Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,884 Bytes
d6c92ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
import os
import random
import shutil
import torch
import gradio as gr
from PIL import Image, ImageChops
from typing import List, Dict, Any
from collections import defaultdict, deque
import numpy as np
from .base_pipeline import BasePipeline
from core.settings import *
from comfy_integration.nodes import *
from utils.app_utils import get_value_at_index, sanitize_prompt, get_lora_path, get_embedding_path, ensure_controlnet_model_downloaded, ensure_ipadapter_models_downloaded, sanitize_filename
from core.workflow_assembler import WorkflowAssembler
class SdImagePipeline(BasePipeline):
def get_required_models(self, model_display_name: str, **kwargs) -> List[str]:
return [model_display_name]
def _topological_sort(self, workflow: Dict[str, Any]) -> List[str]:
graph = defaultdict(list)
in_degree = {node_id: 0 for node_id in workflow}
for node_id, node_info in workflow.items():
for input_value in node_info.get('inputs', {}).values():
if isinstance(input_value, list) and len(input_value) == 2 and isinstance(input_value[0], str):
source_node_id = input_value[0]
if source_node_id in workflow:
graph[source_node_id].append(node_id)
in_degree[node_id] += 1
queue = deque([node_id for node_id, degree in in_degree.items() if degree == 0])
sorted_nodes = []
while queue:
current_node_id = queue.popleft()
sorted_nodes.append(current_node_id)
for neighbor_node_id in graph[current_node_id]:
in_degree[neighbor_node_id] -= 1
if in_degree[neighbor_node_id] == 0:
queue.append(neighbor_node_id)
if len(sorted_nodes) != len(workflow):
raise RuntimeError("Workflow contains a cycle and cannot be executed.")
return sorted_nodes
def _execute_workflow(self, workflow: Dict[str, Any], initial_objects: Dict[str, Any]):
with torch.no_grad():
computed_outputs = initial_objects
try:
sorted_node_ids = self._topological_sort(workflow)
print(f"--- [Workflow Executor] Execution order: {sorted_node_ids}")
except RuntimeError as e:
print("--- [Workflow Executor] ERROR: Failed to sort workflow. Dumping graph details. ---")
for node_id, node_info in workflow.items():
print(f" Node {node_id} ({node_info['class_type']}):")
for input_name, input_value in node_info['inputs'].items():
if isinstance(input_value, list) and len(input_value) == 2 and isinstance(input_value[0], str):
print(f" - {input_name} <- [{input_value[0]}, {input_value[1]}]")
raise e
for node_id in sorted_node_ids:
if node_id in computed_outputs:
continue
node_info = workflow[node_id]
class_type = node_info['class_type']
node_class = NODE_CLASS_MAPPINGS.get(class_type)
if node_class is None:
raise RuntimeError(f"Could not find node class '{class_type}'. Is it imported in comfy_integration/nodes.py?")
node_instance = node_class()
kwargs = {}
for param_name, param_value in node_info['inputs'].items():
if isinstance(param_value, list) and len(param_value) == 2 and isinstance(param_value[0], str):
source_node_id, output_index = param_value
if source_node_id not in computed_outputs:
raise RuntimeError(f"Workflow integrity error: Output of node {source_node_id} needed for {node_id} but not yet computed.")
source_output_tuple = computed_outputs[source_node_id]
kwargs[param_name] = get_value_at_index(source_output_tuple, output_index)
else:
kwargs[param_name] = param_value
function_name = getattr(node_class, 'FUNCTION')
execution_method = getattr(node_instance, function_name)
result = execution_method(**kwargs)
computed_outputs[node_id] = result
final_node_id = None
for node_id in reversed(sorted_node_ids):
if workflow[node_id]['class_type'] == 'SaveImage':
final_node_id = node_id
break
if not final_node_id:
raise RuntimeError("Workflow does not contain a 'SaveImage' node as the output.")
