Modified_tool / app.py
TarSh8654's picture
Update app.py
9c8e6cc verified
import gradio as gr
import os
import tempfile
import logging
import json
import requests # For Gemini API calls
# Import your dispatcher class from the local summarizer_tool.py file
from summarizer_tool import AllInOneDispatcher
# --- Gemini API Configuration ---
# The API key will be automatically provided by the Canvas environment at runtime
# if left as an empty string. DO NOT hardcode your API key here.
GEMINI_API_KEY = "" # Leave as empty string for Canvas environment
GEMINI_API_URL = "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent"
# Configure logging for the Gradio app
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Initialize the dispatcher globally.
# This ensures models are loaded only once when the Gradio app starts up.
# This can take time, especially on CPU.
try:
dispatcher = AllInOneDispatcher()
logging.info("AllInOneDispatcher initialized successfully for Gradio app.")
except Exception as e:
logging.error(f"Failed to initialize AllInOneDispatcher: {e}")
raise RuntimeError(f"Failed to initialize AI models. Check logs for details: {e}") from e
# --- Helper Function for Gemini API Call ---
def call_gemini_api(prompt: str) -> str:
"""
Calls the Gemini API with the given prompt and returns the generated text.
"""
headers = {
'Content-Type': 'application/json',
}
payload = {
"contents": [{"role": "user", "parts": [{"text": prompt}]}],
}
full_api_url = f"{GEMINI_API_URL}?key={GEMINI_API_KEY}" if GEMINI_API_KEY else GEMINI_API_URL
try:
response = requests.post(full_api_url, headers=headers, data=json.dumps(payload))
response.raise_for_status() # Raise an exception for HTTP errors
result = response.json()
if result.get("candidates") and len(result["candidates"]) > 0 and \
result["candidates"][0].get("content") and \
result["candidates"][0]["content"].get("parts") and \
len(result["candidates"][0]["content"]["parts"]) > 0:
return result["candidates"][0]["content"]["parts"][0]["text"]
else:
return "I couldn't generate a response for that."
except requests.exceptions.RequestException as e:
logging.error(f"Gemini API Call Error: {e}")
return f"An error occurred while connecting to the AI: {e}"
except json.JSONDecodeError:
logging.error(f"Gemini API Response Error: Could not decode JSON. Response: {response.text}")
return "An error occurred while processing the AI's response."
except Exception as e:
logging.error(f"An unexpected error occurred during Gemini API call: {e}")
return f"An unexpected error occurred: {e}"
# --- Main Chat Function for Gradio ---
async def chat_with_ai(message: str, history: list, selected_task: str, uploaded_file):
"""
Processes user messages, selected tasks, and uploaded files.
"""
response_text = ""
file_path = None
# Handle file upload first, if any
if uploaded_file is not None:
file_path = uploaded_file # Gradio passes the path directly for type="filepath"
logging.info(f"Received file: {file_path} for task: {selected_task}")
# Determine file type for task mapping
file_extension = os.path.splitext(file_path)[1].lower()
if file_extension in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff']:
if selected_task not in ["Image Classification", "Object Detection"]:
return "Please select 'Image Classification' or 'Object Detection' for image files."
elif file_extension in ['.mp3', '.wav', '.ogg', '.flac', '.m4a']:
if selected_task != "Automatic Speech Recognition":
return "Please select 'Automatic Speech Recognition' for audio files."
elif file_extension in ['.mp4', '.mov', '.avi', '.mkv']:
if selected_task != "Video Analysis":
return "Please select 'Video Analysis' for video files."
elif file_extension == '.pdf':
if selected_task != "PDF Summarization (RAG)":
return "Please select 'PDF Summarization (RAG)' for PDF files."
else:
return f"Unsupported file type: {file_extension}. Please upload a supported file or select 'General Chat'."
try:
if selected_task == "General Chat":
# Use Gemini for general chat
prompt = f"User: {message}\nAI:"
response_text = call_gemini_api(prompt)
return response_text
elif selected_task == "Summarize Text":
if not message.strip(): return "Please provide text to summarize."
result = dispatcher.process(message, task="summarization", max_length=150, min_length=30)
response_text = f"Here's a summary of your text:\n\n{json.dumps(result, indent=2)}"
return response_text
elif selected_task == "Sentiment Analysis":
if not message.strip(): return "Please provide text for sentiment analysis."
result = dispatcher.process(message, task="sentiment-analysis")
response_text = f"The sentiment of your text is: {json.dumps(result, indent=2)}"
return response_text
elif selected_task == "Text Generation":
if not message.strip(): return "Please provide a prompt for text generation."
result = dispatcher.process(message, task="text-generation", max_new_tokens=100, num_return_sequences=1)
generated_text = result[0]['generated_text'] if result and isinstance(result, list) and result[0].get('generated_text') else str(result)
response_text = f"Here's the generated text:\n\n{generated_text}"
return response_text
elif selected_task == "Text-to-Speech (TTS)":
if not message.strip(): return "Please provide text for speech generation."
audio_path = dispatcher.process(message, task="tts", lang="en") # Default to English
if os.path.exists(audio_path):
# Gradio ChatInterface can return audio directly
return (f"Here's the audio for your text:", gr.Audio(audio_path, label="Generated Speech", autoplay=True))
else:
return "Failed to generate speech."
