Spaces:
Sleeping
Sleeping
File size: 14,340 Bytes
f1fd33e 70cafa7 f1fd33e 70cafa7 f1fd33e 70cafa7 f1fd33e 98e9f16 f1fd33e 98e9f16 19ca13a f1fd33e 98e9f16 19ca13a f1fd33e 70cafa7 f1fd33e 70cafa7 f1fd33e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import pandas as pd
import numpy as np
import faiss
import openai
import tempfile
from sentence_transformers import SentenceTransformer
import streamlit as st
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from collections import Counter
import nltk
import time
openai.api_key = st.secrets["OPENAI_API_KEY"]
@st.cache_data
def download_nltk():
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('stopwords')
def chunkstring(string, length):
return (string[0+i:length+i] for i in range(0, len(string), length))
def get_keywords(file_paths): #这里的重点是,对每一个file做尽可能简短且覆盖全面的summarization
download_nltk()
keywords_list = []
for file_path in file_paths:
with open(file_path, 'r') as file:
data = file.read()
# tokenize
words = word_tokenize(data)
# remove punctuation
words = [word for word in words if word.isalnum()]
# remove stopwords
stop_words = set(stopwords.words('english'))
words = [word for word in words if word not in stop_words]
# lemmatization
lemmatizer = WordNetLemmatizer()
words = [lemmatizer.lemmatize(word) for word in words]
# count word frequencies
word_freq = Counter(words)
# get top 20 most common words
keywords = word_freq.most_common(20)
new_keywords = []
for word in keywords:
new_keywords.append(word[0])
str_keywords = ''
for word in new_keywords:
str_keywords += word + ", "
keywords_list.append(f"Top20 frequency keywords for {file_path}: {str_keywords}")
return keywords_list
def get_completion_from_messages(messages, model="gpt-4", temperature=0):
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature, # this is the degree of randomness of the model's output
)
return response.choices[0].message["content"]
#调用gpt API生成课程大纲 + 每节课解释,随后输出为md文档。并在课程内一直保留着
def genarating_outline(keywords, num_lessons,language):
system_message = 'You are a great AI teacher and linguist, skilled at create course outline based on summarized knowledge materials.'
user_message = f"""You are a great AI teacher and linguist,
skilled at generating course outline based on keywords of the course.
Based on keywords provided, you should carefully design a course outline.
Requirements: Through learning this course, learner should understand those key concepts.
Key concepts: {keywords}
you should output course outline in a python list format, Do not include anything else except that python list in your output.
Example output format:
[[name_lesson1, abstract_lesson1],[name_lesson2, abstrct_lesson2]]
In the example, you can see each element in this list consists of two parts: the "name_lesson" part is the name of the lesson, and the "abstract_lesson" part is the one-sentence description of the lesson, intruduces knowledge it contained.
for each lesson in this course, you should provide these two information and organize them as exemplified.
for this course, you should design {num_lessons} lessons in total.
the course outline should be written in {language}.
Start the work now.
"""
messages = [
{'role':'system',
'content': system_message},
{'role':'user',
'content': user_message},
]
response = get_completion_from_messages(messages)
list_response = ['nothing in the answers..']
try:
list_response = eval(response)
except SyntaxError:
pass
return list_response
def courseOutlineGenerating(file_paths, num_lessons, language):
summarized_materials = get_keywords(file_paths)
course_outline = genarating_outline(summarized_materials, num_lessons, language)
return course_outline
def constructVDB(file_paths):
#把KM拆解为chunks
chunks = []
for filename in file_paths:
with open(filename, 'r') as f:
content = f.read()
for chunk in chunkstring(content, 1024):
chunks.append(chunk)
chunk_df = pd.DataFrame(chunks, columns=['chunk'])
#从文本chunks到embeddings
model = SentenceTransformer('paraphrase-mpnet-base-v2')
embeddings = model.encode(chunk_df['chunk'].tolist())
# convert embeddings to a dataframe
embedding_df = pd.DataFrame(embeddings.tolist())
# Concatenate the original dataframe with the embeddings
paraphrase_embeddings_df = pd.concat([chunk_df, embedding_df], axis=1)
# Save the results to a new csv file
#从embeddings到向量数据库
# Load the embeddings
data = paraphrase_embeddings_df
embeddings = data.iloc[:, 1:].values # All columns except the first (chunk text)
# Ensure that the array is C-contiguous
embeddings = np.ascontiguousarray(embeddings, dtype=np.float32)
# Preparation for Faiss
dimension = embeddings.shape[1] # the dimension of the vector space
index = faiss.IndexFlatL2(dimension)
# Normalize the vectors
faiss.normalize_L2(embeddings)
# Build the index
index.add(embeddings)
# write index to disk
return paraphrase_embeddings_df, index
def searchVDB(search_sentence, paraphrase_embeddings_df, index):
#从向量数据库中检索相应文段
try:
data = paraphrase_embeddings_df
embeddings = data.iloc[:, 1:].values # All columns except the first (chunk text)
embeddings = np.ascontiguousarray(embeddings, dtype=np.float32)
model = SentenceTransformer('paraphrase-mpnet-base-v2')
sentence_embedding = model.encode([search_sentence])
# Ensuring the sentence embedding is in the correct format
sentence_embedding = np.ascontiguousarray(sentence_embedding, dtype=np.float32)
# Searching for the top 3 nearest neighbors in the FAISS index
D, I = index.search(sentence_embedding, k=3)
# Printing the top 3 most similar text chunks
retrieved_chunks_list = []
for idx in I[0]:
retrieved_chunks_list.append(data.iloc[idx].chunk)
except Exception:
retrieved_chunks_list = []
return retrieved_chunks_list
def generateCourse(topic, materials, language):
#调用gpt4 API生成一节课的内容
system_message = 'You are a great AI teacher and linguist, skilled at writing informative and easy-to-understand course script based on given lesson topic and knowledge materials.'
user_message = f"""You are a great AI teacher and linguist,
skilled at writing informative and easy-to-understand course script based on given lesson topic and knowledge materials.