save_image_inputs = workflow[final_node_id]['inputs']
image_source_node_id, image_source_index = save_image_inputs['images']
return get_value_at_index(computed_outputs[image_source_node_id], image_source_index)
def _gpu_logic(self, ui_inputs: Dict, loras_string: str, required_models_for_gpu: List[str], workflow: Dict[str, Any], assembler: WorkflowAssembler, progress=gr.Progress(track_tqdm=True)):
model_display_name = ui_inputs['model_display_name']
progress(0.1, desc="Moving models to GPU...")
self.model_manager.move_models_to_gpu(required_models_for_gpu)
progress(0.4, desc="Executing workflow...")
loaded_model_tuple = self.model_manager.loaded_models[model_display_name]
ckpt_loader_node_id = assembler.node_map.get("ckpt_loader")
if not ckpt_loader_node_id:
raise RuntimeError("Workflow is missing the 'ckpt_loader' node required for model injection.")
initial_objects = {
ckpt_loader_node_id: loaded_model_tuple
}
decoded_images_tensor = self._execute_workflow(workflow, initial_objects=initial_objects)
output_images = []
start_seed = ui_inputs['seed'] if ui_inputs['seed'] != -1 else random.randint(0, 2**64 - 1)
for i in range(decoded_images_tensor.shape[0]):
img_tensor = decoded_images_tensor[i]
pil_image = Image.fromarray((img_tensor.cpu().numpy() * 255.0).astype("uint8"))
current_seed = start_seed + i
width_for_meta = ui_inputs.get('width', 'N/A')
height_for_meta = ui_inputs.get('height', 'N/A')
params_string = f"{ui_inputs['positive_prompt']}\nNegative prompt: {ui_inputs['negative_prompt']}\n"
params_string += f"Steps: {ui_inputs['num_inference_steps']}, Sampler: {ui_inputs['sampler']}, Scheduler: {ui_inputs['scheduler']}, CFG scale: {ui_inputs['guidance_scale']}, Seed: {current_seed}, Size: {width_for_meta}x{height_for_meta}, Base Model: {model_display_name}"
if ui_inputs['task_type'] != 'txt2img': params_string += f", Denoise: {ui_inputs['denoise']}"
if loras_string: params_string += f", {loras_string}"
pil_image.info = {'parameters': params_string.strip()}
output_images.append(pil_image)
return output_images
def run(self, ui_inputs: Dict, progress):
progress(0, desc="Preparing models...")
task_type = ui_inputs['task_type']
ui_inputs['positive_prompt'] = sanitize_prompt(ui_inputs.get('positive_prompt', ''))
ui_inputs['negative_prompt'] = sanitize_prompt(ui_inputs.get('negative_prompt', ''))
required_models = self.get_required_models(model_display_name=ui_inputs['model_display_name'])
self.model_manager.ensure_models_downloaded(required_models, progress=progress)
lora_data = ui_inputs.get('lora_data', [])
active_loras_for_gpu, active_loras_for_meta = [], []
sources, ids, scales, files = lora_data[0::4], lora_data[1::4], lora_data[2::4], lora_data[3::4]
for i, (source, lora_id, scale, _) in enumerate(zip(sources, ids, scales, files)):
if scale > 0 and lora_id and lora_id.strip():
lora_filename = None
if source == "File":
lora_filename = sanitize_filename(lora_id)
elif source == "Civitai":
local_path, status = get_lora_path(source, lora_id, ui_inputs['civitai_api_key'], progress)
if local_path: lora_filename = os.path.basename(local_path)
else: raise gr.Error(f"Failed to prepare LoRA {lora_id}: {status}")
if lora_filename:
active_loras_for_gpu.append({"lora_name": lora_filename, "strength_model": scale, "strength_clip": scale})
active_loras_for_meta.append(f"{source} {lora_id}:{scale}")
progress(0.1, desc="Loading models into RAM...")
