Spaces:
Sleeping
Add automatic API documentation and in-memory model caching
Browse filesfeat: implement LRU model cache for instant switching
- Add ModelCache class with LRU eviction policy
- Support up to 2 concurrent models in memory
- Each model runs on separate port (8080+)
- Instant switching between cached models
- New GET /cache/info endpoint for cache status
feat: enhance API documentation with OpenAPI
- Add comprehensive endpoint descriptions and examples
- Enhanced Pydantic models with Field descriptions
- Add response models for better documentation
- Organize endpoints with tags (status, models, chat, documentation)
- Add GET /openapi.json endpoint to export specification
- Auto-generated docs available at /docs and /redoc
perf: eliminate model reload delays
- Cache hit: instant model switch (< 1s)
- Cache miss: load once, reuse multiple times
- Automatic cleanup on shutdown
docs: add detailed docstrings with usage examples
- Request/response format documentation
- Parameter descriptions and constraints
- Usage examples for all endpoints
|
@@ -1,15 +1,69 @@
|
|
| 1 |
-
from fastapi import FastAPI, HTTPException
|
| 2 |
-
from pydantic import BaseModel
|
| 3 |
import subprocess
|
| 4 |
import signal
|
| 5 |
import os
|
| 6 |
-
import requests
|
| 7 |
import time
|
| 8 |
-
from typing import Optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
from duckduckgo_search import DDGS
|
| 10 |
from bs4 import BeautifulSoup
|
| 11 |
|
| 12 |
-
app = FastAPI(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Predefined list of available models (TheBloke only - verified, fits 18GB Space)
|
| 15 |
AVAILABLE_MODELS = {
|
|
@@ -27,37 +81,279 @@ AVAILABLE_MODELS = {
|
|
| 27 |
"llama-7b": "TheBloke/Llama-2-7B-Chat-GGUF:llama-2-7b-chat.Q4_K_M.gguf",
|
| 28 |
}
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
# Global state
|
| 31 |
current_model = "deepseek-chat" # Default model
|
| 32 |
-
|
| 33 |
-
LLAMA_SERVER_PORT = 8080
|
| 34 |
-
LLAMA_SERVER_URL = f"http://localhost:{LLAMA_SERVER_PORT}"
|
| 35 |
|
| 36 |
|
| 37 |
class ModelSwitchRequest(BaseModel):
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
|
| 41 |
class ChatCompletionRequest(BaseModel):
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
class WebChatRequest(BaseModel):
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
|
| 54 |
-
|
| 55 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
cmd = [
|
| 57 |
"llama-server",
|
| 58 |
"-hf", model_id,
|
| 59 |
"--host", "0.0.0.0",
|
| 60 |
-
"--port", str(
|
| 61 |
"-c", "2048", # Context size
|
| 62 |
"-t", "4", # CPU threads (adjust based on cores)
|
| 63 |
"-ngl", "0", # GPU layers (0 for CPU-only)
|
|
@@ -65,7 +361,7 @@ def start_llama_server(model_id: str) -> subprocess.Popen:
|
|
| 65 |
"-b", "512", # Batch size
|
| 66 |
]
|
| 67 |
|
| 68 |
-
print(f"Starting llama-server with model: {model_id}")
|
| 69 |
print("This may take 2-3 minutes to download and load the model...")
|
| 70 |
|
| 71 |
process = subprocess.Popen(
|
|
@@ -79,6 +375,8 @@ def start_llama_server(model_id: str) -> subprocess.Popen:
|
|
| 79 |
|
| 80 |
# Wait for server to be ready (increased timeout for model download)
|
| 81 |
max_retries = 300 # 5 minutes
|
|
|
|
|
|
|
| 82 |
for i in range(max_retries):
|
| 83 |
# Check if process died
|
| 84 |
if process.poll() is not None:
|
|
@@ -89,14 +387,14 @@ def start_llama_server(model_id: str) -> subprocess.Popen:
|
|
| 89 |
|
| 90 |
try:
|
| 91 |
# Try root endpoint instead of /health
|
| 92 |
-
response = requests.get(f"{
|
| 93 |
if response.status_code in [200, 404]: # 404 is ok, means server is up
|
| 94 |
print(f"llama-server ready after {i+1} seconds")
|
| 95 |
return process
|
| 96 |
except requests.exceptions.ConnectionError:
|
| 97 |
# Server not ready yet
|
| 98 |
pass
|
| 99 |
-
except Exception
|
| 100 |
# Other errors, keep waiting
|
| 101 |
pass
|
| 102 |
|
|
@@ -105,62 +403,116 @@ def start_llama_server(model_id: str) -> subprocess.Popen:
|
|
| 105 |
raise RuntimeError("llama-server failed to start within 5 minutes")
|
| 106 |
|
| 107 |
|
| 108 |
-
def stop_llama_server():
|
| 109 |
-
"""Stop the running llama-server."""
|
| 110 |
-
global llama_process
|
| 111 |
-
if llama_process:
|
| 112 |
-
print("Stopping llama-server...")
|
| 113 |
-
try:
|
| 114 |
-
if os.name != 'nt':
|
| 115 |
-
os.killpg(os.getpgid(llama_process.pid), signal.SIGTERM)
|
| 116 |
-
else:
|
| 117 |
-
llama_process.terminate()
|
| 118 |
-
llama_process.wait(timeout=10)
|
| 119 |
-
except:
|
| 120 |
-
if os.name != 'nt':
|
| 121 |
-
os.killpg(os.getpgid(llama_process.pid), signal.SIGKILL)
|
| 122 |
-
else:
|
| 123 |
-
llama_process.kill()
|
| 124 |
-
llama_process = None
|
| 125 |
-
time.sleep(2) # Give it time to fully shut down
|
| 126 |
-
|
| 127 |
-
|
| 128 |
@app.on_event("startup")
|
| 129 |
async def startup_event():
|
| 130 |
-
"""Start with default model."""
