Spaces:
Sleeping
Sleeping
added draawubg feautyre
Browse files- __pycache__/codeexecutor.cpython-312.pyc +0 -0
- app.py +15 -8
- codeexecutor.py +7 -3
- flagged_data/Polynomial Plot/b857f890620768c0e173/polynomial_plot.png +0 -0
- flagged_data/log.csv +3 -0
- polynomial_plot.png +0 -0
- requirements.txt +1 -0
- temp.py +2 -88
- temp2.py +138 -0
- temp3.py +17 -0
- thankyou.png +0 -0
__pycache__/codeexecutor.cpython-312.pyc
ADDED
|
Binary file (7.45 kB). View file
|
|
|
app.py
CHANGED
|
@@ -60,16 +60,23 @@ def majority_vote_with_steps(question, num_iterations=10):
|
|
| 60 |
all_predictions.append(prediction)
|
| 61 |
all_answers.append(answer)
|
| 62 |
steps_list.append(prediction)
|
| 63 |
-
|
| 64 |
else:
|
| 65 |
answer, steps = parse_prediction(prediction)
|
| 66 |
all_predictions.append(prediction)
|
| 67 |
all_answers.append(answer)
|
| 68 |
steps_list.append(steps)
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
|
| 75 |
# Get the majority voted answer
|
|
@@ -86,11 +93,11 @@ def majority_vote_with_steps(question, num_iterations=10):
|
|
| 86 |
answer=majority_voted_ans
|
| 87 |
steps_solution = "No steps found"
|
| 88 |
|
| 89 |
-
return answer, steps_solution
|
| 90 |
|
| 91 |
def gradio_interface(question, correct_answer):
|
| 92 |
-
final_answer, steps_solution = majority_vote_with_steps(question, iterations)
|
| 93 |
-
return question, final_answer, steps_solution, correct_answer
|
| 94 |
|
| 95 |
# Custom CSS for enhanced design (unchanged)
|
| 96 |
custom_css = """
|
|
|
|
| 60 |
all_predictions.append(prediction)
|
| 61 |
all_answers.append(answer)
|
| 62 |
steps_list.append(prediction)
|
| 63 |
+
|
| 64 |
else:
|
| 65 |
answer, steps = parse_prediction(prediction)
|
| 66 |
all_predictions.append(prediction)
|
| 67 |
all_answers.append(answer)
|
| 68 |
steps_list.append(steps)
|
| 69 |
+
|
| 70 |
+
majority_voted_ans = get_majority_vote(all_answers)
|
| 71 |
+
if success:
|
| 72 |
+
print(type_check(majority_voted_ans))
|
| 73 |
+
if type_check(expression) == "Polynomial":
|
| 74 |
+
plotfile = draw_polynomial_plot(expression)
|
| 75 |
+
else:
|
| 76 |
+
if os.path.exists("thankyou.png"):
|
| 77 |
+
plotfile = "thankyou.png"
|
| 78 |
+
else:
|
| 79 |
+
plotfile = None
|
| 80 |
|
| 81 |
|
| 82 |
# Get the majority voted answer
|
|
|
|
| 93 |
answer=majority_voted_ans
|
| 94 |
steps_solution = "No steps found"
|
| 95 |
|
| 96 |
+
return answer, steps_solution,plotfile
|
| 97 |
|
| 98 |
def gradio_interface(question, correct_answer):
|
| 99 |
+
final_answer, steps_solution,plotfile = majority_vote_with_steps(question, iterations)
|
| 100 |
+
return question, final_answer, steps_solution, correct_answer,plotfile
|
| 101 |
|
| 102 |
# Custom CSS for enhanced design (unchanged)
|
| 103 |
custom_css = """
|
codeexecutor.py
CHANGED
|
@@ -6,10 +6,13 @@ import multiprocessing
|
|
| 6 |
from collections import Counter
|
| 7 |
from contextlib import contextmanager
|
| 8 |
from dataclasses import dataclass
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
class PythonREPL:
|
| 12 |
-
def __init__(self, timeout=
|
| 13 |
self.timeout = timeout
|
| 14 |
|
| 15 |
@staticmethod
|
|
@@ -115,7 +118,7 @@ def get_majority_vote(answers):
|
|
| 115 |
return value
|
| 116 |
|
| 117 |
|
| 118 |
-
