File size: 7,094 Bytes
5b29993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import gc
from typing import Dict, List, Any, Set

import torch
import gradio as gr
from comfy import model_management

from core.settings import ALL_MODEL_MAP, CHECKPOINT_DIR, LORA_DIR, DIFFUSION_MODELS_DIR, VAE_DIR, TEXT_ENCODERS_DIR
from comfy_integration.nodes import checkpointloadersimple, LoraLoader
from nodes import NODE_CLASS_MAPPINGS
from utils.app_utils import get_value_at_index, _ensure_model_downloaded


class ModelManager:
    _instance = None

    def __new__(cls, *args, **kwargs):
        if not cls._instance:
            cls._instance = super(ModelManager, cls).__new__(cls, *args, **kwargs)
        return cls._instance

    def __init__(self):
        if hasattr(self, 'initialized'):
            return
        self.loaded_models: Dict[str, Any] = {}
        self.initialized = True
        print("✅ ModelManager initialized.")

    def get_loaded_model_names(self) -> Set[str]:
        return set(self.loaded_models.keys())

    def _load_single_model(self, display_name: str, progress) -> Any:
        print(f"--- [ModelManager] Loading model: '{display_name}' ---")
        
        filename = _ensure_model_downloaded(display_name, progress)
        
        _, _, model_type, _ = ALL_MODEL_MAP[display_name]
        
        loader_map = {
            "SDXL": (checkpointloadersimple, "load_checkpoint", {"ckpt_name": filename}),
            "SD1.5": (checkpointloadersimple, "load_checkpoint", {"ckpt_name": filename}),
            "UNET": (NODE_CLASS_MAPPINGS["UNETLoader"](), "load_unet", {"unet_name": filename, "weight_dtype": "default"}),
            "VAE": (NODE_CLASS_MAPPINGS["VAELoader"](), "load_vae", {"vae_name": filename}),
            "TEXT_ENCODER": (NODE_CLASS_MAPPINGS["CLIPLoader"](), "load_clip", {"clip_name": filename, "type": "wan", "device": "default"}),
        }

        if model_type not in loader_map:
            if model_type == "LORA":
                print(f"--- [ModelManager] ✅ '{display_name}' is a LoRA. It will be loaded dynamically. ---")
                return (filename,)
            raise ValueError(f"[ModelManager] No loader configured for model type '{model_type}'")

        loader_instance, method_name, kwargs = loader_map[model_type]
        
        load_method = getattr(loader_instance, method_name)
        loaded_tuple = load_method(**kwargs)

        print(f"--- [ModelManager] ✅ Successfully loaded '{display_name}' to CPU/RAM ---")
        return loaded_tuple

    def move_models_to_gpu(self, required_models: List[str]):
        print(f"--- [ModelManager] Moving models to GPU: {required_models} ---")
        models_to_load_gpu = []
        for name in required_models:
            if name in self.loaded_models:
                model_tuple = self.loaded_models[name]
                _, _, model_type, _ = ALL_MODEL_MAP[name]
                if model_type in ["SDXL", "SD1.5"]:
                     models_to_load_gpu.append(get_value_at_index(model_tuple, 0))

        if models_to_load_gpu:
            model_management.load_models_gpu(models_to_load_gpu)
            print("--- [ModelManager] ✅ Models successfully moved to GPU. ---")
        else:
            print("--- [ModelManager] ⚠️ No checkpoint models found to move to GPU. ---")

    def ensure_models_downloaded(self, required_models: List[str], progress):
        print(f"--- [ModelManager] Ensuring models are downloaded: {required_models} ---")
        for i, display_name in enumerate(required_models):
            if progress and hasattr(progress, '__call__'):
                progress(i / len(required_models), desc=f"Checking file: {display_name}")
            try:
                _ensure_model_downloaded(display_name, progress)
            except Exception as e:
                raise gr.Error(f"Failed to download model '{display_name}'. Reason: {e}")
        print(f"--- [ModelManager] ✅ All required models are present on disk. ---")
    
    def load_managed_models(self, required_models: List[str], active_loras: List[Dict[str, Any]], progress) -> Dict[str, Any]:
        required_set = set(required_models)
        current_set = set(self.loaded_models.keys())

        loras_changed = len(active_loras) > 0 or len(current_set - required_set) > 0

        models_to_unload = current_set - required_set
        if models_to_unload or loras_changed:
            if models_to_unload:
                print(f"--- [ModelManager] Models to unload: {models_to_unload} ---")
            if loras_changed and not models_to_unload:
                models_to_unload = current_set.intersection(required_set)
                print(f"--- [ModelManager] LoRA configuration changed. Reloading base model(s): {models_to_unload} ---")
                
            model_management.unload_all_models()
            self.loaded_models.clear()
            gc.collect()
            torch.cuda.empty_cache()
            print("--- [ModelManager] All models unloaded to free RAM. ---")
        
        models_to_load = required_set if (models_to_unload or loras_changed) else required_set - current_set
        
        if models_to_load:
            print(f"--- [ModelManager] Models to load: {models_to_load} ---")
            for i, display_name in enumerate(models_to_load):
                progress(i / len(models_to_load), desc=f"Loading model: {display_name}")
                try:
                    loaded_model_data = self._load_single_model(display_name, progress)
                    
                    if active_loras and ALL_MODEL_MAP[display_name][2] in ["SDXL", "SD1.5"]:
                        print(f"--- [ModelManager] Applying {len(active_loras)} LoRAs on CPU... ---")
                        lora_loader = LoraLoader()
                        patched_model, patched_clip = loaded_model_data[0], loaded_model_data[1]

                        for lora_info in active_loras:
                            patched_model, patched_clip = lora_loader.load_lora(
                                model=patched_model,
                                clip=patched_clip,
                                lora_name=lora_info["lora_name"],
                                strength_model=lora_info["strength_model"],
                                strength_clip=lora_info["strength_clip"]
                            )
                        
                        loaded_model_data = (patched_model, patched_clip, loaded_model_data[2])
                        print(f"--- [ModelManager] ✅ All LoRAs merged into the model on CPU. ---")
                    
                    self.loaded_models[display_name] = loaded_model_data
                except Exception as e:
                    raise gr.Error(f"Failed to load model or apply LoRA '{display_name}'. Reason: {e}")
        else:
             print(f"--- [ModelManager] All required models are already loaded. ---")

        return {name: self.loaded_models[name] for name in required_models}

model_manager = ModelManager()