|
| 131 |
-
global
|
| 132 |
model_id = AVAILABLE_MODELS[current_model]
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
|
| 136 |
@app.on_event("shutdown")
|
| 137 |
async def shutdown_event():
|
| 138 |
-
"""Clean shutdown."""
|
| 139 |
-
|
| 140 |
|
| 141 |
|
| 142 |
-
@app.get(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
async def root():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
return {
|
| 145 |
-
"status": "
|
| 146 |
"current_model": current_model,
|
| 147 |
"available_models": list(AVAILABLE_MODELS.keys())
|
| 148 |
}
|
| 149 |
|
| 150 |
|
| 151 |
-
@app.get(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
async def list_models():
|
| 153 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
return {
|
| 155 |
"current_model": current_model,
|
| 156 |
"available_models": list(AVAILABLE_MODELS.keys())
|
| 157 |
}
|
| 158 |
|
| 159 |
|
| 160 |
-
@app.post(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
async def switch_model(request: ModelSwitchRequest):
|
| 162 |
-
"""
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
if request.model_name not in AVAILABLE_MODELS:
|
| 166 |
raise HTTPException(
|
|
@@ -169,29 +521,103 @@ async def switch_model(request: ModelSwitchRequest):
|
|
| 169 |
)
|
| 170 |
|
| 171 |
if request.model_name == current_model:
|
| 172 |
-
return {"message": f"Already using model: {current_model}"}
|
| 173 |
|
| 174 |
-
#
|
| 175 |
-
|
| 176 |
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
}
|
| 186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
async def chat_completions(request: ChatCompletionRequest):
|
| 190 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
# Forward to llama-server
|
| 193 |
response = requests.post(
|
| 194 |
-
f"{
|
| 195 |
json={
|
| 196 |
"messages": request.messages,
|
| 197 |
"max_tokens": request.max_tokens,
|
|
@@ -237,13 +663,74 @@ def format_search_context(query: str, search_results: list[dict]) -> str:
|
|
| 237 |
return context
|
| 238 |
|
| 239 |
|
| 240 |
-
@app.post(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
async def web_chat_completions(request: WebChatRequest):
|
| 242 |
"""
|
| 243 |
-
Chat completions with web search augmentation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
|
| 245 |
-
The
|
| 246 |
-
Search results are injected into the context before sending to the LLM.
|
| 247 |
"""
|
| 248 |
try:
|
| 249 |
# Get the last user message as search query
|
|
@@ -277,9 +764,14 @@ Always cite sources when using information from the search results."""
|
|
| 277 |
# Insert system message before the last user message
|
| 278 |
augmented_messages.insert(-1, system_prompt)
|
| 279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
# Forward to llama-server with augmented context
|
| 281 |
response = requests.post(
|
| 282 |
-
f"{
|
| 283 |
json={
|
| 284 |
"messages": augmented_messages,
|
| 285 |
"max_tokens": request.max_tokens,
|
|
@@ -303,4 +795,73 @@ Always cite sources when using information from the search results."""
|
|
| 303 |
except requests.exceptions.RequestException as e:
|
| 304 |
raise HTTPException(status_code=500, detail=f"llama-server error: {str(e)}")
|
| 305 |
except Exception as e:
|
| 306 |
-
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import subprocess
|
| 2 |
import signal
|
| 3 |
import os
|
|
|
|
| 4 |
import time
|
| 5 |
+
from typing import Optional, Dict
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
+
from collections import OrderedDict
|
| 8 |
+
|
| 9 |
+
import requests
|
| 10 |
+
from fastapi import FastAPI, HTTPException
|
| 11 |
+
from fastapi.openapi.utils import get_openapi
|
| 12 |
+
from pydantic import BaseModel, Field
|
| 13 |
from duckduckgo_search import DDGS
|
| 14 |
from bs4 import BeautifulSoup
|
| 15 |
|
| 16 |
+
app = FastAPI(
|
| 17 |
+
title="AGI Multi-Model API",
|
| 18 |
+
description="""
|
| 19 |
+
**Dynamic Multi-Model LLM API with Web Search Capabilities**
|
| 20 |
+
|
| 21 |
+
This API provides:
|
| 22 |
+
* 🔄 Dynamic model switching between multiple LLM models
|
| 23 |
+
* 💬 OpenAI-compatible chat completions
|
| 24 |
+
* 🌐 Web-augmented chat with real-time search
|
| 25 |
+
* 📊 Model management and status monitoring
|
| 26 |
+
|
| 27 |
+
## Available Models
|
| 28 |
+
- **deepseek-chat** (default): General purpose conversational model
|
| 29 |
+
- **mistral-7b**: Financial analysis and summarization
|
| 30 |
+
- **openhermes-7b**: Advanced instruction following
|
| 31 |
+
- **deepseek-coder**: Specialized coding assistance
|
| 32 |
+
- **llama-7b**: Lightweight and fast responses
|
| 33 |
+
|
| 34 |
+
## Quick Start
|
| 35 |
+