def type_check(
|
| 119 |
|
| 120 |
|
| 121 |
expr = sp.sympify(expr_str)
|
|
@@ -159,7 +162,8 @@ def draw_polynomial_plot(expression):
|
|
| 159 |
plt.close()
|
| 160 |
|
| 161 |
return plot_filename
|
| 162 |
-
except:
|
|
|
|
| 163 |
return None
|
| 164 |
|
| 165 |
|
|
|
|
| 6 |
from collections import Counter
|
| 7 |
from contextlib import contextmanager
|
| 8 |
from dataclasses import dataclass
|
| 9 |
+
import sympy as sp
|
| 10 |
+
import numpy as np
|
| 11 |
+
import matplotlib.pyplot as plt
|
| 12 |
|
| 13 |
|
| 14 |
class PythonREPL:
|
| 15 |
+
def __init__(self, timeout=15):
|
| 16 |
self.timeout = timeout
|
| 17 |
|
| 18 |
@staticmethod
|
|
|
|
| 118 |
return value
|
| 119 |
|
| 120 |
|
| 121 |
+
def type_check(expr_str):
|
| 122 |
|
| 123 |
|
| 124 |
expr = sp.sympify(expr_str)
|
|
|
|
| 162 |
plt.close()
|
| 163 |
|
| 164 |
return plot_filename
|
| 165 |
+
except Exception as e:
|
| 166 |
+
print(f"Error in draw_polynomial_plot: {e}")
|
| 167 |
return None
|
| 168 |
|
| 169 |
|
flagged_data/Polynomial Plot/b857f890620768c0e173/polynomial_plot.png
ADDED
|
flagged_data/log.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Chat with MathBot,Your Question,Chat History,Polynomial Plot,flag,username,timestamp
|
| 2 |
+
[],fdfd,"[[""User"", ""fdfd""], [""MathBot"", ""Answer: ('The sum of the polynomials \\\\(2x + 3\\\\) and \\\\(3x\\\\) is \\\\(\\\\boxed{5x + 3}\\\\).', \""Solve the following mathematical problem: what is sum of polynomial 2x+3 and 3x?\\n### Solution: To solve the problem of summing the polynomials \\\\(2x + 3\\\\) and \\\\(3x\\\\), we can follow these steps:\\n\\n1. Define the polynomials.\\n2. Sum the polynomials.\\n3. Simplify the resulting polynomial expression.\\n\\nLet's implement this in Python using the sympy library.\\n\\n```python\\nimport sympy as sp\\n\\n# Define the variable\\nx = sp.symbols('x')\\n\\n# Define the polynomials\\npoly1 = 2*x + 3\\npoly2 = 3*x\\n\\n# Sum the polynomials\\nsum_poly = poly1 + poly2\\n\\n# Simplify the resulting polynomial\\nsimplified_sum_poly = sp.simplify(sum_poly)\\n\\n# Print the simplified polynomial\\nprint(simplified_sum_poly)\\n```\\n```output\\n5*x + 3\\n```\\nThe sum of the polynomials \\\\(2x + 3\\\\) and \\\\(3x\\\\) is \\\\(\\\\boxed{5x + 3}\\\\).\"")\nSteps:\nSolve the following mathematical problem: what is sum of polynomial 2x+3 and 3x?\n### Solution: To solve the problem of summing the polynomials \\(2x + 3\\) and \\(3x\\), we can follow these steps:\n\n1. Define the polynomials.\n2. Sum the polynomials.\n3. Simplify the resulting polynomial expression.\n\nLet's implement this in Python using the sympy library.\n\n```python\nimport sympy as sp\n\n# Define the variable\nx = sp.symbols('x')\n\n# Define the polynomials\npoly1 = 2*x + 3\npoly2 = 3*x\n\n# Sum the polynomials\nsum_poly = poly1 + poly2\n\n# Simplify the resulting polynomial\nsimplified_sum_poly = sp.simplify(sum_poly)\n\n# Print the simplified polynomial\nprint(simplified_sum_poly)\n```\n```output\n5*x + 3\n```\nThe sum of the polynomials \\(2x + 3\\) and \\(3x\\) is \\(\\boxed{5x + 3}\\).""]]",,,,2024-10-03 17:19:14.236777
|
| 3 |
+
