CVE-FactChecker / complete_diagnostic.py
NLPGenius's picture
Fix deployment issues: enhanced environment config, robust background ingestion, improved health checks, production-ready
aa69d4c
#!/usr/bin/env python3
"""
Comprehensive diagnostic tool to trace all components of the CVE Fact Checker system.
This will identify issues in data fetching, chunking, embeddings, vector store, and retrieval.
"""
import os
import sys
import time
import json
from datetime import datetime
from typing import Dict, Any, List, Optional
# Add the parent directory to Python path
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, current_dir)
class CVEFactCheckerDiagnostic:
def __init__(self):
self.results = {
"timestamp": datetime.now().isoformat(),
"environment": self._get_environment_info(),
"components": {}
}
def _get_environment_info(self) -> Dict[str, Any]:
"""Get environment information."""
return {
"python_version": sys.version,
"working_directory": os.getcwd(),
"environment_vars": {
"AUTO_INGEST": os.environ.get("AUTO_INGEST", "not_set"),
"LANGUAGE_FILTER": os.environ.get("LANGUAGE_FILTER", "not_set"),
"FIREBASE_API_KEY": "set" if os.environ.get("FIREBASE_API_KEY") else "not_set",
"HF_HOME": os.environ.get("HF_HOME", "not_set"),
"TRANSFORMERS_CACHE": os.environ.get("TRANSFORMERS_CACHE", "not_set"),
},
"file_system": {
"/tmp": os.path.exists("/tmp"),
"/data": os.path.exists("/data"),
"/app": os.path.exists("/app"),
}
}
def diagnose_firebase_connection(self) -> Dict[str, Any]:
"""Diagnose Firebase connection and data fetching."""
print("πŸ” Diagnosing Firebase Connection...")
result = {"status": "unknown", "errors": [], "data": {}}
try:
from cve_factchecker.firebase_loader import FirebaseNewsLoader, FirebaseConfig
# Test Firebase configuration
loader = FirebaseNewsLoader()
result["data"]["project_id"] = loader.project_id
result["data"]["api_key_length"] = len(loader.api_key) if loader.api_key else 0
# Test basic connectivity
print(" Testing basic Firebase connectivity...")
try:
# Test with minimal fetch
articles = loader.fetch_english_articles(limit=1)
result["data"]["connectivity"] = "success"
result["data"]["test_fetch_count"] = len(articles)
if articles:
sample = articles[0]
result["data"]["sample_article"] = {
"title": sample.title[:50] + "..." if len(sample.title) > 50 else sample.title,
"content_length": len(sample.content),
"has_url": bool(sample.url),
"language": getattr(sample, 'language', 'unknown')
}
except Exception as e:
result["errors"].append(f"Firebase connectivity failed: {e}")
result["data"]["connectivity"] = "failed"
# Test larger fetch
print(" Testing larger data fetch...")
try:
start_time = time.time()
articles = loader.fetch_english_articles(limit=10)
fetch_time = time.time() - start_time
result["data"]["larger_fetch"] = {
"count": len(articles),
"time_seconds": round(fetch_time, 2),
"avg_time_per_article": round(fetch_time / max(len(articles), 1), 3)
}
except Exception as e:
result["errors"].append(f"Larger fetch failed: {e}")
# Test collection accessibility
print(" Testing collection configurations...")
config = FirebaseConfig(
api_key="test", auth_domain="test", project_id="test",
storage_bucket="test", messaging_sender_id="test", app_id="test"
)
result["data"]["collections"] = {
"articles_collection": config.ARTICLES_COLLECTION,
"english_articles_collection": config.ENGLISH_ARTICLES_COLLECTION
}
result["status"] = "success" if not result["errors"] else "partial"
except ImportError as e:
result["errors"].append(f"Import error: {e}")
result["status"] = "failed"
except Exception as e:
result["errors"].append(f"Unexpected error: {e}")
result["status"] = "failed"
return result
def diagnose_chunking_and_embeddings(self) -> Dict[str, Any]:
"""Diagnose chunking strategy and embeddings generation."""
