SurFuturo commited on
Commit
f5c3a19
·
verified ·
1 Parent(s): 1f8d433

update app.py for docx

Browse files
Files changed (1) hide show
  1. app.py +57 -69
app.py CHANGED
@@ -1,70 +1,58 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
-
5
- def respond(
6
- message,
7
- history: list[dict[str, str]],
8
- system_message,
9
- max_tokens,
10
- temperature,
11
- top_p,
12
- hf_token: gr.OAuthToken,
13
- ):
14
- """
15
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
16
- """
17
- client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
18
-
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- messages.extend(history)
22
-
23
- messages.append({"role": "user", "content": message})
24
-
25
- response = ""
26
-
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
31
- temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- choices = message.choices
35
- token = ""
36
- if len(choices) and choices[0].delta.content:
37
- token = choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- chatbot = gr.ChatInterface(
47
- respond,
48
- type="messages",
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
- ],
61
- )
62
-
63
- with gr.Blocks() as demo:
64
- with gr.Sidebar():
65
- gr.LoginButton()
66
- chatbot.render()
67
-
68
-
69
- if __name__ == "__main__":
70
- demo.launch()
 
1
+ import os, glob, re
2
  import gradio as gr
3
+ from docx import Document
4
+ from sklearn.feature_extraction.text import TfidfVectorizer
5
+ from sklearn.metrics.pairwise import cosine_similarity
6
+
7
+ DOCS_DIR = "."
8
+ CHUNK_SIZE = 900
9
+ OVERLAP = 150
10
+
11
+ def _read_docx(path):
12
+ doc = Document(path)
13
+ full_text = []
14
+ for para in doc.paragraphs:
15
+ if para.text.strip():
16
+ full_text.append(para.text)
17
+ return "\n".join(full_text)
18
+
19
+ def _chunk(text, size=CHUNK_SIZE, overlap=OVERLAP):
20
+ text = re.sub(r"\s+", " ", text).strip()
21
+ chunks, i = [], 0
22
+ while i < len(text):
23
+ chunks.append(text[i:i+size])
24
+ i += (size - overlap)
25
+ return chunks
26
+
27
+ # 1) Cargar documentos DOCX
28
+ docs = []
29
+ for path in glob.glob(os.path.join(DOCS_DIR, "*.docx")):
30
+ docs.append((path, _read_docx(path)))
31
+
32
+ corpus, sources = [], []
33
+ for src, fulltext in docs:
34
+ for ch in _chunk(fulltext):
35
+ corpus.append(ch)
36
+ sources.append(src)
37
+
38
+ if not corpus:
39
+ corpus = ["(Aún no subiste documentos .docx)"]
40
+ sources = [""]
41
+
42
+ # 2) Vectorizar
43
+ vectorizer = TfidfVectorizer(stop_words="spanish")
44
+ X = vectorizer.fit_transform(corpus)
45
+
46
+ # 3) Función de respuesta
47
+ def answer_fn(message, history):
48
+ if "(Aún no" in corpus[0]:
49
+ return "No hay documentos .docx disponibles."
50
+ q = vectorizer.transform([message])
51
+ sims = cosine_similarity(q, X).ravel()
52
+ top_idx = sims.argsort()[::-1][:3]
53
+ bullets = []
54
+ for i in top_idx:
55
+ frag = corpus[i]
56
+ src = os.path.basename(sources[i])
57
+ bullets.append(f"**{src}** · …{frag[:420]}…")
58
+ return "Fragmentos relevantes:\n\n- " + "\n