Spaces:
Sleeping
Sleeping
Added files to spaces
Browse files- Dockerfile +14 -0
- ModelCode.py +51 -0
- app.py +45 -0
- requirements.txt +12 -0
Dockerfile
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.11
|
| 2 |
+
|
| 3 |
+
RUN useradd -m -u 1000 user
|
| 4 |
+
USER user
|
| 5 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 6 |
+
|
| 7 |
+
WORKDIR /app
|
| 8 |
+
|
| 9 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 10 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 11 |
+
|
| 12 |
+
COPY --chown=user . /app
|
| 13 |
+
|
| 14 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
ModelCode.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import CLIPProcessor, CLIPModel
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import cv2
|
| 6 |
+
from collections import Counter
|
| 7 |
+
|
| 8 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 9 |
+
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 10 |
+
|
| 11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
clip_model = clip_model.to(device)
|
| 13 |
+
|
| 14 |
+
def extract_frames(video_path, frame_rate=5):
|
| 15 |
+
cap = cv2.VideoCapture(video_path)
|
| 16 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 17 |
+
frames = []
|
| 18 |
+
count = 0
|
| 19 |
+
|
| 20 |
+
while cap.isOpened():
|
| 21 |
+
ret, frame = cap.read()
|
| 22 |
+
if not ret:
|
| 23 |
+
break
|
| 24 |
+
if int(count % (fps * frame_rate)) == 0:
|
| 25 |
+
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 26 |
+
frames.append(img)
|
| 27 |
+
count += 1
|
| 28 |
+
|
| 29 |
+
cap.release()
|
| 30 |
+
return frames
|
| 31 |
+
|
| 32 |
+
def classify_frame_with_clip(image):
|
| 33 |
+
texts = ["Ayurveda", "Non-Ayurveda"]
|
| 34 |
+
inputs = clip_processor(text=texts, images=image, return_tensors="pt", padding=True).to(device)
|
| 35 |
+
outputs = clip_model(**inputs)
|
| 36 |
+
logits_per_image = outputs.logits_per_image
|
| 37 |
+
probs = logits_per_image.softmax(dim=1)
|
| 38 |
+
pred = torch.argmax(probs, dim=1).item()
|
| 39 |
+
return texts[pred]
|
| 40 |
+
|
| 41 |
+
def classify_video(video_path):
|
| 42 |
+
frames = extract_frames(video_path, frame_rate=5)
|
| 43 |
+
|
| 44 |
+
clip_preds = []
|
| 45 |
+
|
| 46 |
+
for frame in frames:
|
| 47 |
+
clip_result = classify_frame_with_clip(frame)
|
| 48 |
+
clip_preds.append(clip_result)
|
| 49 |
+
|
| 50 |
+
final_pred = Counter(clip_preds).most_common(1)[0][0]
|
| 51 |
+
return {"Type": final_pred}
|
app.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, File
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
import os
|
| 4 |
+
import cv2
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from ModelCode import classify_video
|
| 7 |
+
|
| 8 |
+
app = FastAPI()
|
| 9 |
+
|
| 10 |
+
app.add_middleware(
|
| 11 |
+
CORSMiddleware,
|
| 12 |
+
allow_origins=["*"],
|
| 13 |
+
allow_credentials=True,
|
| 14 |
+
allow_methods=["*"],
|
| 15 |
+
allow_headers=["*"],
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
@app.get("/")
|
| 20 |
+
async def root():
|
| 21 |
+
return {"message": "Welcome to Video Classification API!"}
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@app.post("/Video_Processing")
|
| 25 |
+
async def process_video(file: UploadFile = File(...)):
|
| 26 |
+
try:
|
| 27 |
+
file_path = f"./{file.filename}"
|
| 28 |
+
if not file.filename.endswith(('.mp4', '.avi', '.mov')):
|
| 29 |
+
return {"error": "File is not a supported video format"}
|
| 30 |
+
|
| 31 |
+
with open(file_path, "wb") as video_file:
|
| 32 |
+
video_file.write(await file.read())
|
| 33 |
+
|
| 34 |
+
result = classify_video(file_path)
|
| 35 |
+
|
| 36 |
+
return {
|
| 37 |
+
"Type": result["Type"],
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
except Exception as e:
|
| 41 |
+
return {"error": str(e)}
|
| 42 |
+
|
| 43 |
+
finally:
|
| 44 |
+
if os.path.exists(file_path):
|
| 45 |
+
os.remove(file_path)
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
torch
|
| 4 |
+
transformers
|
| 5 |
+
opencv-python
|
| 6 |
+
pillow
|
| 7 |
+
pytesseract
|
| 8 |
+
python-multipart
|
| 9 |
+
scikit-learn
|
| 10 |
+
fastapi[all]
|
| 11 |
+
tqdm
|
| 12 |
+
numpy
|