self.model_manager.load_managed_models(required_models, active_loras=active_loras_for_gpu, progress=progress)
ui_inputs['denoise'] = 1.0
if task_type == 'img2img': ui_inputs['denoise'] = ui_inputs.get('img2img_denoise', 0.7)
elif task_type == 'hires_fix': ui_inputs['denoise'] = ui_inputs.get('hires_denoise', 0.55)
temp_files_to_clean = []
if not os.path.exists(INPUT_DIR): os.makedirs(INPUT_DIR)
if task_type == 'img2img':
input_image_pil = ui_inputs.get('img2img_image')
if input_image_pil:
temp_file_path = os.path.join(INPUT_DIR, f"temp_input_{random.randint(1000, 9999)}.png")
input_image_pil.save(temp_file_path, "PNG")
ui_inputs['input_image'] = os.path.basename(temp_file_path)
temp_files_to_clean.append(temp_file_path)
ui_inputs['width'] = input_image_pil.width
ui_inputs['height'] = input_image_pil.height
elif task_type == 'inpaint':
inpaint_dict = ui_inputs.get('inpaint_image_dict')
if not inpaint_dict or not inpaint_dict.get('background') or not inpaint_dict.get('layers'):
raise gr.Error("Inpainting requires an input image and a drawn mask.")
background_img = inpaint_dict['background'].convert("RGBA")
composite_mask_pil = Image.new('L', background_img.size, 0)
for layer in inpaint_dict['layers']:
if layer:
layer_alpha = layer.split()[-1]
composite_mask_pil = ImageChops.lighter(composite_mask_pil, layer_alpha)
inverted_mask_alpha = Image.fromarray(255 - np.array(composite_mask_pil), mode='L')
r, g, b, _ = background_img.split()
composite_image_with_mask = Image.merge('RGBA', [r, g, b, inverted_mask_alpha])
temp_file_path = os.path.join(INPUT_DIR, f"temp_inpaint_composite_{random.randint(1000, 9999)}.png")
composite_image_with_mask.save(temp_file_path, "PNG")
ui_inputs['inpaint_image'] = os.path.basename(temp_file_path)
temp_files_to_clean.append(temp_file_path)
ui_inputs.pop('inpaint_mask', None)
elif task_type == 'outpaint':
input_image_pil = ui_inputs.get('outpaint_image')
if input_image_pil:
temp_file_path = os.path.join(INPUT_DIR, f"temp_input_{random.randint(1000, 9999)}.png")
input_image_pil.save(temp_file_path, "PNG")
ui_inputs['input_image'] = os.path.basename(temp_file_path)
temp_files_to_clean.append(temp_file_path)
elif task_type == 'hires_fix':
input_image_pil = ui_inputs.get('hires_image')
if input_image_pil:
temp_file_path = os.path.join(INPUT_DIR, f"temp_input_{random.randint(1000, 9999)}.png")
input_image_pil.save(temp_file_path, "PNG")
ui_inputs['input_image'] = os.path.basename(temp_file_path)
temp_files_to_clean.append(temp_file_path)
embedding_data = ui_inputs.get('embedding_data', [])
embedding_filenames = []
if embedding_data:
emb_sources, emb_ids, emb_files = embedding_data[0::3], embedding_data[1::3], embedding_data[2::3]
for i, (source, emb_id, _) in enumerate(zip(emb_sources, emb_ids, emb_files)):
if emb_id and emb_id.strip():
emb_filename = None
if source == "File":
emb_filename = sanitize_filename(emb_id)
elif source == "Civitai":
local_path, status = get_embedding_path(source, emb_id, ui_inputs['civitai_api_key'], progress)
if local_path: emb_filename = os.path.basename(local_path)
else: raise gr.Error(f"Failed to prepare Embedding {emb_id}: {status}")
if emb_filename:
embedding_filenames.append(emb_filename)
if embedding_filenames:
embedding_prompt_text = " ".join([f"embedding:{f}" for f in embedding_filenames])
if ui_inputs['positive_prompt']:
ui_inputs['positive_prompt'] = f"{ui_inputs['positive_prompt']}, {embedding_prompt_text}"
else:
ui_inputs['positive_prompt'] = embedding_prompt_text
controlnet_data = ui_inputs.get('controlnet_data', [])
active_controlnets = []