elif selected_task == "Translation (EN to FR)":
if not message.strip(): return "Please provide text to translate."
result = dispatcher.process(message, task="translation_en_to_fr")
translated_text = result[0]['translation_text'] if result and isinstance(result, list) and result[0].get('translation_text') else str(result)
response_text = f"Here's the English to French translation:\n\n{translated_text}"
return response_text
elif selected_task == "Image Classification":
if not file_path: return "Please upload an image file for classification."
result = dispatcher.process(file_path, task="image-classification")
response_text = f"Image Classification Result:\n\n{json.dumps(result, indent=2)}"
return response_text
elif selected_task == "Object Detection":
if not file_path: return "Please upload an image file for object detection."
result = dispatcher.process(file_path, task="object-detection")
response_text = f"Object Detection Result:\n\n{json.dumps(result, indent=2)}"
return response_text
elif selected_task == "Automatic Speech Recognition":
if not file_path: return "Please upload an audio file for transcription."
result = dispatcher.process(file_path, task="automatic-speech-recognition")
transcription = result.get('text', 'No transcription found.')
response_text = f"Audio Transcription:\n\n{transcription}"
return response_text
elif selected_task == "Video Analysis":
if not file_path: return "Please upload a video file for analysis."
result = dispatcher.process(file_path, task="video")
image_analysis = json.dumps(result.get('image_analysis'), indent=2)
audio_analysis = json.dumps(result.get('audio_analysis'), indent=2)
response_text = f"Video Analysis Result:\n\nImage Analysis:\n{image_analysis}\n\nAudio Analysis:\n{audio_analysis}"
return response_text
elif selected_task == "PDF Summarization (RAG)":
if not file_path: return "Please upload a PDF file for summarization."
result = dispatcher.process(file_path, task="pdf")
response_text = f"PDF Summary:\n\n{result}"
return response_text
elif selected_task == "Process Dataset":
# This task requires more specific parameters (dataset name, column, etc.)
# It's not directly compatible with a single chat message input.
# We'll guide the user to a separate interface for this, or simplify.
# For now, let's keep it simple: user provides dataset_name, subset, split, column in message.
# A more robust solution would involve a separate Gradio component for this.
return "For 'Process Dataset', please use the dedicated 'Dataset Analyzer' tab if it were available, or provide all parameters in your message like: 'dataset: glue, subset: sst2, split: train, column: sentence, task: sentiment-analysis, samples: 2'."
# Example of parsing:
# parts = message.split(',')
# params = {p.split(':')[0].strip(): p.split(':')[1].strip() for p in parts if ':' in p}
# dataset_name = params.get('dataset')
# subset_name = params.get('subset', '')
# split = params.get('split', 'train')
# column = params.get('column')
# task_for_dataset = params.get('task')
# num_samples = int(params.get('samples', 2))
# if not all([dataset_name, column, task_for_dataset]):
# return "Please provide dataset name, column, and task for dataset processing."
# result = dispatcher.process_dataset_from_hub(dataset_name, subset_name, split, column, task_for_dataset, num_samples)
# return f"Dataset Processing Results:\n\n{json.dumps(result, indent=2)}"
else:
return "Please select a valid task from the dropdown."
except Exception as e:
logging.error(f"An error occurred in chat_with_ai: {e}")
return f"An unexpected error occurred during processing: {e}"
finally:
# Clean up temporary file if it was uploaded and processed
if file_path and os.path.exists(file_path):
# Gradio handles temp file cleanup for gr.File(type="filepath")
# However, if you manually copy/save, ensure cleanup.
# For this setup, Gradio should handle it.
pass
# --- Gradio Interface Definition ---
# Define the choices for the task dropdown
task_choices = [
"General Chat",
"Summarize Text",
"Sentiment Analysis",
"Text Generation",
"Text-to-Speech (TTS)",
"Translation (EN to FR)",
"Image Classification",
"Object Detection",
"Automatic Speech Recognition",
"Video Analysis",
"PDF Summarization (RAG)",
# "Process Dataset" - Removed for now as it needs more complex input than a simple chat
]
# Create the ChatInterface
demo = gr.ChatInterface(
fn=chat_with_ai,
textbox=gr.Textbox(placeholder="Ask me anything or provide text/files for analysis...", container=False, scale=7),
chatbot=gr.Chatbot(height=500),
# Add a file upload component
additional_inputs=[
gr.Dropdown(task_choices, label="Select Task", value="General Chat", container=True),
gr.File(label="Upload File (Optional)", type="filepath", file_types=[
".pdf", ".mp3", ".wav", ".jpg", ".jpeg", ".png", ".mov", ".mp4", ".avi", ".mkv"
])
],
title="💬 Multimodal AI Assistant (Chat Interface)",
description="Interact with various AI models. Select a task and provide your input (text or file)."
)
# --- Launch the Gradio App ---
if __name__ == "__main__":
# For local testing, use demo.launch()
# For Hugging Face Spaces, ensure all dependencies are in requirements.txt
demo.launch(share=True) # share=True creates a public link for easy sharing (temporary)