print("πŸ” Diagnosing Chunking and Embeddings...")
result = {"status": "unknown", "errors": [], "data": {}}
try:
from cve_factchecker.retriever import VectorNewsRetriever
from cve_factchecker.embeddings import build_embeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from cve_factchecker.firebase_loader import FirebaseNewsLoader
# Test embeddings
print(" Testing embeddings generation...")
try:
embeddings = build_embeddings()
test_text = "This is a test sentence for embedding generation."
start_time = time.time()
test_embedding = embeddings.embed_query(test_text)
embedding_time = time.time() - start_time
result["data"]["embeddings"] = {
"model_loaded": True,
"embedding_dimension": len(test_embedding),
"generation_time_seconds": round(embedding_time, 3),
"sample_embedding_preview": test_embedding[:5] # First 5 values
}
except Exception as e:
result["errors"].append(f"Embeddings failed: {e}")
result["data"]["embeddings"] = {"model_loaded": False}
# Test chunking strategy
print(" Testing chunking strategy...")
try:
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
# Get test content
loader = FirebaseNewsLoader()
articles = loader.fetch_english_articles(limit=1)
if articles:
test_article = articles[0]
chunks = splitter.split_text(test_article.content)
result["data"]["chunking"] = {
"strategy": "RecursiveCharacterTextSplitter",
"chunk_size": 1000,
"chunk_overlap": 200,
"test_article_length": len(test_article.content),
"chunks_created": len(chunks),
"chunk_lengths": [len(chunk) for chunk in chunks],
"avg_chunk_length": sum(len(chunk) for chunk in chunks) / len(chunks) if chunks else 0
}
else:
result["errors"].append("No test articles available for chunking test")
except Exception as e:
result["errors"].append(f"Chunking test failed: {e}")
result["status"] = "success" if not result["errors"] else "partial"
except ImportError as e:
result["errors"].append(f"Import error: {e}")
result["status"] = "failed"
except Exception as e:
result["errors"].append(f"Unexpected error: {e}")
result["status"] = "failed"
return result
def diagnose_vector_store(self) -> Dict[str, Any]:
"""Diagnose vector store operations and persistence."""
print("πŸ” Diagnosing Vector Store...")
result = {"status": "unknown", "errors": [], "data": {}}
try:
from cve_factchecker.retriever import VectorNewsRetriever
from cve_factchecker.firebase_loader import FirebaseNewsLoader
# Test vector store initialization
print(" Testing vector store initialization...")
try:
retriever = VectorNewsRetriever()
result["data"]["vector_store"] = {
"persist_directory": retriever.persist_directory,
"initialization": "success"
}
# Check current document count
try:
# Try to get document count
search_results = retriever.semantic_search("test", k=1)
result["data"]["current_documents"] = len(search_results) if search_results else 0
except:
result["data"]["current_documents"] = "unknown"
except Exception as e:
result["errors"].append(f"Vector store initialization failed: {e}")
result["data"]["vector_store"] = {"initialization": "failed"}
# Test complete ingestion process
print(" Testing complete ingestion process...")
try:
loader = FirebaseNewsLoader()
articles = loader.fetch_english_articles(limit=3)
if articles:
start_time = time.time()
retriever.store_articles_in_vector_db(articles, clear_first=True)
ingestion_time = time.time() - start_time
# Test search after ingestion
search_results = retriever.semantic_search("test", k=2)
result["data"]["ingestion_test"] = {
"articles_processed": len(articles),
"ingestion_time_seconds": round(ingestion_time, 3),
"searchable_chunks": len(search_results),
"ingestion_success": len(search_results) > 0
}
if search_results:
sample_result = search_results[0]
result["data"]["sample_search_result"] = {
"title": sample_result.get("title", "")[:50] + "...",
"content_length": len(sample_result.get("content", "")),
"has_url": bool(sample_result.get("url")),
"metadata_keys": list(sample_result.get("metadata", {}).keys())
}
else:
result["errors"].append("No articles available for ingestion test")
except Exception as e:
result["errors"].append(f"Ingestion test failed: {e}")
# Test persistence
print(" Testing vector store persistence...")