(cn_images, _, _, cn_strengths, cn_filepaths) = [controlnet_data[i::5] for i in range(5)]
for i in range(len(cn_images)):
if cn_images[i] and cn_strengths[i] > 0 and cn_filepaths[i] and cn_filepaths[i] != "None":
ensure_controlnet_model_downloaded(cn_filepaths[i], progress)
if not os.path.exists(INPUT_DIR): os.makedirs(INPUT_DIR)
cn_temp_path = os.path.join(INPUT_DIR, f"temp_cn_{i}_{random.randint(1000, 9999)}.png")
cn_images[i].save(cn_temp_path, "PNG")
temp_files_to_clean.append(cn_temp_path)
active_controlnets.append({
"image": os.path.basename(cn_temp_path), "strength": cn_strengths[i],
"start_percent": 0.0, "end_percent": 1.0, "control_net_name": cn_filepaths[i]
})
ipadapter_data = ui_inputs.get('ipadapter_data', [])
active_ipadapters = []
if ipadapter_data:
num_ipa_units = (len(ipadapter_data) - 5) // 3
final_preset, final_weight, final_lora_strength, final_embeds_scaling, final_combine_method = ipadapter_data[-5:]
ipa_images, ipa_weights, ipa_lora_strengths = [ipadapter_data[i*num_ipa_units:(i+1)*num_ipa_units] for i in range(3)]
all_presets_to_download = set()
for i in range(num_ipa_units):
if ipa_images[i] and ipa_weights[i] > 0 and final_preset:
all_presets_to_download.add(final_preset)
if not os.path.exists(INPUT_DIR): os.makedirs(INPUT_DIR)
ipa_temp_path = os.path.join(INPUT_DIR, f"temp_ipa_{i}_{random.randint(1000, 9999)}.png")
ipa_images[i].save(ipa_temp_path, "PNG")
temp_files_to_clean.append(ipa_temp_path)
active_ipadapters.append({
"image": os.path.basename(ipa_temp_path), "preset": final_preset,
"weight": ipa_weights[i], "lora_strength": ipa_lora_strengths[i]
})
if active_ipadapters and final_preset:
all_presets_to_download.add(final_preset)
for preset in all_presets_to_download:
ensure_ipadapter_models_downloaded(preset, progress)
if active_ipadapters:
active_ipadapters.append({
'is_final_settings': True, 'model_type': 'sd15', 'final_preset': final_preset,
'final_weight': final_weight, 'final_lora_strength': final_lora_strength,
'final_embeds_scaling': final_embeds_scaling, 'final_combine_method': final_combine_method
})
from utils.app_utils import get_vae_path
vae_source = ui_inputs.get('vae_source')
vae_id = ui_inputs.get('vae_id')
vae_file = ui_inputs.get('vae_file')
vae_name_override = None
if vae_source and vae_source != "None":
if vae_source == "File":
vae_name_override = sanitize_filename(vae_id)
elif vae_source == "Civitai" and vae_id and vae_id.strip():
local_path, status = get_vae_path(vae_source, vae_id, ui_inputs.get('civitai_api_key'), progress)
if local_path: vae_name_override = os.path.basename(local_path)
else: raise gr.Error(f"Failed to prepare VAE {vae_id}: {status}")
if vae_name_override:
ui_inputs['vae_name'] = vae_name_override
conditioning_data = ui_inputs.get('conditioning_data', [])
active_conditioning = []
if conditioning_data:
num_units = len(conditioning_data) // 6
prompts = conditioning_data[0*num_units : 1*num_units]
widths = conditioning_data[1*num_units : 2*num_units]
heights = conditioning_data[2*num_units : 3*num_units]
xs = conditioning_data[3*num_units : 4*num_units]
ys = conditioning_data[4*num_units : 5*num_units]
strengths = conditioning_data[5*num_units : 6*num_units]
for i in range(num_units):
if prompts[i] and prompts[i].strip():
active_conditioning.append({
"prompt": prompts[i],
"width": int(widths[i]),
"height": int(heights[i]),
"x": int(xs[i]),
"y": int(ys[i]),
"strength": float(strengths[i])
})
loras_string = f"LoRAs: [{', '.join(active_loras_for_meta)}]" if active_loras_for_meta else ""
progress(0.8, desc="Assembling workflow...")
