Spaces:
Running
Running
Commit
·
e3793a3
1
Parent(s):
22b0fe7
maint: make more nice looking
Browse files
data/leaderboard-classification.csv.zip
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:d9e301dfeeb8cc7092301268aad4e4c9922517b6288101a588b5a15f5a0aaca9
|
| 3 |
-
size 4679
|
|
|
|
|
|
|
|
|
|
|
|
data/leaderboard-regression.csv.zip
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:d9e301dfeeb8cc7092301268aad4e4c9922517b6288101a588b5a15f5a0aaca9
|
| 3 |
-
size 4679
|
|
|
|
|
|
|
|
|
|
|
|
data/{leaderboard-all.csv.zip → tabarena_leaderboard.csv.zip}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c95306a347a69e561a82562c1a6306f5a9f6819a60f458d5e350639c35cde848
|
| 3 |
+
size 10202
|
main.py
CHANGED
|
@@ -67,7 +67,7 @@ def rename_map(model_name: str) -> str:
|
|
| 67 |
"MNCA": "ModernNCA",
|
| 68 |
"NN_TORCH": "TorchMLP",
|
| 69 |
"FASTAI": "FastaiMLP",
|
| 70 |
-
"
|
| 71 |
"EBM": "EBM",
|
| 72 |
"TABDPT": "TabDPT",
|
| 73 |
"TABICL": "TabICL",
|
|
@@ -88,8 +88,6 @@ def load_data(filename: str):
|
|
| 88 |
f"Loaded dataframe with {len(df_leaderboard)} rows and columns {df_leaderboard.columns}"
|
| 89 |
)
|
| 90 |
|
| 91 |
-
# sort by ELO
|
| 92 |
-
df_leaderboard = df_leaderboard.sort_values(by="elo", ascending=False)
|
| 93 |
|
| 94 |
# add model family information
|
| 95 |
|
|
@@ -101,22 +99,51 @@ def load_data(filename: str):
|
|
| 101 |
)
|
| 102 |
df_leaderboard["method"] = df_leaderboard["method"].apply(rename_map)
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
# select only the columns we want to display
|
| 105 |
df_leaderboard = df_leaderboard.loc[
|
| 106 |
-
:,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
]
|
| 108 |
|
| 109 |
# round for better display
|
| 110 |
-
df_leaderboard = df_leaderboard.round(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
# rename some columns
|
| 113 |
return df_leaderboard.rename(
|
| 114 |
columns={
|
| 115 |
-
"
|
| 116 |
-
"
|
| 117 |
"method": "Model",
|
| 118 |
"elo": "Elo [⬆️]",
|
| 119 |
"rank": "Rank [⬇️]",
|
|
|
|
| 120 |
}
|
| 121 |
)
|
| 122 |
|
|
@@ -138,6 +165,26 @@ def make_leaderboard(df_leaderboard: pd.DataFrame) -> Leaderboard:
|
|
| 138 |
"(tuned + ensemble)"
|
| 139 |
) | df_leaderboard["Model"].str.endswith("(4h)")
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
return Leaderboard(
|
| 142 |
value=df_leaderboard,
|
| 143 |
select_columns=SelectColumns(
|
|
@@ -152,17 +199,29 @@ def make_leaderboard(df_leaderboard: pd.DataFrame) -> Leaderboard:
|
|
| 152 |
"Only Default",
|
| 153 |
"Only Tuned",
|
| 154 |
"Only Tuned + Ensemble",
|
|
|
|
| 155 |
],
|
| 156 |
search_columns=["Model", "Type"],
|
| 157 |
filter_columns=[
|
| 158 |
-
ColumnFilter(
|
| 159 |
-
"TypeFiler", type="checkboxgroup", label="Filter by Model Type"
|
| 160 |
-
),
|
| 161 |
ColumnFilter("Only Default", type="boolean", default=False),
|
| 162 |
ColumnFilter("Only Tuned", type="boolean", default=False),
|
| 163 |
ColumnFilter("Only Tuned + Ensemble", type="boolean", default=False),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
],
|
| 165 |
-
bool_checkboxgroup_label="Custom Views (
|
| 166 |
)
|
| 167 |
|
| 168 |
|
|
@@ -174,7 +233,7 @@ def main():
|
|
| 174 |
|
| 175 |
with gr.Tabs(elem_classes="tab-buttons"):
|
| 176 |
with gr.TabItem("🏅 Overall", elem_id="llm-benchmark-tab-table", id=2):
|
| 177 |
-
df_leaderboard = load_data("
|
| 178 |
make_leaderboard(df_leaderboard)
