Spaces:
Runtime error
Runtime error
| from threading import Thread | |
| import requests | |
| from io import BytesIO | |
| from PIL import Image | |
| import re | |
| import gradio as gr | |
| import torch | |
| import spaces | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModelForCausalLM, | |
| AutoImageProcessor, | |
| TextIteratorStreamer, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-edge-v-5b", trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained("THUDM/glm-edge-v-5b", trust_remote_code=True, device_map="auto").eval() | |
| processor = AutoImageProcessor.from_pretrained("THUDM/glm-edge-v-5b", trust_remote_code=True, device_map="auto") | |
| def get_image(image): | |
| if is_url(image): | |
| response = requests.get(image) | |
| return Image.open(BytesIO(response.content)).convert("RGB") | |
| elif image: | |
| return Image.open(image).convert("RGB") | |
| def is_url(s): | |
| if re.match(r'^(?:http|ftp)s?://', s): | |
| return True | |
| return False | |
| def preprocess_messages(history, image): | |
| messages = [] | |
| pixel_values = None | |
| for idx, (user_msg, model_msg) in enumerate(history): | |
| if idx == len(history) - 1 and not messages: | |
| messages.append({"role": "user", "content": [{"type": "text", "text": user_msg}]}) | |
| break | |
| if user_msg: | |
| messages.append({"role": "user", "content": [{"type": "text", "text": user_msg}]}) | |
| if model_msg: | |
| messages.append({"role": "assistant", "content": [{"type": "text", "text": model_msg}]}) | |
| if image: | |
| messages[-1]['content'].append({"type": "image"}) | |
| try: | |
| image_input = get_image(image) | |
| pixel_values = torch.tensor( | |
| processor(image_input).pixel_values).to(model.device) | |
| except: | |
| print("Invalid image path. Continuing with text conversation.") | |
| return messages, pixel_values | |
| def predict(history, max_length, top_p, temperature, image=None): | |
| messages, pixel_values = preprocess_messages(history, image) | |
| model_inputs = tokenizer.apply_chat_template( | |
| messages, add_generation_prompt=True, tokenize=True, return_tensors="pt", return_dict=True | |
| ) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=60, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = { | |
| "input_ids": model_inputs["input_ids"].to(model.device), | |
| "attention_mask": model_inputs["attention_mask"].to(model.device), | |
| "streamer": streamer, | |
| "max_new_tokens": max_length, | |
| "do_sample": True, | |
| "top_p": top_p, | |
| "temperature": temperature, | |
| "repetition_penalty": 1.2, | |
| "eos_token_id": [59246, 59253, 59255], | |
| } | |
| if image and isinstance(pixel_values, torch.Tensor): | |
| generate_kwargs['pixel_values'] = pixel_values | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| for new_token in streamer: | |
| if new_token: | |
| history[-1][1] += new_token | |
| yield history | |
| def main(): | |
| with gr.Blocks() as demo: | |
| gr.HTML("""<h1 align="center">GLM-Edge-v Gradio Demo</h1>""") | |
| # Top row: Chatbot and Image upload | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| chatbot = gr.Chatbot() | |
| with gr.Column(scale=1): | |
| image_input = gr.Image(label="Upload an Image", type="filepath") | |
| # Bottom row: System prompt, user input, and controls | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| user_input = gr.Textbox(show_label=True, placeholder="Input...", label="User Input") | |
| submitBtn = gr.Button("Submit") | |
| emptyBtn = gr.Button("Clear History") | |
| with gr.Column(scale=1): | |
| max_length = gr.Slider(0, 8192, value=4096, step=1.0, label="Maximum length", interactive=True) | |
| top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True) | |
| temperature = gr.Slider(0.01, 1, value=0.6, step=0.01, label="Temperature", interactive=True) | |
| # Define functions for button actions | |
| def user(query, history): | |
| return "", history + [[query, ""]] | |
| # Button actions and callbacks | |
| submitBtn.click(user, [user_input, chatbot], [user_input, chatbot], queue=False).then( | |
| predict, [chatbot, max_length, top_p, temperature, image_input], chatbot | |
| ) | |
| emptyBtn.click(lambda: (None, None), None, [chatbot], queue=False) | |
| demo.queue() | |
| demo.launch() | |
| if __name__ == "__main__": | |
| main() | |