if ui_inputs.get('seed') == -1:
ui_inputs['seed'] = random.randint(0, 2**32 - 1)
dynamic_values = {'task_type': ui_inputs['task_type'], 'model_type': "sd15"}
recipe_path = os.path.join(os.path.dirname(__file__), "workflow_recipes", "sd_unified_recipe.yaml")
assembler = WorkflowAssembler(recipe_path, dynamic_values=dynamic_values)
workflow_inputs = {
"positive_prompt": ui_inputs['positive_prompt'], "negative_prompt": ui_inputs['negative_prompt'],
"seed": ui_inputs['seed'], "steps": ui_inputs['num_inference_steps'], "cfg": ui_inputs['guidance_scale'],
"sampler_name": ui_inputs['sampler'], "scheduler": ui_inputs['scheduler'],
"batch_size": ui_inputs['batch_size'],
"clip_skip": -int(ui_inputs['clip_skip']),
"denoise": ui_inputs['denoise'],
"input_image": ui_inputs.get('input_image'),
"inpaint_image": ui_inputs.get('inpaint_image'),
"inpaint_mask": ui_inputs.get('inpaint_mask'),
"left": ui_inputs.get('outpaint_left'), "top": ui_inputs.get('outpaint_top'),
"right": ui_inputs.get('outpaint_right'), "bottom": ui_inputs.get('outpaint_bottom'),
"hires_upscaler": ui_inputs.get('hires_upscaler'), "hires_scale_by": ui_inputs.get('hires_scale_by'),
"model_name": ALL_MODEL_MAP[ui_inputs['model_display_name']][1],
"vae_name": ui_inputs.get('vae_name'),
"controlnet_chain": active_controlnets,
"ipadapter_chain": active_ipadapters,
"conditioning_chain": active_conditioning,
}
if task_type == 'txt2img':
workflow_inputs['width'] = ui_inputs['width']
workflow_inputs['height'] = ui_inputs['height']
workflow = assembler.assemble(workflow_inputs)
if workflow_inputs.get("vae_name"):
print("--- [Workflow Patch] VAE override provided. Adding VAELoader and rewiring connections. ---")
vae_loader_id = assembler._get_unique_id()
vae_loader_node = assembler._get_node_template("VAELoader")
vae_loader_node['inputs']['vae_name'] = workflow_inputs["vae_name"]
workflow[vae_loader_id] = vae_loader_node
vae_decode_id = assembler.node_map.get("vae_decode")
if vae_decode_id and vae_decode_id in workflow:
workflow[vae_decode_id]['inputs']['vae'] = [vae_loader_id, 0]
print(f" - Rewired 'vae_decode' (ID: {vae_decode_id}) to use new VAELoader.")
vae_encode_id = assembler.node_map.get("vae_encode")
if vae_encode_id and vae_encode_id in workflow:
workflow[vae_encode_id]['inputs']['vae'] = [vae_loader_id, 0]
print(f" - Rewired 'vae_encode' (ID: {vae_encode_id}) to use new VAELoader.")
else:
print("--- [Workflow Info] No VAE override. Using VAE from checkpoint. ---")
progress(1.0, desc="All models ready. Requesting GPU for generation...")
try:
results = self._execute_gpu_logic(
self._gpu_logic,
duration=ui_inputs['zero_gpu_duration'],
default_duration=60,
task_name=f"ImageGen ({task_type})",
ui_inputs=ui_inputs,
loras_string=loras_string,
required_models_for_gpu=required_models,
workflow=workflow,
assembler=assembler,
progress=progress
)
finally:
for temp_file in temp_files_to_clean:
if temp_file and os.path.exists(temp_file):
os.remove(temp_file)
print(f"✅ Cleaned up temp file: {temp_file}")
return results |