try:
persist_dir = result["data"]["vector_store"]["persist_directory"]
if persist_dir and os.path.exists(persist_dir):
files = os.listdir(persist_dir)
result["data"]["persistence"] = {
"directory_exists": True,
"files_count": len(files),
"files": files[:10] # First 10 files
}
else:
result["data"]["persistence"] = {
"directory_exists": False,
"using_memory_store": True
}
except Exception as e:
result["errors"].append(f"Persistence check failed: {e}")
result["status"] = "success" if not result["errors"] else "partial"
except ImportError as e:
result["errors"].append(f"Import error: {e}")
result["status"] = "failed"
except Exception as e:
result["errors"].append(f"Unexpected error: {e}")
result["status"] = "failed"
return result
def diagnose_fact_checking_pipeline(self) -> Dict[str, Any]:
"""Diagnose the complete fact-checking pipeline."""
print("πŸ” Diagnosing Fact-Checking Pipeline...")
result = {"status": "unknown", "errors": [], "data": {}}
try:
from cve_factchecker.orchestrator import FactCheckSystem
from cve_factchecker.config import load_openrouter_config
# Test system initialization
print(" Testing system initialization...")
try:
system = FactCheckSystem()
result["data"]["system_initialization"] = "success"
# Test configuration
config = load_openrouter_config()
result["data"]["config"] = {
"has_api_key": bool(config.api_key),
"model": config.model,
"max_tokens": config.max_tokens,
"temperature": config.temperature
}
except Exception as e:
result["errors"].append(f"System initialization failed: {e}")
result["data"]["system_initialization"] = "failed"
return result
# Test ingestion
print(" Testing Firebase ingestion...")
try:
start_time = time.time()
ingest_result = system.ingest_firebase(
collection="english_articles",
limit=5,
language="English"
)
ingest_time = time.time() - start_time
result["data"]["ingestion"] = {
"success": ingest_result.get("success", False),
"synced_count": ingest_result.get("synced", 0),
"time_seconds": round(ingest_time, 3),
"collection": ingest_result.get("collection"),
"error": ingest_result.get("error")
}
except Exception as e:
result["errors"].append(f"Ingestion test failed: {e}")
# Test fact-checking
print(" Testing fact-checking process...")
try:
test_claim = "Security researchers discovered a new vulnerability"
start_time = time.time()
fact_check_result = system.fact_check(test_claim)
fact_check_time = time.time() - start_time
result["data"]["fact_checking"] = {
"test_claim": test_claim,
"verdict": fact_check_result.get("verdict"),
"confidence": fact_check_result.get("confidence"),
"reasoning_length": len(fact_check_result.get("reasoning", "")),
"sources_used": fact_check_result.get("sources_used", 0),
"time_seconds": round(fact_check_time, 3),
"has_sources": len(fact_check_result.get("retrieved_articles", [])) > 0
}
except Exception as e:
result["errors"].append(f"Fact-checking test failed: {e}")
result["status"] = "success" if not result["errors"] else "partial"
except ImportError as e:
result["errors"].append(f"Import error: {e}")
result["status"] = "failed"
except Exception as e:
result["errors"].append(f"Unexpected error: {e}")
result["status"] = "failed"
return result
def diagnose_background_ingestion(self) -> Dict[str, Any]:
"""Diagnose background ingestion issues."""
print("πŸ” Diagnosing Background Ingestion...")
