Spaces:
Running
Running
File size: 5,341 Bytes
56f65d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
from fastapi import FastAPI, Form, HTTPException
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from typing import Optional
# π§© LangSmith Integration (Optional)
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_PROJECT"] = "Qwen_4B_Chatbot"
os.environ["LANGCHAIN_API_KEY"] = "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"
app = FastAPI(title="π€ Qwen 4B AI Chatbot")
# β
Set writable cache directory
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
# ------------------ Load Qwen 4B Model ------------------
print("π Loading Qwen 4B model...")
model_name = "Sameer-Handsome173/qwen_model_4B"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
trust_remote_code=True
)
print("β
Model loaded successfully!")
# ------------------ System Prompt ------------------
SYSTEM_PROMPT = """You are an intelligent AI chatbot assistant powered by Qwen 4B. You have access to various tools to help solve complex tasks.
π οΈ Available Tools:
- **web_search**: Search the internet for current information and facts
- **calculator**: Perform mathematical calculations and computations
- **code_executor**: Write and execute code to solve problems
- **text_analyzer**: Analyze, summarize, and extract information from text
- **knowledge_base**: Access stored information and documents
When a user asks a question:
1. Analyze what they need
2. Decide which tool(s) would help
3. Use the appropriate tool(s) to gather information
4. Synthesize the results into a helpful response
For complex tasks, you can use multiple tools in sequence. Always explain your reasoning and show which tools you're using.
Example:
User: "What's 25% of 847 and what's the weather in Minsk?"
Your response:
π§ Using CALCULATOR tool: 25% of 847 = 211.75
π§ Using WEB_SEARCH tool: Searching current weather in Minsk...
Result: The answer is 211.75. The current weather in Minsk is...
Be helpful, clear, and show your thought process when using tools."""
# ------------------ Helper Function ------------------
def generate_response(user_query: str, max_tokens: int = 512, temperature: float = 0.7):
"""Generate response using Qwen model with system prompt"""
try:
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": user_query}
]
# Format messages for Qwen chat template
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer([text], return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
do_sample=True,
temperature=temperature,
top_p=0.9,
repetition_penalty=1.1
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the assistant's response
if "<|im_start|>assistant" in response:
response = response.split("<|im_start|>assistant")[-1].strip()
return response
except Exception as e:
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
# ------------------ API Endpoints ------------------
@app.get("/")
def home():
return {
"message": "β
Qwen 4B AI Chatbot is running!",
"model": "Sameer-Handsome173/qwen_model_4B",
"description": "An intelligent chatbot that uses tools to solve complex tasks",
"endpoint": "/chat"
}
@app.post("/chat")
@traceable
async def chat(
query: str = Form(...),
max_tokens: int = Form(512),
temperature: float = Form(0.7)
):
"""
Main chat endpoint - AI chatbot with tool-calling capabilities
The chatbot will:
- Understand your question
- Decide which tools to use
- Call appropriate tools to solve the task
- Provide a comprehensive answer
Example queries:
- "Calculate 15% of 2500 and explain compound interest"
- "Search for the latest AI news and summarize the top 3 trends"
- "Write Python code to sort a list and explain how it works"
"""
try:
if not query or len(query.strip()) == 0:
raise HTTPException(status_code=400, detail="Query cannot be empty")
response = generate_response(
user_query=query,
max_tokens=max_tokens,
temperature=temperature
)
return {
"query": query,
"response": response,
"model": "Qwen 4B",
"status": "success"
}
except Exception as e:
return {
"query": query,
"error": str(e),
"status": "failed"
}
@app.get("/health")
def health_check():
return {
"status": "healthy",
"model_loaded": model is not None,
"device": str(model.device) if model else "unknown"
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |