File size: 22,884 Bytes
d6c92ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import os
import random
import shutil
import torch
import gradio as gr
from PIL import Image, ImageChops
from typing import List, Dict, Any
from collections import defaultdict, deque
import numpy as np

from .base_pipeline import BasePipeline
from core.settings import *
from comfy_integration.nodes import *
from utils.app_utils import get_value_at_index, sanitize_prompt, get_lora_path, get_embedding_path, ensure_controlnet_model_downloaded, ensure_ipadapter_models_downloaded, sanitize_filename
from core.workflow_assembler import WorkflowAssembler

class SdImagePipeline(BasePipeline):
    def get_required_models(self, model_display_name: str, **kwargs) -> List[str]:
        return [model_display_name]

    def _topological_sort(self, workflow: Dict[str, Any]) -> List[str]:
        graph = defaultdict(list)
        in_degree = {node_id: 0 for node_id in workflow}

        for node_id, node_info in workflow.items():
            for input_value in node_info.get('inputs', {}).values():
                if isinstance(input_value, list) and len(input_value) == 2 and isinstance(input_value[0], str):
                    source_node_id = input_value[0]
                    if source_node_id in workflow:
                        graph[source_node_id].append(node_id)
                        in_degree[node_id] += 1

        queue = deque([node_id for node_id, degree in in_degree.items() if degree == 0])
        
        sorted_nodes = []
        while queue:
            current_node_id = queue.popleft()
            sorted_nodes.append(current_node_id)

            for neighbor_node_id in graph[current_node_id]:
                in_degree[neighbor_node_id] -= 1
                if in_degree[neighbor_node_id] == 0:
                    queue.append(neighbor_node_id)
        
        if len(sorted_nodes) != len(workflow):
            raise RuntimeError("Workflow contains a cycle and cannot be executed.")
            
        return sorted_nodes


    def _execute_workflow(self, workflow: Dict[str, Any], initial_objects: Dict[str, Any]):
        with torch.no_grad():
            computed_outputs = initial_objects
            
            try:
                sorted_node_ids = self._topological_sort(workflow)
                print(f"--- [Workflow Executor] Execution order: {sorted_node_ids}")
            except RuntimeError as e:
                print("--- [Workflow Executor] ERROR: Failed to sort workflow. Dumping graph details. ---")
                for node_id, node_info in workflow.items():
                    print(f"  Node {node_id} ({node_info['class_type']}):")
                    for input_name, input_value in node_info['inputs'].items():
                         if isinstance(input_value, list) and len(input_value) == 2 and isinstance(input_value[0], str):
                             print(f"    - {input_name} <- [{input_value[0]}, {input_value[1]}]")
                raise e

            for node_id in sorted_node_ids:
                if node_id in computed_outputs:
                    continue
                    
                node_info = workflow[node_id]
                class_type = node_info['class_type']
                
                node_class = NODE_CLASS_MAPPINGS.get(class_type)
                if node_class is None:
                     raise RuntimeError(f"Could not find node class '{class_type}'. Is it imported in comfy_integration/nodes.py?")
                
                node_instance = node_class()
                
                kwargs = {}
                for param_name, param_value in node_info['inputs'].items():
                    if isinstance(param_value, list) and len(param_value) == 2 and isinstance(param_value[0], str):
                        source_node_id, output_index = param_value
                        if source_node_id not in computed_outputs:
                            raise RuntimeError(f"Workflow integrity error: Output of node {source_node_id} needed for {node_id} but not yet computed.")
                        
                        source_output_tuple = computed_outputs[source_node_id]
                        kwargs[param_name] = get_value_at_index(source_output_tuple, output_index)
                    else:
                        kwargs[param_name] = param_value

                function_name = getattr(node_class, 'FUNCTION')
                execution_method = getattr(node_instance, function_name)
                
                result = execution_method(**kwargs)
                computed_outputs[node_id] = result
            
            final_node_id = None
            for node_id in reversed(sorted_node_ids):
                 if workflow[node_id]['class_type'] == 'SaveImage':
                     final_node_id = node_id
                     break
            
            if not final_node_id:
                raise RuntimeError("Workflow does not contain a 'SaveImage' node as the output.")

            save_image_inputs = workflow[final_node_id]['inputs']
            image_source_node_id, image_source_index = save_image_inputs['images']
            
            return get_value_at_index(computed_outputs[image_source_node_id], image_source_index)

    def _gpu_logic(self, ui_inputs: Dict, loras_string: str, required_models_for_gpu: List[str], workflow: Dict[str, Any], assembler: WorkflowAssembler, progress=gr.Progress(track_tqdm=True)):
        model_display_name = ui_inputs['model_display_name']
        
        progress(0.1, desc="Moving models to GPU...")
        self.model_manager.move_models_to_gpu(required_models_for_gpu)
        
        progress(0.4, desc="Executing workflow...")
        
        loaded_model_tuple = self.model_manager.loaded_models[model_display_name]
        
        ckpt_loader_node_id = assembler.node_map.get("ckpt_loader")
        if not ckpt_loader_node_id:
            raise RuntimeError("Workflow is missing the 'ckpt_loader' node required for model injection.")
        
        initial_objects = {
            ckpt_loader_node_id: loaded_model_tuple
        }
        
        decoded_images_tensor = self._execute_workflow(workflow, initial_objects=initial_objects)
        
        output_images = []
        start_seed = ui_inputs['seed'] if ui_inputs['seed'] != -1 else random.randint(0, 2**64 - 1)
        for i in range(decoded_images_tensor.shape[0]):
            img_tensor = decoded_images_tensor[i]
            pil_image = Image.fromarray((img_tensor.cpu().numpy() * 255.0).astype("uint8"))
            current_seed = start_seed + i
            
            width_for_meta = ui_inputs.get('width', 'N/A')
            height_for_meta = ui_inputs.get('height', 'N/A')

            params_string = f"{ui_inputs['positive_prompt']}\nNegative prompt: {ui_inputs['negative_prompt']}\n"
            params_string += f"Steps: {ui_inputs['num_inference_steps']}, Sampler: {ui_inputs['sampler']}, Scheduler: {ui_inputs['scheduler']}, CFG scale: {ui_inputs['guidance_scale']}, Seed: {current_seed}, Size: {width_for_meta}x{height_for_meta}, Base Model: {model_display_name}"
            if ui_inputs['task_type'] != 'txt2img': params_string += f", Denoise: {ui_inputs['denoise']}"
            if loras_string: params_string += f", {loras_string}"
            
            pil_image.info = {'parameters': params_string.strip()}
            output_images.append(pil_image)
            
        return output_images

    def run(self, ui_inputs: Dict, progress):
        progress(0, desc="Preparing models...")
        
        task_type = ui_inputs['task_type']
        
        ui_inputs['positive_prompt'] = sanitize_prompt(ui_inputs.get('positive_prompt', ''))
        ui_inputs['negative_prompt'] = sanitize_prompt(ui_inputs.get('negative_prompt', ''))
        
        required_models = self.get_required_models(model_display_name=ui_inputs['model_display_name'])
        
        self.model_manager.ensure_models_downloaded(required_models, progress=progress)
        
        lora_data = ui_inputs.get('lora_data', [])
        active_loras_for_gpu, active_loras_for_meta = [], []
        sources, ids, scales, files = lora_data[0::4], lora_data[1::4], lora_data[2::4], lora_data[3::4]
        
        for i, (source, lora_id, scale, _) in enumerate(zip(sources, ids, scales, files)):
            if scale > 0 and lora_id and lora_id.strip():
                lora_filename = None
                if source == "File":
                    lora_filename = sanitize_filename(lora_id)
                elif source == "Civitai":
                    local_path, status = get_lora_path(source, lora_id, ui_inputs['civitai_api_key'], progress)
                    if local_path: lora_filename = os.path.basename(local_path)
                    else: raise gr.Error(f"Failed to prepare LoRA {lora_id}: {status}")
                
                if lora_filename:
                    active_loras_for_gpu.append({"lora_name": lora_filename, "strength_model": scale, "strength_clip": scale})
                    active_loras_for_meta.append(f"{source} {lora_id}:{scale}")
        
        progress(0.1, desc="Loading models into RAM...")
        self.model_manager.load_managed_models(required_models, active_loras=active_loras_for_gpu, progress=progress)