result = {"status": "unknown", "errors": [], "data": {}}
try:
# Check lock file issues
lock_file = "/tmp/ingest.lock" if os.name != 'nt' else "ingest.lock"
result["data"]["lock_file"] = {
"path": lock_file,
"exists": os.path.exists(lock_file),
"can_write_tmp": os.access("/tmp", os.W_OK) if os.path.exists("/tmp") else False
}
# Test lock mechanisms
if os.path.exists(lock_file):
try:
with open(lock_file, 'r') as f:
lock_content = f.read()
result["data"]["lock_content"] = lock_content
except:
result["data"]["lock_content"] = "unreadable"
# Test environment variables
result["data"]["environment"] = {
"AUTO_INGEST": os.environ.get("AUTO_INGEST", "not_set"),
"WERKZEUG_RUN_MAIN": os.environ.get("WERKZEUG_RUN_MAIN", "not_set"),
}
# Test threading
try:
import threading
result["data"]["threading"] = {
"active_threads": threading.active_count(),
"thread_names": [t.name for t in threading.enumerate()]
}
except Exception as e:
result["errors"].append(f"Threading check failed: {e}")
result["status"] = "success" if not result["errors"] else "partial"
except Exception as e:
result["errors"].append(f"Background ingestion diagnosis failed: {e}")
result["status"] = "failed"
return result
def run_complete_diagnosis(self) -> Dict[str, Any]:
"""Run complete system diagnosis."""
print("πŸ₯ CVE Fact Checker - Complete System Diagnosis")
print("=" * 80)
# Run all diagnostic components
self.results["components"]["firebase"] = self.diagnose_firebase_connection()
self.results["components"]["chunking_embeddings"] = self.diagnose_chunking_and_embeddings()
self.results["components"]["vector_store"] = self.diagnose_vector_store()
self.results["components"]["fact_checking"] = self.diagnose_fact_checking_pipeline()
self.results["components"]["background_ingestion"] = self.diagnose_background_ingestion()
# Calculate overall status
component_statuses = [comp["status"] for comp in self.results["components"].values()]
if all(status == "success" for status in component_statuses):
self.results["overall_status"] = "healthy"
elif any(status == "success" for status in component_statuses):
self.results["overall_status"] = "partial"
else:
self.results["overall_status"] = "critical"
return self.results
def print_summary(self):
"""Print a human-readable summary of the diagnosis."""
print("\nπŸ“‹ Diagnosis Summary")
print("=" * 50)
overall = self.results.get("overall_status", "unknown")
print(f"Overall Status: {overall.upper()}")
for component, data in self.results["components"].items():
status = data["status"]
errors = len(data["errors"])
icon = "βœ…" if status == "success" else "⚠️" if status == "partial" else "❌"
print(f"{icon} {component.replace('_', ' ').title()}: {status} ({errors} errors)")
# Print critical errors
all_errors = []
for component, data in self.results["components"].items():
for error in data["errors"]:
all_errors.append(f"{component}: {error}")
if all_errors:
print(f"\n🚨 Critical Issues Found:")
for error in all_errors[:10]: # Show first 10 errors
print(f" β€’ {error}")
if len(all_errors) > 10:
print(f" ... and {len(all_errors) - 10} more")
def save_report(self, filename: str = "diagnosis_report.json"):
"""Save detailed diagnosis report to file."""
try:
with open(filename, 'w') as f:
json.dump(self.results, f, indent=2, default=str)
print(f"πŸ“„ Detailed report saved to: {filename}")
except Exception as e:
print(f"❌ Could not save report: {e}")
def main():
"""Main diagnostic function."""
print("πŸ₯ CVE Fact Checker - Complete System Diagnostic")
print("=" * 80)
diagnostic = CVEFactCheckerDiagnostic()
results = diagnostic.run_complete_diagnosis()
diagnostic.print_summary()
diagnostic.save_report()
return results["overall_status"] in ["healthy", "partial"]
if __name__ == "__main__":
success = main()
sys.exit(0 if success else 1)