[],dfafd,"[[""User"", ""dfafd""], [""MathBot"", ""Answer: ('The sum of the polynomials \\\\(2x + 3\\\\) and \\\\(3x\\\\) is \\\\(\\\\boxed{5x + 3}\\\\).', \""Solve the following mathematical problem: what is sum of polynomial 2x+3 and 3x?\\n### Solution: To solve the problem of summing the polynomials \\\\(2x + 3\\\\) and \\\\(3x\\\\), we can follow these steps:\\n\\n1. Define the polynomials.\\n2. Sum the polynomials.\\n3. Simplify the resulting polynomial expression.\\n\\nLet's implement this in Python using the sympy library.\\n\\n```python\\nimport sympy as sp\\n\\n# Define the variable\\nx = sp.symbols('x')\\n\\n# Define the polynomials\\npoly1 = 2*x + 3\\npoly2 = 3*x\\n\\n# Sum the polynomials\\nsum_poly = poly1 + poly2\\n\\n# Simplify the resulting polynomial\\nsimplified_sum_poly = sp.simplify(sum_poly)\\n\\n# Print the simplified polynomial\\nprint(simplified_sum_poly)\\n```\\n```output\\n5*x + 3\\n```\\nThe sum of the polynomials \\\\(2x + 3\\\\) and \\\\(3x\\\\) is \\\\(\\\\boxed{5x + 3}\\\\).\"")\nSteps:\nSolve the following mathematical problem: what is sum of polynomial 2x+3 and 3x?\n### Solution: To solve the problem of summing the polynomials \\(2x + 3\\) and \\(3x\\), we can follow these steps:\n\n1. Define the polynomials.\n2. Sum the polynomials.\n3. Simplify the resulting polynomial expression.\n\nLet's implement this in Python using the sympy library.\n\n```python\nimport sympy as sp\n\n# Define the variable\nx = sp.symbols('x')\n\n# Define the polynomials\npoly1 = 2*x + 3\npoly2 = 3*x\n\n# Sum the polynomials\nsum_poly = poly1 + poly2\n\n# Simplify the resulting polynomial\nsimplified_sum_poly = sp.simplify(sum_poly)\n\n# Print the simplified polynomial\nprint(simplified_sum_poly)\n```\n```output\n5*x + 3\n```\nThe sum of the polynomials \\(2x + 3\\) and \\(3x\\) is \\(\\boxed{5x + 3}\\).""]]",flagged_data\Polynomial Plot\b857f890620768c0e173\polynomial_plot.png,,,2024-10-03 17:44:52.573279
|
polynomial_plot.png
ADDED
|
requirements.txt
CHANGED
|
@@ -3,3 +3,4 @@ gradio
|
|
| 3 |
ctranslate2
|
| 4 |
transformers
|
| 5 |
torch
|
|
|
|
|
|
| 3 |
ctranslate2
|
| 4 |
transformers
|
| 5 |
torch
|
| 6 |
+
numpy
|
temp.py
CHANGED
|
@@ -90,96 +90,10 @@ def majority_vote_with_steps(question, num_iterations=10):
|
|
| 90 |
|
| 91 |
def gradio_interface(question, correct_answer):
|
| 92 |
final_answer, steps_solution,plotfile = majority_vote_with_steps(question, iterations)
|
| 93 |
-
return question, final_answer, steps_solution, correct_answer,
|
| 94 |
|
| 95 |
# Custom CSS for enhanced design (unchanged)
|
| 96 |
-
|
| 97 |
-
body {
|
| 98 |
-
background-color: #fafafa;
|
| 99 |
-
font-family: 'Open Sans', sans-serif;
|
| 100 |
-
}
|
| 101 |
-
.gradio-container {
|
| 102 |
-
background-color: #ffffff;
|
| 103 |
-
border: 3px solid #007acc;
|
| 104 |
-
border-radius: 15px;
|
| 105 |
-
padding: 20px;
|
| 106 |
-
box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15);
|
| 107 |
-
max-width: 800px;
|
| 108 |
-
margin: 50px auto;
|
| 109 |
-
}
|
| 110 |
-
h1 {
|
| 111 |
-
font-family: 'Poppins', sans-serif;
|
| 112 |
-
color: #007acc;
|
| 113 |
-
font-weight: bold;
|
| 114 |
-
font-size: 32px;
|
| 115 |
-
text-align: center;
|
| 116 |
-
margin-bottom: 20px;
|
| 117 |
-
}
|
| 118 |
-
p {
|
| 119 |
-
font-family: 'Roboto', sans-serif;
|
| 120 |
-
font-size: 18px;
|
| 121 |
-
color: #333;
|
| 122 |
-