1. Check available models: `GET /models`
|
| 36 |
+
2. Switch model (optional): `POST /switch-model`
|
| 37 |
+
3. Chat: `POST /v1/chat/completions`
|
| 38 |
+
4. Chat with web search: `POST /v1/web-chat/completions`
|
| 39 |
+
""",
|
| 40 |
+
version="0.0.1.2025.12.04",
|
| 41 |
+
contact={
|
| 42 |
+
"name": "API Support",
|
| 43 |
+
"email": "[email protected]",
|
| 44 |
+
},
|
| 45 |
+
license_info={
|
| 46 |
+
"name": "MIT",
|
| 47 |
+
},
|
| 48 |
+
openapi_tags=[
|
| 49 |
+
{
|
| 50 |
+
"name": "status",
|
| 51 |
+
"description": "System status and health checks",
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"name": "models",
|
| 55 |
+
"description": "Model management and switching operations",
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"name": "chat",
|
| 59 |
+
"description": "Chat completion endpoints (OpenAI-compatible)",
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"name": "documentation",
|
| 63 |
+
"description": "API documentation and OpenAPI specification",
|
| 64 |
+
},
|
| 65 |
+
]
|
| 66 |
+
)
|
| 67 |
|
| 68 |
# Predefined list of available models (TheBloke only - verified, fits 18GB Space)
|
| 69 |
AVAILABLE_MODELS = {
|
|
|
|
| 81 |
"llama-7b": "TheBloke/Llama-2-7B-Chat-GGUF:llama-2-7b-chat.Q4_K_M.gguf",
|
| 82 |
}
|
| 83 |
|
| 84 |
+
# Configuration
|
| 85 |
+
MAX_CACHED_MODELS = 2 # Maximum number of models to keep in memory
|
| 86 |
+
BASE_PORT = 8080 # Starting port for llama-server instances
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
@dataclass
|
| 90 |
+
class CachedModel:
|
| 91 |
+
"""Represents a cached model with its process and connection info."""
|
| 92 |
+
name: str
|
| 93 |
+
model_id: str
|
| 94 |
+
process: subprocess.Popen
|
| 95 |
+
port: int
|
| 96 |
+
url: str
|
| 97 |
+
last_used: float
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
class ModelCache:
|
| 101 |
+
"""
|
| 102 |
+
In-memory LRU cache for loaded models.
|
| 103 |
+
|
| 104 |
+
Manages multiple llama-server processes, each on a different port.
|
| 105 |
+
Automatically evicts least recently used models when cache is full.
|
| 106 |
+
"""
|
| 107 |
+
|
| 108 |
+
def __init__(self, max_size: int = MAX_CACHED_MODELS):
|
| 109 |
+
self.max_size = max_size
|
| 110 |
+
self.cache: OrderedDict[str, CachedModel] = OrderedDict()
|
| 111 |
+
self.port_counter = BASE_PORT
|
| 112 |
+
self.used_ports = set()
|
| 113 |
+
|
| 114 |
+
def _get_next_port(self) -> int:
|
| 115 |
+
"""Get next available port for a model."""
|
| 116 |
+
while self.port_counter in self.used_ports:
|
| 117 |
+
self.port_counter += 1
|
| 118 |
+
port = self.port_counter
|
| 119 |
+
self.used_ports.add(port)
|
| 120 |
+
self.port_counter += 1
|
| 121 |
+
return port
|
| 122 |
+
|
| 123 |
+
def _release_port(self, port: int):
|
| 124 |
+
"""Release a port back to the pool."""
|
| 125 |
+
self.used_ports.discard(port)
|
| 126 |
+
|
| 127 |
+
def _evict_lru(self):
|
| 128 |
+
"""Evict the least recently used model."""
|
| 129 |
+
if not self.cache:
|
| 130 |
+
return
|
| 131 |
+
|
| 132 |
+
# Get the first (oldest) item
|
| 133 |
+
model_name, cached_model = self.cache.popitem(last=False)
|
| 134 |
+
print(f"Evicting model from cache: {model_name}")
|
| 135 |
+
|
| 136 |
+
# Stop the process
|
| 137 |
+
try:
|
| 138 |
+
if os.name != 'nt':
|
| 139 |
+
os.killpg(os.getpgid(cached_model.process.pid), signal.SIGTERM)
|
| 140 |
+
else:
|
| 141 |
+
cached_model.process.terminate()
|
| 142 |
+
cached_model.process.wait(timeout=10)
|
| 143 |
+
except Exception as e:
|
| 144 |
+
print(f"Error stopping model {model_name}: {e}")
|
| 145 |
+
try:
|
| 146 |
+
if os.name != 'nt':
|
| 147 |
+
os.killpg(os.getpgid(cached_model.process.pid), signal.SIGKILL)
|
| 148 |
+
else:
|
| 149 |
+
cached_model.process.kill()
|
| 150 |
+
except:
|
| 151 |
+
pass
|
| 152 |
+
|
| 153 |
+
# Release the port
|
| 154 |
+
self._release_port(cached_model.port)
|
| 155 |
+
time.sleep(1)
|
| 156 |
+
|
| 157 |
+
def get(self, model_name: str) -> Optional[CachedModel]:
|
| 158 |
+
"""Get a model from cache, updating its last used time."""
|
| 159 |
+
if model_name in self.cache:
|
| 160 |
+
cached_model = self.cache[model_name]
|
| 161 |
+
cached_model.last_used = time.time()
|
| 162 |
+
# Move to end (most recently used)
|
| 163 |
+
self.cache.move_to_end(model_name)
|
| 164 |
+
print(f"Cache hit for model: {model_name}")
|
| 165 |
+
return cached_model
|
| 166 |
+
print(f"Cache miss for model: {model_name}")
|
| 167 |
+
return None
|
| 168 |
+
|
| 169 |
+
def put(self, model_name: str, model_id: str, process: subprocess.Popen, port: int):
|
| 170 |
+
"""Add a model to the cache."""
