from typing import Any, Dict import gradio as gr from core.pipelines.controlnet_preprocessor import ControlNetPreprocessorPipeline from core.pipelines.sd_image_pipeline import SdImagePipeline controlnet_preprocessor_pipeline = ControlNetPreprocessorPipeline() sd_image_pipeline = SdImagePipeline() def build_reverse_map(): from nodes import NODE_DISPLAY_NAME_MAPPINGS import core.pipelines.controlnet_preprocessor as cn_module if cn_module.REVERSE_DISPLAY_NAME_MAP is None: cn_module.REVERSE_DISPLAY_NAME_MAP = {v: k for k, v in NODE_DISPLAY_NAME_MAPPINGS.items()} if "Semantic Segmentor (legacy, alias for UniFormer)" not in cn_module.REVERSE_DISPLAY_NAME_MAP: cn_module.REVERSE_DISPLAY_NAME_MAP["Semantic Segmentor (legacy, alias for UniFormer)"] = "SemSegPreprocessor" def run_cn_preprocessor_entry(*args, **kwargs): return controlnet_preprocessor_pipeline.run(*args, **kwargs) def generate_image_wrapper(ui_inputs: dict, progress=gr.Progress(track_tqdm=True)): return sd_image_pipeline.run(ui_inputs=ui_inputs, progress=progress)