You should write a course for new hands, they need detailed and vivid explaination to understand the topic.
Here are general steps of creating a well-designed course. Please follow them step-by-step:
Step 1. Write down the teaching purpose of the lesson initially in the script.
Step 2. Write down the outline of this lesson (outline is aligned to the teaching purpose), then follow the outline to write the content. Make sure every concept in the outline is explined adequately in the course.
Step 3. Review the content,add some examples (including code example) to the core concepts of this lesson, making sure examples are familiar with learner. Each core concepts should at least with one example.
Step 4. Review the content again, add some analogies or metaphors to the concepts that come up frequently to make the explanation of them more easier to understand.
Make sure all these steps are considered when writing the lesson script content.
Your lesson topic and abstract is within the 「」 quotes, and the knowledge materials are within the 【】 brackets.
lesson topic and abstract: 「{topic}」,
knowledge materials related to this lesson:【{materials} 】
the script should be witten in {language}.
Start writting the script of this lesson now.
"""
messages = [
{'role':'system',
'content': system_message},
{'role':'user',
'content': user_message},
]
response = get_completion_from_messages(messages)
return response
def decorate_user_question(user_question, retrieved_chunks_for_user):
decorated_prompt = f'''You're a brilliant teaching assistant, skilled at answer stundent's question based on given materials.
student's question: 「{user_question}」
related materials:【{retrieved_chunks_for_user}】
if the given materials are irrelavant to student's question, please use your own knowledge to answer the question.
You need to break down the student's question first, find out what he really wants to ask, and then try to give a comprehensive answer.
Start to answer the question now.
'''
return decorated_prompt
def app():
st.title("OmniTutor v0.0.2")
with st.sidebar:
st.image("https://siyuan-harry.oss-cn-beijing.aliyuncs.com/oss://siyuan-harry/20231021212525.png")
added_files = st.file_uploader('Upload .md file', type=['.md'], accept_multiple_files=True)
num_lessons = st.slider('How many lessons do you want this course to have?', min_value=5, max_value=20, value=10, step=1)
language = 'English'
Chinese = st.checkbox('Output in Chinese')
if Chinese:
language = 'Chinese'
btn = st.button('submit')
col1, col2 = st.columns([0.6,0.4], gap='large')
if btn:
temp_file_paths = []
col1.file_proc_state = st.text("Processing file...")
for added_file in added_files:
with tempfile.NamedTemporaryFile(delete=False, suffix=".md") as tmp:
tmp.write(added_file.getvalue())
tmp_path = tmp.name
temp_file_paths.append(tmp_path)
col1.file_proc_state.text("Processing file...Done")
col1.outline_generating_state = st.text("Generating Course Oueline...")
course_outline_list = courseOutlineGenerating(temp_file_paths, num_lessons, language)
col1.outline_generating_state.text("Generating Course Oueline...Done")
#把课程大纲打印出来
course_outline_string = ''
lessons_count = 0
for outline in course_outline_list:
lessons_count += 1
course_outline_string += f"{lessons_count}." + outline[0] + '\n'
course_outline_string += '\n' + outline[1] + '\n\n'
#time.sleep(1)
with col1.st.expander("Check the course outline", expanded=False):
st.write(course_outline_string)
col1.vdb_state = st.text("Constructing vector database from provided materials...")
embeddings_df, faiss_index = constructVDB(temp_file_paths)
col1.vdb_state.text("Constructing vector database from provided materials...Done")
count_generating_content = 0
for lesson in course_outline_list:
count_generating_content += 1
content_generating_state = st.text(f"Writing content for lesson {count_generating_content}...")
retrievedChunksList = searchVDB(lesson, embeddings_df, faiss_index)
courseContent = generateCourse(lesson, retrievedChunksList, language)
content_generating_state.text(f"Writing content for lesson {count_generating_content}...Done")
#st.text_area("Course Content", value=courseContent)
with col1.st.expander(f"Learn the lesson {count_generating_content} ", expanded=False):
st.markdown(courseContent)
user_question = st.chat_input("Enter your questions when learning...")
with col2:
st.caption(''':blue[AI Assistant]: Ask this TA any questions related to this course and get direct answers. :sunglasses:''')
# Set a default model
with st.chat_message("assistant"):
st.write("Hello👋, how can I help you today? 😄")
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-3.5-turbo"
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
#这里的session.state就是保存了这个对话会话的一些基本信息和设置
if user_question:
retrieved_chunks_for_user = searchVDB(user_question, embeddings_df, faiss_index)
prompt = decorate_user_question(user_question, retrieved_chunks_for_user)
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(user_question)
# Display assistant response in chat message container
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
for response in openai.ChatCompletion.create(
model=st.session_state["openai_model"],
messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages],
stream=True,
):
full_response += response.choices[0].delta.get("content", "")
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})
if __name__ == "__main__":
app() |