text-align: center;
|
| 123 |
-
margin-bottom: 15px;
|
| 124 |
-
}
|
| 125 |
-
input, textarea {
|
| 126 |
-
font-family: 'Montserrat', sans-serif;
|
| 127 |
-
font-size: 16px;
|
| 128 |
-
padding: 10px;
|
| 129 |
-
border: 2px solid #007acc;
|
| 130 |
-
border-radius: 10px;
|
| 131 |
-
background-color: #f1f8ff;
|
| 132 |
-
margin-bottom: 15px;
|
| 133 |
-
}
|
| 134 |
-
#math_question, #correct_answer {
|
| 135 |
-
font-size: 20px;
|
| 136 |
-
font-family: 'Poppins', sans-serif;
|
| 137 |
-
font-weight: 500px;
|
| 138 |
-
color: #007acc;
|
| 139 |
-
margin-bottom: 5px;
|
| 140 |
-
display: inline-block;
|
| 141 |
-
}
|
| 142 |
-
|
| 143 |
-
textarea {
|
| 144 |
-
min-height: 150px;
|
| 145 |
-
}
|
| 146 |
-
.gr-button-primary {
|
| 147 |
-
background-color: #007acc !important;
|
| 148 |
-
color: white !important;
|
| 149 |
-
border-radius: 10px !important;
|
| 150 |
-
font-size: 18px !important;
|
| 151 |
-
font-weight: bold !important;
|
| 152 |
-
padding: 10px 20px !important;
|
| 153 |
-
font-family: 'Montserrat', sans-serif !important;
|
| 154 |
-
transition: background-color 0.3s ease !important;
|
| 155 |
-
}
|
| 156 |
-
.gr-button-primary:hover {
|
| 157 |
-
background-color: #005f99 !important;
|
| 158 |
-
}
|
| 159 |
-
.gr-button-secondary {
|
| 160 |
-
background-color: #f44336 !important;
|
| 161 |
-
color: white !important;
|
| 162 |
-
border-radius: 10px !important;
|
| 163 |
-
font-size: 18px !important;
|
| 164 |
-
font-weight: bold !important;
|
| 165 |
-
padding: 10px 20px !important;
|
| 166 |
-
font-family: 'Montserrat', sans-serif !important;
|
| 167 |
-
transition: background-color 0.3s ease !important;
|
| 168 |
-
}
|
| 169 |
-
.gr-button-secondary:hover {
|
| 170 |
-
background-color: #c62828 !important;
|
| 171 |
-
}
|
| 172 |
-
.gr-output {
|
| 173 |
-
background-color: #e0f7fa;
|
| 174 |
-
border: 2px solid #007acc;
|
| 175 |
-
border-radius: 10px;
|
| 176 |
-
padding: 15px;
|
| 177 |
-
font-size: 16px;
|
| 178 |
-
font-family: 'Roboto', sans-serif;
|
| 179 |
-
font-weight: bold;
|
| 180 |
-
color: #00796b;
|
| 181 |
-
}
|
| 182 |
-
"""
|
| 183 |
|
| 184 |
# Define the directory path
|
| 185 |
flagging_dir = "./flagged_data"
|
|
|
|
| 90 |
|
| 91 |
def gradio_interface(question, correct_answer):
|
| 92 |
final_answer, steps_solution,plotfile = majority_vote_with_steps(question, iterations)
|
| 93 |
+
return question, final_answer, steps_solution, correct_answer,
|
| 94 |
|
| 95 |
# Custom CSS for enhanced design (unchanged)
|
| 96 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
# Define the directory path
|
| 99 |
flagging_dir = "./flagged_data"
|
temp2.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
# import ctranslate2
|
| 3 |
+
# from transformers import AutoTokenizer
|
| 4 |
+
# from huggingface_hub import snapshot_download
|
| 5 |
+
from codeexecutor import get_majority_vote, type_check, postprocess_completion, draw_polynomial_plot
|
| 6 |
+
import re
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# Define the model and tokenizer loading
|
| 10 |
+
model_prompt = "Explain and solve the following mathematical problem step by step, showing all work: "
|
| 11 |
+
# tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
|
| 12 |
+