|
| 171 |
+
# Evict if cache is full
|
| 172 |
+
while len(self.cache) >= self.max_size:
|
| 173 |
+
self._evict_lru()
|
| 174 |
+
|
| 175 |
+
url = f"http://localhost:{port}"
|
| 176 |
+
cached_model = CachedModel(
|
| 177 |
+
name=model_name,
|
| 178 |
+
model_id=model_id,
|
| 179 |
+
process=process,
|
| 180 |
+
port=port,
|
| 181 |
+
url=url,
|
| 182 |
+
last_used=time.time()
|
| 183 |
+
)
|
| 184 |
+
self.cache[model_name] = cached_model
|
| 185 |
+
print(f"Cached model: {model_name} on port {port}")
|
| 186 |
+
|
| 187 |
+
def clear(self):
|
| 188 |
+
"""Clear all cached models."""
|
| 189 |
+
print("Clearing model cache...")
|
| 190 |
+
for model_name, cached_model in list(self.cache.items()):
|
| 191 |
+
try:
|
| 192 |
+
if os.name != 'nt':
|
| 193 |
+
os.killpg(os.getpgid(cached_model.process.pid), signal.SIGTERM)
|
| 194 |
+
else:
|
| 195 |
+
cached_model.process.terminate()
|
| 196 |
+
cached_model.process.wait(timeout=10)
|
| 197 |
+
except:
|
| 198 |
+
try:
|
| 199 |
+
if os.name != 'nt':
|
| 200 |
+
os.killpg(os.getpgid(cached_model.process.pid), signal.SIGKILL)
|
| 201 |
+
else:
|
| 202 |
+
cached_model.process.kill()
|
| 203 |
+
except:
|
| 204 |
+
pass
|
| 205 |
+
self._release_port(cached_model.port)
|
| 206 |
+
|
| 207 |
+
self.cache.clear()
|
| 208 |
+
|
| 209 |
+
def get_cache_info(self) -> Dict:
|
| 210 |
+
"""Get information about cached models."""
|
| 211 |
+
return {
|
| 212 |
+
"max_size": self.max_size,
|
| 213 |
+
"current_size": len(self.cache),
|
| 214 |
+
"cached_models": [
|
| 215 |
+
{
|
| 216 |
+
"name": name,
|
| 217 |
+
"port": model.port,
|
| 218 |
+
"url": model.url,
|
| 219 |
+
"last_used": model.last_used
|
| 220 |
+
}
|
| 221 |
+
for name, model in self.cache.items()
|
| 222 |
+
]
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
|
| 226 |
# Global state
|
| 227 |
current_model = "deepseek-chat" # Default model
|
| 228 |
+
model_cache = ModelCache(max_size=MAX_CACHED_MODELS)
|
|
|
|
|
|
|
| 229 |
|
| 230 |
|
| 231 |
class ModelSwitchRequest(BaseModel):
|
| 232 |
+
"""Request to switch the active LLM model."""
|
| 233 |
+
model_name: str = Field(
|
| 234 |
+
...,
|
| 235 |
+
description="Name of the model to switch to",
|
| 236 |
+
examples=["deepseek-chat", "mistral-7b", "deepseek-coder"]
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
model_config = {
|
| 240 |
+
"json_schema_extra": {
|
| 241 |
+
"examples": [
|
| 242 |
+
{"model_name": "deepseek-coder"},
|
| 243 |
+
{"model_name": "mistral-7b"}
|
| 244 |
+
]
|
| 245 |
+
}
|
| 246 |
+
}
|
| 247 |
|
| 248 |
|
| 249 |
class ChatCompletionRequest(BaseModel):
|
| 250 |
+
"""OpenAI-compatible chat completion request."""
|
| 251 |
+
messages: list[dict] = Field(
|
| 252 |
+
...,
|
| 253 |
+
description="Array of message objects with 'role' and 'content' fields",
|
| 254 |
+
examples=[[
|
| 255 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 256 |
+
{"role": "user", "content": "Hello!"}
|
| 257 |
+
]]
|
| 258 |
+
)
|
| 259 |
+
max_tokens: int = Field(
|
| 260 |
+
default=256,
|
| 261 |
+
description="Maximum number of tokens to generate",
|
| 262 |
+
ge=1,
|
| 263 |
+
le=4096
|
| 264 |
+
)
|
| 265 |
+
temperature: float = Field(
|
| 266 |
+
default=0.7,
|
| 267 |
+
description="Sampling temperature (0.0 to 2.0). Higher values make output more random.",
|
| 268 |
+
ge=0.0,
|
| 269 |
+
le=2.0
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
model_config = {
|
| 273 |
+
"json_schema_extra": {
|
| 274 |
+
"examples": [
|
| 275 |
+
{
|
| 276 |
+
"messages": [
|
| 277 |
+
{"role": "user", "content": "What is the capital of France?"}
|
| 278 |
+
],
|
| 279 |
+
"max_tokens": 100,
|
| 280 |
+
"temperature": 0.7
|
| 281 |
+
}
|
| 282 |
+
]
|
| 283 |
+
}
|
| 284 |
+
}
|
| 285 |
|
| 286 |
|
| 287 |
class WebChatRequest(BaseModel):
|
| 288 |
+
"""Chat completion request with web search augmentation."""