        ui_inputs['denoise'] = 1.0
        if task_type == 'img2img': ui_inputs['denoise'] = ui_inputs.get('img2img_denoise', 0.7)
        elif task_type == 'hires_fix': ui_inputs['denoise'] = ui_inputs.get('hires_denoise', 0.55)
        
        temp_files_to_clean = []
        
        if not os.path.exists(INPUT_DIR): os.makedirs(INPUT_DIR)

        if task_type == 'img2img':
            input_image_pil = ui_inputs.get('img2img_image')
            if input_image_pil:
                temp_file_path = os.path.join(INPUT_DIR, f"temp_input_{random.randint(1000, 9999)}.png")
                input_image_pil.save(temp_file_path, "PNG")
                ui_inputs['input_image'] = os.path.basename(temp_file_path)
                temp_files_to_clean.append(temp_file_path)
                ui_inputs['width'] = input_image_pil.width
                ui_inputs['height'] = input_image_pil.height
        
        elif task_type == 'inpaint':
            inpaint_dict = ui_inputs.get('inpaint_image_dict')
            if not inpaint_dict or not inpaint_dict.get('background') or not inpaint_dict.get('layers'):
                raise gr.Error("Inpainting requires an input image and a drawn mask.")
            
            background_img = inpaint_dict['background'].convert("RGBA")
            
            composite_mask_pil = Image.new('L', background_img.size, 0)
            for layer in inpaint_dict['layers']:
                if layer:
                    layer_alpha = layer.split()[-1]
                    composite_mask_pil = ImageChops.lighter(composite_mask_pil, layer_alpha)

            inverted_mask_alpha = Image.fromarray(255 - np.array(composite_mask_pil), mode='L')
            r, g, b, _ = background_img.split()
            composite_image_with_mask = Image.merge('RGBA', [r, g, b, inverted_mask_alpha])
            
            temp_file_path = os.path.join(INPUT_DIR, f"temp_inpaint_composite_{random.randint(1000, 9999)}.png")
            composite_image_with_mask.save(temp_file_path, "PNG")
            
            ui_inputs['inpaint_image'] = os.path.basename(temp_file_path)
            temp_files_to_clean.append(temp_file_path)
            ui_inputs.pop('inpaint_mask', None)

        elif task_type == 'outpaint':
            input_image_pil = ui_inputs.get('outpaint_image')
            if input_image_pil:
                temp_file_path = os.path.join(INPUT_DIR, f"temp_input_{random.randint(1000, 9999)}.png")
                input_image_pil.save(temp_file_path, "PNG")
                ui_inputs['input_image'] = os.path.basename(temp_file_path)
                temp_files_to_clean.append(temp_file_path)

        elif task_type == 'hires_fix':
            input_image_pil = ui_inputs.get('hires_image')
            if input_image_pil:
                temp_file_path = os.path.join(INPUT_DIR, f"temp_input_{random.randint(1000, 9999)}.png")
                input_image_pil.save(temp_file_path, "PNG")
                ui_inputs['input_image'] = os.path.basename(temp_file_path)
                temp_files_to_clean.append(temp_file_path)

        embedding_data = ui_inputs.get('embedding_data', [])
        embedding_filenames = []
        if embedding_data:
            emb_sources, emb_ids, emb_files = embedding_data[0::3], embedding_data[1::3], embedding_data[2::3]
            for i, (source, emb_id, _) in enumerate(zip(emb_sources, emb_ids, emb_files)):
                if emb_id and emb_id.strip():
                    emb_filename = None
                    if source == "File":
                        emb_filename = sanitize_filename(emb_id)
                    elif source == "Civitai":
                        local_path, status = get_embedding_path(source, emb_id, ui_inputs['civitai_api_key'], progress)
                        if local_path: emb_filename = os.path.basename(local_path)
                        else: raise gr.Error(f"Failed to prepare Embedding {emb_id}: {status}")
                    
                    if emb_filename:
                        embedding_filenames.append(emb_filename)
        
        if embedding_filenames:
            embedding_prompt_text = " ".join([f"embedding:{f}" for f in embedding_filenames])
            if ui_inputs['positive_prompt']:
                ui_inputs['positive_prompt'] = f"{ui_inputs['positive_prompt']}, {embedding_prompt_text}"
            else:
                ui_inputs['positive_prompt'] = embedding_prompt_text