# model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
|
| 13 |
+
# generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
|
| 14 |
+
iterations = 4
|
| 15 |
+
|
| 16 |
+
# # Function to generate predictions using the model
|
| 17 |
+
# def get_prediction(question):
|
| 18 |
+
# input_text = model_prompt + question
|
| 19 |
+
# input_tokens = tokenizer.tokenize(input_text)
|
| 20 |
+
# results = generator.generate_batch(
|
| 21 |
+
# [input_tokens],
|
| 22 |
+
# max_length=512,
|
| 23 |
+
# sampling_temperature=0.7,
|
| 24 |
+
# sampling_topk=40,
|
| 25 |
+
# )
|
| 26 |
+
# output_tokens = results[0].sequences[0]
|
| 27 |
+
# predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
|
| 28 |
+
# return predicted_answer
|
| 29 |
+
|
| 30 |
+
def get_prediction(question):
|
| 31 |
+
return "Solve the following mathematical problem: what is sum of polynomial 2x+3 and 3x?\n### Solution: To solve the problem of summing the polynomials \\(2x + 3\\) and \\(3x\\), we can follow these steps:\n\n1. Define the polynomials.\n2. Sum the polynomials.\n3. Simplify the resulting polynomial expression.\n\nLet's implement this in Python using the sympy library.\n\n```python\nimport sympy as sp\n\n# Define the variable\nx = sp.symbols('x')\n\n# Define the polynomials\npoly1 = 2*x + 3\npoly2 = 3*x\n\n# Sum the polynomials\nsum_poly = poly1 + poly2\n\n# Simplify the resulting polynomial\nsimplified_sum_poly = sp.simplify(sum_poly)\n\n# Print the simplified polynomial\nprint(simplified_sum_poly)\n```\n```output\n5*x + 3\n```\nThe sum of the polynomials \\(2x + 3\\) and \\(3x\\) is \\(\\boxed{5x + 3}\\).\n"
|
| 32 |
+
|
| 33 |
+
# Function to parse the prediction to extract the answer and steps
|
| 34 |
+
def parse_prediction(prediction):
|
| 35 |
+
lines = prediction.strip().split('\n')
|
| 36 |
+
answer = None
|
| 37 |
+
steps = []
|
| 38 |
+
for line in lines:
|
| 39 |
+
# Check for "Answer:" or "answer:"
|
| 40 |
+
match = re.match(r'^\s*(?:Answer|answer)\s*[:=]\s*(.*)', line)
|
| 41 |
+
if match:
|
| 42 |
+
answer = match.group(1).strip()
|
| 43 |
+
else:
|
| 44 |
+
steps.append(line)
|
| 45 |
+
if answer is None:
|
| 46 |
+
# If no "Answer:" found, assume last line is the answer
|
| 47 |
+
answer = lines[-1].strip()
|
| 48 |
+
steps = lines
|
| 49 |
+
steps_text = '\n'.join(steps).strip()
|
| 50 |
+
return answer, steps_text
|
| 51 |
+
|
| 52 |
+
def extract_boxed_answer(text):
|
| 53 |
+
# Regular expression to find the content inside \\boxed{}
|
| 54 |
+
match = re.search(r'\\boxed\{(.*?)\}', text)
|
| 55 |
+
if match:
|
| 56 |
+
return match.group(1) # Return the content inside the \\boxed{}
|
| 57 |
+
return None
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# Function to perform majority voting and get steps
|
| 61 |
+
def majority_vote_with_steps(question, num_iterations=10):
|
| 62 |
+
all_predictions = []
|
| 63 |
+
all_answers = []
|
| 64 |
+
steps_list = []
|
| 65 |
+
|
| 66 |
+
for _ in range(num_iterations):
|
| 67 |
+
prediction = get_prediction(question)
|
| 68 |
+
answer, success = postprocess_completion(prediction, return_status=True, last_code_block=True)
|
| 69 |
+
|
| 70 |
+
if success:
|
| 71 |
+
all_predictions.append(prediction)
|
| 72 |
+
all_answers.append(answer)
|
| 73 |
+
