Spaces:
Running
Running
| import gradio as gr | |
| import gradio as gr | |
| from pathlib import Path | |
| from PIL import Image | |
| import numpy as np | |
| import torch | |
| from torch.autograd import Variable | |
| from torchvision import transforms | |
| import torch.nn.functional as F | |
| import matplotlib.pyplot as plt | |
| import warnings | |
| from zipfile import ZipFile | |
| warnings.filterwarnings("ignore") | |
| # project imports | |
| from data_loader_cache import normalize, im_reader, im_preprocess | |
| from models import * | |
| #Helpers | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| class GOSNormalize(object): | |
| ''' | |
| Normalize the Image using torch.transforms | |
| ''' | |
| def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): | |
| self.mean = mean | |
| self.std = std | |
| def __call__(self,image): | |
| image = normalize(image,self.mean,self.std) | |
| return image | |
| transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])]) | |
| def load_image(im_path, hypar): | |
| im = im_reader(im_path) | |
| im, im_shp = im_preprocess(im, hypar["cache_size"]) | |
| im = torch.divide(im,255.0) | |
| shape = torch.from_numpy(np.array(im_shp)) | |
| return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape | |
| def build_model(hypar,device): | |
| net = hypar["model"]#GOSNETINC(3,1) | |
| # convert to half precision | |
| if(hypar["model_digit"]=="half"): | |
| net.half() | |
| for layer in net.modules(): | |
| if isinstance(layer, nn.BatchNorm2d): | |
| layer.float() | |
| net.to(device) | |
| if(hypar["restore_model"]!=""): | |
| net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device)) | |
| net.to(device) | |
| net.eval() | |
| return net | |
| def predict(net, inputs_val, shapes_val, hypar, device): | |
| ''' | |
| Given an Image, predict the mask | |
| ''' | |
| net.eval() | |
| if(hypar["model_digit"]=="full"): | |
| inputs_val = inputs_val.type(torch.FloatTensor) | |
| else: | |
| inputs_val = inputs_val.type(torch.HalfTensor) | |
| inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable | |
| ds_val = net(inputs_val_v)[0] # list of 6 results | |
| pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction | |
| ## recover the prediction spatial size to the orignal image size | |
| pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear')) | |
| ma = torch.max(pred_val) | |
| mi = torch.min(pred_val) | |
| pred_val = (pred_val-mi)/(ma-mi) # max = 1 | |
| if device == 'cuda': torch.cuda.empty_cache() | |
| return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need | |
| # Set Parameters | |
| hypar = {} # paramters for inferencing | |
| hypar["model_path"] ="./saved_models" ## load trained weights from this path | |
| hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights | |
| hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision | |
| ## choose floating point accuracy -- | |
| hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number | |
| hypar["seed"] = 0 | |
| hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size | |
| ## data augmentation parameters --- | |
| hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images | |
| hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation | |
| hypar["model"] = ISNetDIS() | |
| # Build Model | |
| net = build_model(hypar, device) | |
| def inference(image_path): | |
| image_tensor, orig_size = load_image(image_path, hypar) | |
| mask = predict(net, image_tensor, orig_size, hypar, device) | |
| pil_mask = Image.fromarray(mask).convert('L') | |
| im_rgb = Image.open(image_path).convert("RGB") | |
| im_rgba = im_rgb.copy() | |
| im_rgba.putalpha(pil_mask) | |
| file_name = Path(image_path).stem+"_nobg.png" | |
| file_path = Path(Path(image_path).parent,file_name) | |
| im_rgba.save(file_path) | |
| return str(file_path.resolve()) | |
| def bw(image_files): | |
| print(image_files) | |
| output = [] | |
| for idx, file in enumerate(image_files): | |
| print(file.name) | |
| img = Image.open(file.name) | |
| img = img.convert("L") | |
| output.append(img) | |
| print(output) | |
| return output | |
| def bw_single(image_file): | |
| img = Image.open(image_file) | |
| img = img.convert("L") | |
| return img | |
| def batch(image_files): | |
| output = [] | |
| for idx, file in enumerate(image_files): | |
| file = inference(file.name) | |
| output.append(file) | |
| with ZipFile("tmp.zip", "w") as zipObj: | |
| for idx, file in enumerate(output): | |
| zipObj.write(file, file.split("/")[-1]) | |
| return output,"tmp.zip" | |
| with gr.Blocks() as iface: | |
| gr.Markdown("# Remove Background") | |
| with gr.Tab("Single Image"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(type='filepath') | |
| with gr.Column(): | |
| image_output = gr.Image(interactive=False) | |
| with gr.Row(): | |
| with gr.Column(): | |
| single_removebg = gr.Button("Remove Bg") | |
| with gr.Column(): | |
| single_clear = gr.Button("Clear") | |
| with gr.Tab("Batch"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| images = gr.File(file_count="multiple", file_types=["image"]) | |
| with gr.Column(): | |
| gallery = gr.Gallery() | |
| file_list = gr.Files(interactive=False) | |
| with gr.Row(): | |
| with gr.Column(): | |
| batch_removebg = gr.Button("Batch Process") | |
| with gr.Column(): | |
| batch_clear = gr.Button("Clear") | |
| #Events | |
| single_removebg.click(inference, inputs=image, outputs=image_output) | |
| batch_removebg.click(batch, inputs=images, outputs=[gallery,file_list]) | |
| single_clear.click(lambda: None, None, image, queue=False) | |
| batch_clear.click(lambda: None, None, images, queue=False) | |
| iface.launch() |