|
| 289 |
+
messages: list[dict] = Field(
|
| 290 |
+
...,
|
| 291 |
+
description="Array of message objects. The last user message is used for web search.",
|
| 292 |
+
examples=[[
|
| 293 |
+
{"role": "user", "content": "What are the latest developments in AI?"}
|
| 294 |
+
]]
|
| 295 |
+
)
|
| 296 |
+
max_tokens: int = Field(
|
| 297 |
+
default=512,
|
| 298 |
+
description="Maximum number of tokens to generate",
|
| 299 |
+
ge=1,
|
| 300 |
+
le=4096
|
| 301 |
+
)
|
| 302 |
+
temperature: float = Field(
|
| 303 |
+
default=0.7,
|
| 304 |
+
description="Sampling temperature (0.0 to 2.0)",
|
| 305 |
+
ge=0.0,
|
| 306 |
+
le=2.0
|
| 307 |
+
)
|
| 308 |
+
max_search_results: int = Field(
|
| 309 |
+
default=5,
|
| 310 |
+
description="Maximum number of web search results to include in context",
|
| 311 |
+
ge=1,
|
| 312 |
+
le=10
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
model_config = {
|
| 316 |
+
"json_schema_extra": {
|
| 317 |
+
"examples": [
|
| 318 |
+
{
|
| 319 |
+
"messages": [
|
| 320 |
+
{"role": "user", "content": "What's the weather like today in San Francisco?"}
|
| 321 |
+
],
|
| 322 |
+
"max_tokens": 512,
|
| 323 |
+
"temperature": 0.7,
|
| 324 |
+
"max_search_results": 5
|
| 325 |
+
}
|
| 326 |
+
]
|
| 327 |
+
}
|
| 328 |
+
}
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
class StatusResponse(BaseModel):
|
| 332 |
+
"""API status response."""
|
| 333 |
+
status: str = Field(..., description="Current API status")
|
| 334 |
+
current_model: str = Field(..., description="Currently active model")
|
| 335 |
+
available_models: list[str] = Field(..., description="List of available models")
|
| 336 |
|
| 337 |
|
| 338 |
+
class ModelsResponse(BaseModel):
|
| 339 |
+
"""Available models response."""
|
| 340 |
+
current_model: str = Field(..., description="Currently active model")
|
| 341 |
+
available_models: list[str] = Field(..., description="List of all available models")
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
class ModelSwitchResponse(BaseModel):
|
| 345 |
+
"""Model switch response."""
|
| 346 |
+
message: str = Field(..., description="Status message")
|
| 347 |
+
model: str = Field(..., description="New active model name")
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
def start_llama_server(model_id: str, port: int) -> subprocess.Popen:
|
| 351 |
+
"""Start llama-server with specified model on a specific port."""
|
| 352 |
cmd = [
|
| 353 |
"llama-server",
|
| 354 |
"-hf", model_id,
|
| 355 |
"--host", "0.0.0.0",
|
| 356 |
+
"--port", str(port),
|
| 357 |
"-c", "2048", # Context size
|
| 358 |
"-t", "4", # CPU threads (adjust based on cores)
|
| 359 |
"-ngl", "0", # GPU layers (0 for CPU-only)
|
|
|
|
| 361 |
"-b", "512", # Batch size
|
| 362 |
]
|
| 363 |
|
| 364 |
+
print(f"Starting llama-server with model: {model_id} on port {port}")
|
| 365 |
print("This may take 2-3 minutes to download and load the model...")
|
| 366 |
|
| 367 |
process = subprocess.Popen(
|
|
|
|
| 375 |
|
| 376 |
# Wait for server to be ready (increased timeout for model download)
|
| 377 |
max_retries = 300 # 5 minutes
|
| 378 |
+
server_url = f"http://localhost:{port}"
|
| 379 |
+
|
| 380 |
for i in range(max_retries):
|
| 381 |
# Check if process died
|
| 382 |
if process.poll() is not None:
|
|
|
|
| 387 |
|
| 388 |
try:
|
| 389 |
# Try root endpoint instead of /health
|
| 390 |
+
response = requests.get(f"{server_url}/", timeout=2)
|
| 391 |
if response.status_code in [200, 404]: # 404 is ok, means server is up
|
| 392 |
print(f"llama-server ready after {i+1} seconds")
|
| 393 |
return process
|
| 394 |
except requests.exceptions.ConnectionError:
|
| 395 |
# Server not ready yet
|
| 396 |
pass
|
| 397 |
+
except Exception:
|
| 398 |
# Other errors, keep waiting
|
| 399 |
pass
|
| 400 |
|
|
|
|
| 403 |
raise RuntimeError("llama-server failed to start within 5 minutes")
|
| 404 |
|
| 405 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
@app.on_event("startup")
|
| 407 |
async def startup_event():
|
| 408 |
+
"""Start with default model and cache it."""
|
| 409 |
+
global current_model
|
| 410 |
model_id = AVAILABLE_MODELS[current_model]
|
| 411 |
+
port = model_cache._get_next_port()
|
| 412 |
+
|
| 413 |
+
process = start_llama_server(model_id, port)
|
| 414 |
+
model_cache.put(current_model, model_id, process, port)
|
| 415 |
+
print(f"Started with default model: {current_model}")
|
| 416 |
|
| 417 |
|
| 418 |
@app.on_event("shutdown")
|
| 419 |
async def shutdown_event():
|
| 420 |
+
"""Clean shutdown - clear all cached models."""