        controlnet_data = ui_inputs.get('controlnet_data', [])
        active_controlnets = []
        (cn_images, _, _, cn_strengths, cn_filepaths) = [controlnet_data[i::5] for i in range(5)]
        for i in range(len(cn_images)):
            if cn_images[i] and cn_strengths[i] > 0 and cn_filepaths[i] and cn_filepaths[i] != "None":
                ensure_controlnet_model_downloaded(cn_filepaths[i], progress)

                if not os.path.exists(INPUT_DIR): os.makedirs(INPUT_DIR)
                cn_temp_path = os.path.join(INPUT_DIR, f"temp_cn_{i}_{random.randint(1000, 9999)}.png")
                cn_images[i].save(cn_temp_path, "PNG")
                temp_files_to_clean.append(cn_temp_path)
                active_controlnets.append({
                    "image": os.path.basename(cn_temp_path), "strength": cn_strengths[i],
                    "start_percent": 0.0, "end_percent": 1.0, "control_net_name": cn_filepaths[i]
                })
        
        ipadapter_data = ui_inputs.get('ipadapter_data', [])
        active_ipadapters = []
        if ipadapter_data:
            num_ipa_units = (len(ipadapter_data) - 5) // 3
            final_preset, final_weight, final_lora_strength, final_embeds_scaling, final_combine_method = ipadapter_data[-5:]
            ipa_images, ipa_weights, ipa_lora_strengths = [ipadapter_data[i*num_ipa_units:(i+1)*num_ipa_units] for i in range(3)]
            
            all_presets_to_download = set()
            
            for i in range(num_ipa_units):
                if ipa_images[i] and ipa_weights[i] > 0 and final_preset:
                    all_presets_to_download.add(final_preset)
                    
                    if not os.path.exists(INPUT_DIR): os.makedirs(INPUT_DIR)
                    ipa_temp_path = os.path.join(INPUT_DIR, f"temp_ipa_{i}_{random.randint(1000, 9999)}.png")
                    ipa_images[i].save(ipa_temp_path, "PNG")
                    temp_files_to_clean.append(ipa_temp_path)
                    active_ipadapters.append({
                        "image": os.path.basename(ipa_temp_path), "preset": final_preset,
                        "weight": ipa_weights[i], "lora_strength": ipa_lora_strengths[i]
                    })
            
            if active_ipadapters and final_preset:
                all_presets_to_download.add(final_preset)
            
            for preset in all_presets_to_download:
                ensure_ipadapter_models_downloaded(preset, progress)
            
            if active_ipadapters:
                active_ipadapters.append({
                    'is_final_settings': True, 'model_type': 'sd15', 'final_preset': final_preset,
                    'final_weight': final_weight, 'final_lora_strength': final_lora_strength,
                    'final_embeds_scaling': final_embeds_scaling, 'final_combine_method': final_combine_method
                })
        
        from utils.app_utils import get_vae_path
        vae_source = ui_inputs.get('vae_source')
        vae_id = ui_inputs.get('vae_id')
        vae_file = ui_inputs.get('vae_file')
        vae_name_override = None

        if vae_source and vae_source != "None":
            if vae_source == "File":
                vae_name_override = sanitize_filename(vae_id)
            elif vae_source == "Civitai" and vae_id and vae_id.strip():
                local_path, status = get_vae_path(vae_source, vae_id, ui_inputs.get('civitai_api_key'), progress)
                if local_path: vae_name_override = os.path.basename(local_path)
                else: raise gr.Error(f"Failed to prepare VAE {vae_id}: {status}")
        
        if vae_name_override:
            ui_inputs['vae_name'] = vae_name_override

        conditioning_data = ui_inputs.get('conditioning_data', [])
        active_conditioning = []
        if conditioning_data:
            num_units = len(conditioning_data) // 6
            prompts   = conditioning_data[0*num_units : 1*num_units]
            widths    = conditioning_data[1*num_units : 2*num_units]
            heights   = conditioning_data[2*num_units : 3*num_units]
            xs        = conditioning_data[3*num_units : 4*num_units]
            ys        = conditioning_data[4*num_units : 5*num_units]
            strengths = conditioning_data[5*num_units : 6*num_units]

            for i in range(num_units):
                if prompts[i] and prompts[i].strip():
                    active_conditioning.append({
                        "prompt": prompts[i],
                        "width": int(widths[i]),
                        "height": int(heights[i]),
                        "x": int(xs[i]),
                        "y": int(ys[i]),
                        "strength": float(strengths[i])
                    })

        loras_string = f"LoRAs: [{', '.join(active_loras_for_meta)}]" if active_loras_for_meta else ""
        
        progress(0.8, desc="Assembling workflow...")
        
