Update app.py
Browse files
app.py
CHANGED
|
@@ -1 +1,83 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ast import Str
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from tweetnlp import Sentiment, NER
|
| 4 |
+
from typing import Tuple, Dict
|
| 5 |
+
from statistics import mean
|
| 6 |
+
|
| 7 |
+
def clean_tweet(tweet: str, remove_chars: str = "@#") -> str:
|
| 8 |
+
"""Remove any unwanted characters
|
| 9 |
+
Args:
|
| 10 |
+
tweet (str): The raw tweet
|
| 11 |
+
remove_chars (str, optional): The characters to remove. Defaults to "@#".
|
| 12 |
+
Returns:
|
| 13 |
+
str: The tweet with these characters removed
|
| 14 |
+
"""
|
| 15 |
+
for char in remove_chars:
|
| 16 |
+
tweet = tweet.replace(char, "")
|
| 17 |
+
return tweet
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def format_sentiment(model_output: Dict) -> Dict:
|
| 21 |
+
"""Format the output of the sentiment model
|
| 22 |
+
Args:
|
| 23 |
+
model_output (Dict): The model output
|
| 24 |
+
Returns:
|
| 25 |
+
Dict: The format for gradio
|
| 26 |
+
"""
|
| 27 |
+
formatted_output = dict()
|
| 28 |
+
if model_output["label"] == "positive":
|
| 29 |
+
formatted_output["positive"] = model_output["probability"]
|
| 30 |
+
formatted_output["negative"] = 1 - model_output["probability"]
|
| 31 |
+
else:
|
| 32 |
+
formatted_output["negative"] = model_output["probability"]
|
| 33 |
+
formatted_output["positive"] = 1 - model_output["probability"]
|
| 34 |
+
return formatted_output
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def format_entities(model_output: Dict) -> Dict:
|
| 38 |
+
"""Format the output of the NER model
|
| 39 |
+
Args:
|
| 40 |
+
model_output (Dict): The model output
|
| 41 |
+
Returns:
|
| 42 |
+
Dict: The format for gradio
|
| 43 |
+
"""
|
| 44 |
+
formatted_output = dict()
|
| 45 |
+
for entity in model_output["entity_prediction"]:
|
| 46 |
+
new_output = dict()
|
| 47 |
+
name = " ".join(entity["entity"])
|
| 48 |
+
entity_type = entity["type"]
|
| 49 |
+
new_key = f"{name}:{entity_type}"
|
| 50 |
+
new_value = mean(entity["probability"])
|
| 51 |
+
formatted_output[new_key] = new_value
|
| 52 |
+
return formatted_output
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def classify(tweet: str) -> Tuple[Dict, Dict]:
|
| 56 |
+
"""Runs models
|
| 57 |
+
Args:
|
| 58 |
+
tweet (str): The raw tweet
|
| 59 |
+
Returns:
|
| 60 |
+
Tuple[Dict, Dict]: The formatted_sentiment and formatted_entities of the tweet
|
| 61 |
+
"""
|
| 62 |
+
tweet = clean_tweet(tweet)
|
| 63 |
+
# Get sentiment
|
| 64 |
+
model_sentiment = se_model.sentiment(tweet)
|
| 65 |
+
formatted_sentiment = format_sentiment(model_sentiment)
|
| 66 |
+
# Get entities
|
| 67 |
+
entities = ner_model.ner(tweet)
|
| 68 |
+
formatted_entities = format_entities(entities)
|
| 69 |
+
return formatted_sentiment, formatted_entities
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
if __name__ == "__main__":
|
| 73 |
+
# https://github.com/cardiffnlp/tweetnlp
|
| 74 |
+
se_model = Sentiment()
|
| 75 |
+
ner_model = NER()
|
| 76 |
+
|
| 77 |
+
# Get a few examples from: https://twitter.com/NFLFantasy
|
| 78 |
+
examples = list()
|
| 79 |
+
examples.append("Dameon Pierce is clearly the #Texans starter and he once again looks good")
|
| 80 |
+
examples.append("Deebo Samuel had 150+ receiving yards in 4 games last year - the most by any receiver in the league.")
|
| 81 |
+
|
| 82 |
+
iface = gr.Interface(fn=classify, inputs="text", outputs=["label", "label"], examples=examples)
|
| 83 |
+
iface.launch()
|