|
| 421 |
+
model_cache.clear()
|
| 422 |
|
| 423 |
|
| 424 |
+
@app.get(
|
| 425 |
+
"/",
|
| 426 |
+
response_model=StatusResponse,
|
| 427 |
+
tags=["status"],
|
| 428 |
+
summary="API Status",
|
| 429 |
+
description="Get the current status of the API, including active model and available models."
|
| 430 |
+
)
|
| 431 |
async def root():
|
| 432 |
+
"""
|
| 433 |
+
Returns the current status of the AGI Multi-Model API.
|
| 434 |
+
|
| 435 |
+
This endpoint provides information about:
|
| 436 |
+
- Current API status
|
| 437 |
+
- Currently active LLM model
|
| 438 |
+
- List of all available models
|
| 439 |
+
"""
|
| 440 |
return {
|
| 441 |
+
"status": "AGI Multi-Model API with dynamic model switching and web search",
|
| 442 |
"current_model": current_model,
|
| 443 |
"available_models": list(AVAILABLE_MODELS.keys())
|
| 444 |
}
|
| 445 |
|
| 446 |
|
| 447 |
+
@app.get(
|
| 448 |
+
"/models",
|
| 449 |
+
response_model=ModelsResponse,
|
| 450 |
+
tags=["models"],
|
| 451 |
+
summary="List Available Models",
|
| 452 |
+
description="Get a list of all available LLM models and the currently active model."
|
| 453 |
+
)
|
| 454 |
async def list_models():
|
| 455 |
+
"""
|
| 456 |
+
List all available LLM models.
|
| 457 |
+
|
| 458 |
+
Returns:
|
| 459 |
+
- current_model: The model currently in use
|
| 460 |
+
- available_models: Array of all available model names
|
| 461 |
+
|
| 462 |
+
Use this endpoint to see which models you can switch to.
|
| 463 |
+
"""
|
| 464 |
return {
|
| 465 |
"current_model": current_model,
|
| 466 |
"available_models": list(AVAILABLE_MODELS.keys())
|
| 467 |
}
|
| 468 |
|
| 469 |
|
| 470 |
+
@app.post(
|
| 471 |
+
"/switch-model",
|
| 472 |
+
response_model=ModelSwitchResponse,
|
| 473 |
+
tags=["models"],
|
| 474 |
+
summary="Switch Active Model",
|
| 475 |
+
description="Switch to a different LLM model. Uses caching for instant switching to recently used models.",
|
| 476 |
+
responses={
|
| 477 |
+
200: {
|
| 478 |
+
"description": "Model switched successfully",
|
| 479 |
+
"content": {
|
| 480 |
+
"application/json": {
|
| 481 |
+
"example": {
|
| 482 |
+
"message": "Switched to model: deepseek-coder (from cache)",
|
| 483 |
+
"model": "deepseek-coder"
|
| 484 |
+
}
|
| 485 |
+
}
|
| 486 |
+
}
|
| 487 |
+
},
|
| 488 |
+
400: {
|
| 489 |
+
"description": "Invalid model name",
|
| 490 |
+
"content": {
|
| 491 |
+
"application/json": {
|
| 492 |
+
"example": {
|
| 493 |
+
"detail": "Model 'invalid-model' not found. Available: ['deepseek-chat', 'mistral-7b', ...]"
|
| 494 |
+
}
|
| 495 |
+
}
|
| 496 |
+
}
|
| 497 |
+
}
|
| 498 |
+
}
|
| 499 |
+
)
|
| 500 |
async def switch_model(request: ModelSwitchRequest):
|
| 501 |
+
"""
|
| 502 |
+
Switch to a different LLM model with intelligent caching.
|
| 503 |
+
|
| 504 |
+
**How it works:**
|
| 505 |
+
1. Checks if requested model is already active (no switch needed)
|
| 506 |
+
2. Checks cache for the model (instant switch if cached)
|
| 507 |
+
3. If not cached, loads the model (may take 2-3 minutes)
|
| 508 |
+
|
| 509 |
+
**Caching:**
|
| 510 |
+
- Up to 2 models kept in memory
|
| 511 |
+
- LRU (Least Recently Used) eviction policy
|
| 512 |
+
- Each model runs on a separate port
|
| 513 |
+
- Instant switching between cached models
|
| 514 |
+
"""
|
| 515 |
+
global current_model
|
| 516 |
|
| 517 |
if request.model_name not in AVAILABLE_MODELS:
|
| 518 |
raise HTTPException(
|
|
|
|
| 521 |
)
|
| 522 |
|
| 523 |
if request.model_name == current_model:
|
| 524 |
+
return {"message": f"Already using model: {current_model}", "model": current_model}
|
| 525 |
|
| 526 |
+
# Try to get from cache
|
| 527 |
+
cached_model = model_cache.get(request.model_name)
|
| 528 |
|
| 529 |
+
if cached_model:
|
| 530 |
+
# Model is cached, instant switch
|
| 531 |
+
current_model = request.model_name
|
| 532 |
+
return {
|
| 533 |
+
"message": f"Switched to model: {current_model} (from cache)",
|
| 534 |
+
"model": current_model
|
| 535 |
+
}
|
| 536 |
|
| 537 |
+
# Model not cached, need to load it
|
| 538 |
+
model_id = AVAILABLE_MODELS[request.model_name]
|
| 539 |
+
port = model_cache._get_next_port()
|
|
|
|
| 540 |
|
| 541 |
+
try:
|
| 542 |
+
process = start_llama_server(model_id, port)
|
| 543 |
+
model_cache.put(request.model_name, model_id, process, port)
|
| 544 |
+
current_model = request.model_name
|
| 545 |
|
| 546 |
+
return {
|
| 547 |
+
"message": f"Switched to model: {current_model} (newly loaded)",
|
| 548 |
+
"model": current_model
|
| 549 |
+
}
|
| 550 |
+
except Exception as e:
|
| 551 |
+
# Release port if failed
|
| 552 |
+
model_cache._release_port(port)
|
| 553 |
+
raise HTTPException(status_code=500, detail=f"Failed to load model: {str(e)}")
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
@app.post(
|
| 557 |
+
"/v1/chat/completions",
|
| 558 |
+
tags=["chat"],
|
| 559 |
+
summary="Chat Completions",
|
| 560 |
+
description="OpenAI-compatible chat completions endpoint. Send messages and get AI-generated responses.",
|
| 561 |
+
responses={
|
| 562 |
+
200: {
|
| 563 |
+
"description": "Successful response",
|
| 564 |
+
"content": {
|
| 565 |
+
"application/json": {
|
| 566 |
+
"example": {
|
| 567 |
+
"id": "chatcmpl-123",
|
| 568 |
+
"object": "chat.completion",
|
| 569 |
+
"created": 1677652288,
|
| 570 |
+
"model": "deepseek-chat",
|
| 571 |
+
"choices": [{
|
| 572 |
+
"index": 0,
|
| 573 |
+
"message": {
|
| 574 |
+
"role": "assistant",
|
| 575 |
+
"content": "Hello! How can I help you today?"