|
| 179 |
|
| 180 |
# TODO: decide on which subsets we want to support here.
|
|
|
|
| 67 |
"MNCA": "ModernNCA",
|
| 68 |
"NN_TORCH": "TorchMLP",
|
| 69 |
"FASTAI": "FastaiMLP",
|
| 70 |
+
"TABPFNV2": "TabPFNv2",
|
| 71 |
"EBM": "EBM",
|
| 72 |
"TABDPT": "TabDPT",
|
| 73 |
"TABICL": "TabICL",
|
|
|
|
| 88 |
f"Loaded dataframe with {len(df_leaderboard)} rows and columns {df_leaderboard.columns}"
|
| 89 |
)
|
| 90 |
|
|
|
|
|
|
|
| 91 |
|
| 92 |
# add model family information
|
| 93 |
|
|
|
|
| 99 |
)
|
| 100 |
df_leaderboard["method"] = df_leaderboard["method"].apply(rename_map)
|
| 101 |
|
| 102 |
+
# elo,elo+,elo-,mrr
|
| 103 |
+
df_leaderboard["Elo 95% CI"] = (
|
| 104 |
+
"+"
|
| 105 |
+
+ df_leaderboard["elo+"].round(0).astype(int).astype(str)
|
| 106 |
+
+ "/-"
|
| 107 |
+
+ df_leaderboard["elo-"].round(0).astype(int).astype(str)
|
| 108 |
+
)
|
| 109 |
# select only the columns we want to display
|
| 110 |
df_leaderboard = df_leaderboard.loc[
|
| 111 |
+
:,
|
| 112 |
+
[
|
| 113 |
+
"Type",
|
| 114 |
+
"TypeName",
|
| 115 |
+
"method",
|
| 116 |
+
"elo",
|
| 117 |
+
"Elo 95% CI",
|
| 118 |
+
"rank",
|
| 119 |
+
"normalized-error",
|
| 120 |
+
"median_time_train_s_per_1K",
|
| 121 |
+
"median_time_infer_s_per_1K",
|
| 122 |
+
],
|
| 123 |
]
|
| 124 |
|
| 125 |
# round for better display
|
| 126 |
+
df_leaderboard[["elo", "Elo 95% CI"]] = df_leaderboard[["elo", "Elo 95% CI"]].round(0)
|
| 127 |
+
df_leaderboard[["median_time_train_s_per_1K", "rank"]] = df_leaderboard[
|
| 128 |
+
["median_time_train_s_per_1K", "rank"]
|
| 129 |
+
].round(2)
|
| 130 |
+
df_leaderboard[["normalized-error", "median_time_infer_s_per_1K"]] = df_leaderboard[
|
| 131 |
+
["normalized-error", "median_time_infer_s_per_1K"]
|
| 132 |
+
].round(3)
|
| 133 |
+
|
| 134 |
+
df_leaderboard = df_leaderboard.sort_values(by="elo", ascending=False)
|
| 135 |
+
df_leaderboard = df_leaderboard.reset_index(drop=True)
|
| 136 |
+
df_leaderboard = df_leaderboard.reset_index(names="#")
|
| 137 |
|
| 138 |
# rename some columns
|
| 139 |
return df_leaderboard.rename(
|
| 140 |
columns={
|
| 141 |
+
"median_time_train_s_per_1K": "Median Train Time (s/1K) [⬇️]",
|
| 142 |
+
"median_time_infer_s_per_1K": "Median Predict Time (s/1K)) [⬇️]",
|
| 143 |
"method": "Model",
|
| 144 |
"elo": "Elo [⬆️]",
|
| 145 |
"rank": "Rank [⬇️]",
|
| 146 |
+
"normalized-error": "Normalized Error [⬇️]",
|
| 147 |
}
|
| 148 |
)
|
| 149 |
|
|
|
|
| 165 |
"(tuned + ensemble)"
|
| 166 |
) | df_leaderboard["Model"].str.endswith("(4h)")
|
| 167 |
|
| 168 |
+
# Add Imputed count postfix
|
| 169 |
+