        if ui_inputs.get('seed') == -1:
            ui_inputs['seed'] = random.randint(0, 2**32 - 1)

        dynamic_values = {'task_type': ui_inputs['task_type'], 'model_type': "sd15"}
        
        recipe_path = os.path.join(os.path.dirname(__file__), "workflow_recipes", "sd_unified_recipe.yaml")
        assembler = WorkflowAssembler(recipe_path, dynamic_values=dynamic_values)
        
        workflow_inputs = {
            "positive_prompt": ui_inputs['positive_prompt'], "negative_prompt": ui_inputs['negative_prompt'],
            "seed": ui_inputs['seed'], "steps": ui_inputs['num_inference_steps'], "cfg": ui_inputs['guidance_scale'],
            "sampler_name": ui_inputs['sampler'], "scheduler": ui_inputs['scheduler'],
            "batch_size": ui_inputs['batch_size'],
            "clip_skip": -int(ui_inputs['clip_skip']),
            "denoise": ui_inputs['denoise'], 
            "input_image": ui_inputs.get('input_image'),
            "inpaint_image": ui_inputs.get('inpaint_image'),
            "inpaint_mask": ui_inputs.get('inpaint_mask'),
            "left": ui_inputs.get('outpaint_left'), "top": ui_inputs.get('outpaint_top'),
            "right": ui_inputs.get('outpaint_right'), "bottom": ui_inputs.get('outpaint_bottom'),
            "hires_upscaler": ui_inputs.get('hires_upscaler'), "hires_scale_by": ui_inputs.get('hires_scale_by'),
            "model_name": ALL_MODEL_MAP[ui_inputs['model_display_name']][1],
            "vae_name": ui_inputs.get('vae_name'),
            "controlnet_chain": active_controlnets,
            "ipadapter_chain": active_ipadapters,
            "conditioning_chain": active_conditioning,
        }
        
        if task_type == 'txt2img':
            workflow_inputs['width'] = ui_inputs['width']
            workflow_inputs['height'] = ui_inputs['height']
        
        workflow = assembler.assemble(workflow_inputs)

        if workflow_inputs.get("vae_name"):
            print("--- [Workflow Patch] VAE override provided. Adding VAELoader and rewiring connections. ---")
            vae_loader_id = assembler._get_unique_id()
            vae_loader_node = assembler._get_node_template("VAELoader")
            vae_loader_node['inputs']['vae_name'] = workflow_inputs["vae_name"]
            workflow[vae_loader_id] = vae_loader_node

            vae_decode_id = assembler.node_map.get("vae_decode")
            if vae_decode_id and vae_decode_id in workflow:
                workflow[vae_decode_id]['inputs']['vae'] = [vae_loader_id, 0]
                print(f"  - Rewired 'vae_decode' (ID: {vae_decode_id}) to use new VAELoader.")

            vae_encode_id = assembler.node_map.get("vae_encode")
            if vae_encode_id and vae_encode_id in workflow:
                workflow[vae_encode_id]['inputs']['vae'] = [vae_loader_id, 0]
                print(f"  - Rewired 'vae_encode' (ID: {vae_encode_id}) to use new VAELoader.")
        else:
            print("--- [Workflow Info] No VAE override. Using VAE from checkpoint. ---")
        
        progress(1.0, desc="All models ready. Requesting GPU for generation...")

        try:
            results = self._execute_gpu_logic(
                self._gpu_logic,
                duration=ui_inputs['zero_gpu_duration'],
                default_duration=60,
                task_name=f"ImageGen ({task_type})",
                ui_inputs=ui_inputs,
                loras_string=loras_string,
                required_models_for_gpu=required_models,
                workflow=workflow,
                assembler=assembler, 
                progress=progress
            )
        finally:
            for temp_file in temp_files_to_clean:
                if temp_file and os.path.exists(temp_file):
                    os.remove(temp_file)
                    print(f"✅ Cleaned up temp file: {temp_file}")

        return results