|
| 576 |
+
},
|
| 577 |
+
"finish_reason": "stop"
|
| 578 |
+
}]
|
| 579 |
+
}
|
| 580 |
+
}
|
| 581 |
+
}
|
| 582 |
+
},
|
| 583 |
+
500: {
|
| 584 |
+
"description": "LLM server error"
|
| 585 |
+
}
|
| 586 |
+
}
|
| 587 |
+
)
|
| 588 |
async def chat_completions(request: ChatCompletionRequest):
|
| 589 |
+
"""
|
| 590 |
+
OpenAI-compatible chat completions endpoint.
|
| 591 |
+
|
| 592 |
+
This endpoint forwards your request to the currently active LLM model
|
| 593 |
+
and returns the response in OpenAI-compatible format.
|
| 594 |
+
|
| 595 |
+
**Message Format:**
|
| 596 |
+
```json
|
| 597 |
+
{
|
| 598 |
+
"messages": [
|
| 599 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 600 |
+
{"role": "user", "content": "Hello!"}
|
| 601 |
+
],
|
| 602 |
+
"max_tokens": 256,
|
| 603 |
+
"temperature": 0.7
|
| 604 |
+
}
|
| 605 |
+
```
|
| 606 |
+
|
| 607 |
+
**Supported Roles:**
|
| 608 |
+
- `system`: Sets the behavior of the assistant
|
| 609 |
+
- `user`: User messages
|
| 610 |
+
- `assistant`: Assistant responses (for multi-turn conversations)
|
| 611 |
+
"""
|
| 612 |
try:
|
| 613 |
+
# Get current model from cache
|
| 614 |
+
cached_model = model_cache.get(current_model)
|
| 615 |
+
if not cached_model:
|
| 616 |
+
raise HTTPException(status_code=500, detail="Current model not loaded")
|
| 617 |
+
|
| 618 |
# Forward to llama-server
|
| 619 |
response = requests.post(
|
| 620 |
+
f"{cached_model.url}/v1/chat/completions",
|
| 621 |
json={
|
| 622 |
"messages": request.messages,
|
| 623 |
"max_tokens": request.max_tokens,
|
|
|
|
| 663 |
return context
|
| 664 |
|
| 665 |
|
| 666 |
+
@app.post(
|
| 667 |
+
"/v1/web-chat/completions",
|
| 668 |
+
tags=["chat"],
|
| 669 |
+
summary="Web-Augmented Chat Completions",
|
| 670 |
+
description="Chat completions enhanced with real-time web search. The last user message is used as a search query.",
|
| 671 |
+
responses={
|
| 672 |
+
200: {
|
| 673 |
+
"description": "Successful response with web search metadata",
|
| 674 |
+
"content": {
|
| 675 |
+
"application/json": {
|
| 676 |
+
"example": {
|
| 677 |
+
"id": "chatcmpl-123",
|
| 678 |
+
"object": "chat.completion",
|
| 679 |
+
"created": 1677652288,
|
| 680 |
+
"model": "deepseek-chat",
|
| 681 |
+
"choices": [{
|
| 682 |
+
"index": 0,
|
| 683 |
+
"message": {
|
| 684 |
+
"role": "assistant",
|
| 685 |
+
"content": "Based on recent search results, here's what I found..."
|
| 686 |
+
},
|
| 687 |
+
"finish_reason": "stop"
|
| 688 |
+
}],
|
| 689 |
+
"web_search": {
|
| 690 |
+
"query": "latest AI developments",
|
| 691 |
+
"results_count": 5,
|
| 692 |
+
"sources": ["https://example.com/1", "https://example.com/2"]
|
| 693 |
+
}
|
| 694 |
+
}
|
| 695 |
+
}
|
| 696 |
+
}
|
| 697 |
+
},
|
| 698 |
+
400: {
|
| 699 |
+
"description": "No user message found"
|
| 700 |
+
},
|
| 701 |
+
500: {
|
| 702 |
+
"description": "LLM server or search error"
|
| 703 |
+
}
|
| 704 |
+
}
|
| 705 |
+
)
|
| 706 |
async def web_chat_completions(request: WebChatRequest):
|
| 707 |
"""
|
| 708 |
+
Chat completions with real-time web search augmentation.