mask = df_leaderboard["Model"].str.startswith("TabPFNv2")
|
| 170 |
+
df_leaderboard.loc[mask, "Model"] = (
|
| 171 |
+
df_leaderboard.loc[mask, "Model"] + " [35.29% IMPUTED]"
|
| 172 |
+
)
|
| 173 |
+
mask = df_leaderboard["Model"].str.startswith("TabICL")
|
| 174 |
+
df_leaderboard.loc[mask, "Model"] = (
|
| 175 |
+
df_leaderboard.loc[mask, "Model"] + " [29.41% IMPUTED]"
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
df_leaderboard["Imputed"] = df_leaderboard["Model"].str.startswith(
|
| 179 |
+
"TabPFNv2"
|
| 180 |
+
) | df_leaderboard["Model"].str.startswith("TabICL")
|
| 181 |
+
df_leaderboard["Imputed"] = df_leaderboard["Imputed"].replace(
|
| 182 |
+
{
|
| 183 |
+
True: "Imputed",
|
| 184 |
+
False: "Not Imputed",
|
| 185 |
+
}
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
return Leaderboard(
|
| 189 |
value=df_leaderboard,
|
| 190 |
select_columns=SelectColumns(
|
|
|
|
| 199 |
"Only Default",
|
| 200 |
"Only Tuned",
|
| 201 |
"Only Tuned + Ensemble",
|
| 202 |
+
"Imputed",
|
| 203 |
],
|
| 204 |
search_columns=["Model", "Type"],
|
| 205 |
filter_columns=[
|
| 206 |
+
ColumnFilter("TypeFiler", type="checkboxgroup", label="Model Types."),
|
|
|
|
|
|
|
| 207 |
ColumnFilter("Only Default", type="boolean", default=False),
|
| 208 |
ColumnFilter("Only Tuned", type="boolean", default=False),
|
| 209 |
ColumnFilter("Only Tuned + Ensemble", type="boolean", default=False),
|
| 210 |
+
ColumnFilter(
|
| 211 |
+
"Imputed",
|
| 212 |
+
type="checkboxgroup",
|
| 213 |
+
label="(Not) Imputed Models.",
|
| 214 |
+
info="We impute the performance for models that cannot run on all"
|
| 215 |
+
" datasets due to task or dataset size constraints (e.g. TabPFN,"
|
| 216 |
+
" TabICL). We impute with the performance of a defaultRandomForest. "
|
| 217 |
+
" We add a postfix [X% IMPUTED] to the model if any results were "
|
| 218 |
+
"imputed. The X% shows the percentage of"
|
| 219 |
+
" datasets that were imputed. In general, imputation negatively"
|
| 220 |
+
" represents the model performance, punishing the model for not"
|
| 221 |
+
" being able to run on all datasets.",
|
| 222 |
+
),
|
| 223 |
],
|
| 224 |
+
bool_checkboxgroup_label="Custom Views (exclusive, only toggle one at a time):",
|
| 225 |
)
|
| 226 |
|
| 227 |
|
|
|
|
| 233 |
|
| 234 |
with gr.Tabs(elem_classes="tab-buttons"):
|
| 235 |
with gr.TabItem("🏅 Overall", elem_id="llm-benchmark-tab-table", id=2):
|
| 236 |
+
df_leaderboard = load_data("tabarena_leaderboard")
|
| 237 |
make_leaderboard(df_leaderboard)
|
| 238 |
|
| 239 |
# TODO: decide on which subsets we want to support here.
|