steps_list.append(prediction)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
else:
|
| 77 |
+
answer, steps = parse_prediction(prediction)
|
| 78 |
+
all_predictions.append(prediction)
|
| 79 |
+
all_answers.append(answer)
|
| 80 |
+
steps_list.append(steps)
|
| 81 |
+
|
| 82 |
+
if success:
|
| 83 |
+
majority_voted_ans = get_majority_vote(all_answers)
|
| 84 |
+
expression=majority_voted_ans
|
| 85 |
+
print(type_check(expression))
|
| 86 |
+
if type_check(expression) == "Polynomial":
|
| 87 |
+
plotfile = draw_polynomial_plot(expression)
|
| 88 |
+
else:
|
| 89 |
+
plotfile = None
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
# Draw plot of polynomial
|
| 94 |
+
|
| 95 |
+
# Find the steps corresponding to the majority voted answer
|
| 96 |
+
for i, ans in enumerate(all_answers):
|
| 97 |
+
if ans == majority_voted_ans:
|
| 98 |
+
steps_solution = steps_list[i]
|
| 99 |
+
answer = parse_prediction(steps_solution)
|
| 100 |
+
break
|
| 101 |
+
else:
|
| 102 |
+
answer = majority_voted_ans
|
| 103 |
+
steps_solution = "No steps found"
|
| 104 |
+
|
| 105 |
+
return answer, steps_solution, plotfile
|
| 106 |
+
|
| 107 |
+
# Function to handle chat-like interaction
|
| 108 |
+
def chat_interface(history, question):
|
| 109 |
+
# Get the answer and steps from the majority voting method
|
| 110 |
+
final_answer, steps_solution, plotfile = majority_vote_with_steps(question, iterations)
|
| 111 |
+
|
| 112 |
+
# Append the question and answer to the chat history
|
| 113 |
+
history.append(("User", question))
|
| 114 |
+
history.append(("MathBot", f"Answer: {final_answer}\nSteps:\n{steps_solution}"))
|
| 115 |
+
|
| 116 |
+
return history, plotfile
|
| 117 |
+
|
| 118 |
+
# Gradio app setup with chat UI
|
| 119 |
+
interface = gr.Interface(
|
| 120 |
+
fn=chat_interface,
|
| 121 |
+
inputs=[
|
| 122 |
+
gr.Chatbot(label="Chat with MathBot", elem_id="chat_history"),
|
| 123 |
+
gr.Textbox(label="Your Question", placeholder="Ask a math question...", elem_id="math_question"),
|
| 124 |
+
],
|
| 125 |
+
outputs=[
|
| 126 |
+
gr.Chatbot(label="Chat History"), # Chat-like display of conversation
|
| 127 |
+
gr.Image(label="Polynomial Plot")
|
| 128 |
+
],
|
| 129 |
+
title="🔢 Math Question Solver - Chat Mode",
|
| 130 |
+
description="Chat with MathBot and ask any math-related question. It will explain the solution step by step and provide a majority-voted answer.",
|
| 131 |
+
allow_flagging="auto",
|
| 132 |
+
flagging_dir="./flagged_data",
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
if __name__ == "__main__":
|
| 136 |
+
interface.launch()
|
| 137 |
+
# history, plotfile=chat_interface(["hello"], ["what is the sum of 2x+3 and 3x"])
|
| 138 |
+
# print(history, plotfile)
|
temp3.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sympy as sp
|
| 2 |
+
|
| 3 |
+
# Define the variable
|
| 4 |
+
x = sp.symbols('x')
|
| 5 |
+
|
| 6 |
+
# Define the polynomials
|
| 7 |
+
poly1 = 2*x + 3
|
| 8 |
+
poly2 = 3*x
|
| 9 |
+
|
| 10 |
+
# Sum the polynomials
|
| 11 |
+
sum_poly = poly1 + poly2
|
| 12 |
+
|
| 13 |
+
# Simplify the resulting polynomial
|
| 14 |
+
simplified_sum_poly = sp.simplify(sum_poly)
|
| 15 |
+
|
| 16 |
+
# Print the simplified polynomial
|
| 17 |
+
print(simplified_sum_poly)
|
thankyou.png
ADDED
|