true,
|
| 14 |
+
"init_lora_weights": true,
|
| 15 |
+
"layer_replication": null,
|
| 16 |
+
"layers_pattern": null,
|
| 17 |
+
"layers_to_transform": null,
|
| 18 |
+
"loftq_config": {},
|
| 19 |
+
"lora_alpha": 32,
|
| 20 |
+
"lora_bias": false,
|
| 21 |
+
"lora_dropout": 0.1,
|
| 22 |
+
"megatron_config": null,
|
| 23 |
+
"megatron_core": "megatron.core",
|
| 24 |
+
"modules_to_save": null,
|
| 25 |
+
"peft_type": "LORA",
|
| 26 |
+
"qalora_group_size": 16,
|
| 27 |
+
"r": 64,
|
| 28 |
+
"rank_pattern": {},
|
| 29 |
+
"revision": null,
|
| 30 |
+
"target_modules": [
|
| 31 |
+
"to_out.0",
|
| 32 |
+
"to_q",
|
| 33 |
+
"to_k",
|
| 34 |
+
"to_v"
|
| 35 |
+
],
|
| 36 |
+
"target_parameters": null,
|
| 37 |
+
"task_type": null,
|
| 38 |
+
"trainable_token_indices": null,
|
| 39 |
+
"use_dora": false,
|
| 40 |
+
"use_qalora": false,
|
| 41 |
+
"use_rslora": false
|
| 42 |
+
}
|
models/lora/trained_crypto_lora.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d7b958e20f49eb945a02d82892b9b4d197df4c32a9fa684e15e0a69253906832
|
| 3 |
+
size 371770176
|
requirements_lora_fixed.txt
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Gradio for HF Spaces interface
|
| 2 |
+
gradio==4.44.0
|
| 3 |
+
|
| 4 |
+
# Core ML libraries
|
| 5 |
+
torch==2.1.1
|
| 6 |
+
torchvision==0.16.1
|
| 7 |
+
torchaudio==2.1.1
|
| 8 |
+
|
| 9 |
+
# Diffusers and transformers
|
| 10 |
+
diffusers==0.24.0
|
| 11 |
+
transformers==4.36.0
|
| 12 |
+
|
| 13 |
+
# LoRA libraries
|
| 14 |
+
peft==0.7.1
|
| 15 |
+
safetensors==0.4.1
|
| 16 |
+
accelerate==0.25.0
|
| 17 |
+
|
| 18 |
+
# Image processing
|
| 19 |
+
Pillow==10.1.0
|
| 20 |
+
|
| 21 |
+
# Utilities
|
| 22 |
+
numpy==1.24.3
|
| 23 |
+
huggingface-hub==0.19.4
|