|
| 709 |
+
|
| 710 |
+
**How it works:**
|
| 711 |
+
1. Extracts the last user message as the search query
|
| 712 |
+
2. Performs a web search using DuckDuckGo
|
| 713 |
+
3. Injects search results into the LLM context
|
| 714 |
+
4. Returns the AI response with source citations
|
| 715 |
+
|
| 716 |
+
**Use cases:**
|
| 717 |
+
- Current events and news
|
| 718 |
+
- Recent information beyond the model's training data
|
| 719 |
+
- Fact-checking with web sources
|
| 720 |
+
- Research with live data
|
| 721 |
+
|
| 722 |
+
**Example:**
|
| 723 |
+
```json
|
| 724 |
+
{
|
| 725 |
+
"messages": [
|
| 726 |
+
{"role": "user", "content": "What's the latest news about SpaceX?"}
|
| 727 |
+
],
|
| 728 |
+
"max_tokens": 512,
|
| 729 |
+
"max_search_results": 5
|
| 730 |
+
}
|
| 731 |
+
```
|
| 732 |
|
| 733 |
+
The response includes a `web_search` field with metadata about sources used.
|
|
|
|
| 734 |
"""
|
| 735 |
try:
|
| 736 |
# Get the last user message as search query
|
|
|
|
| 764 |
# Insert system message before the last user message
|
| 765 |
augmented_messages.insert(-1, system_prompt)
|
| 766 |
|
| 767 |
+
# Get current model from cache
|
| 768 |
+
cached_model = model_cache.get(current_model)
|
| 769 |
+
if not cached_model:
|
| 770 |
+
raise HTTPException(status_code=500, detail="Current model not loaded")
|
| 771 |
+
|
| 772 |
# Forward to llama-server with augmented context
|
| 773 |
response = requests.post(
|
| 774 |
+
f"{cached_model.url}/v1/chat/completions",
|
| 775 |
json={
|
| 776 |
"messages": augmented_messages,
|
| 777 |
"max_tokens": request.max_tokens,
|
|
|
|
| 795 |
except requests.exceptions.RequestException as e:
|
| 796 |
raise HTTPException(status_code=500, detail=f"llama-server error: {str(e)}")
|
| 797 |
except Exception as e:
|
| 798 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 799 |
+
|
| 800 |
+
|
| 801 |
+
@app.get(
|
| 802 |
+
"/cache/info",
|
| 803 |
+
tags=["models"],
|
| 804 |
+
summary="Get Cache Information",
|
| 805 |
+
description="Returns information about the model cache, including cached models and cache statistics."
|
| 806 |
+
)
|
| 807 |
+
async def get_cache_info():
|
| 808 |
+
"""
|
| 809 |
+
Get information about the in-memory model cache.
|
| 810 |
+
|
| 811 |
+
Returns:
|
| 812 |
+
- max_size: Maximum number of models that can be cached
|
| 813 |
+
- current_size: Current number of cached models
|
| 814 |
+
- cached_models: List of currently cached models with their metadata
|
| 815 |
+
|
| 816 |
+
**Example Response:**
|
| 817 |
+
```json
|
| 818 |
+
{
|
| 819 |
+
"max_size": 2,
|
| 820 |
+
"current_size": 2,
|
| 821 |
+
"cached_models": [
|
| 822 |
+
{
|
| 823 |
+
"name": "deepseek-chat",
|
| 824 |
+
"port": 8080,
|
| 825 |
+
"url": "http://localhost:8080",
|
| 826 |
+
"last_used": 1234567890.123
|
| 827 |
+
},
|
| 828 |
+
{
|
| 829 |
+
"name": "mistral-7b",
|
| 830 |
+
"port": 8081,
|
| 831 |
+
"url": "http://localhost:8081",
|
| 832 |
+
"last_used": 1234567895.456
|
| 833 |
+
}
|
| 834 |
+
]
|
| 835 |
+
}
|
| 836 |
+
```
|
| 837 |
+
"""
|
| 838 |
+
return model_cache.get_cache_info()
|
| 839 |
+
|
| 840 |
+
|
| 841 |
+
@app.get(
|
| 842 |
+
"/openapi.json",
|
| 843 |
+
tags=["documentation"],
|
| 844 |
+
summary="Get OpenAPI Specification",
|
| 845 |
+
description="Returns the complete OpenAPI 3.0 specification for this API in JSON format.",
|
| 846 |
+
include_in_schema=False
|
| 847 |
+
)
|
| 848 |
+
async def get_openapi_spec():
|
| 849 |
+
"""
|
| 850 |
+
Export the OpenAPI specification for this API.
|
| 851 |
+
|
| 852 |
+
This endpoint returns the complete OpenAPI 3.0 specification that can be used with:
|
| 853 |
+
- API documentation tools (Swagger UI, ReDoc)
|
| 854 |
+
- Code generators (openapi-generator, swagger-codegen)
|
| 855 |
+
- API testing tools (Postman, Insomnia)
|
| 856 |
+
- SDK generation
|
| 857 |
+
|
| 858 |
+
Save this to a file and use it with tools like:
|
| 859 |
+
```bash
|
| 860 |
+
# Generate Python client
|
| 861 |
+
openapi-generator generate -i openapi.json -g python -o ./client
|
| 862 |
+
|
| 863 |
+
# Generate TypeScript client
|
| 864 |
+
openapi-generator generate -i openapi.json -g typescript-fetch -o ./client
|
| 865 |
+
```
|
| 866 |
+
"""
|
| 867 |
+
return app.openapi()
|