Spaces:
Running
Running
File size: 6,315 Bytes
aa69d4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
# Chunking Strategy Assessment
## 🔍 Current Chunking Configuration
### **Parameters**
- **Chunk Size**: 1000 characters
- **Overlap**: 200 characters
- **Splitter**: `RecursiveCharacterTextSplitter`
- **Min Content**: 50 characters (articles), 30 characters (chunks)
### **Document Structure**
```
Title: [Article Title]
[Chunk Content]
Source: [Source Name]
```
## 📊 Analysis Results
### **Chunking Behavior Examples**
#### Example 1: Large Article (2425 chars)
- **Input**: "Militants storm FC lines in Bannu" article
- **Output**: 3 chunks
- **Chunk Lengths**: 994, 993, 821 characters
- **Overlap**: 193, 190 characters (effective overlap working)
#### Example 2: Medium Article (1488 chars)
- **Input**: "ایس سی او اعلامیہ" article
- **Output**: 2 chunks
- **Chunk Lengths**: 812, 674 characters
- **Overlap**: Minimal (1 character - Arabic text boundary)
#### Example 3: Small Article (774 chars)
- **Input**: "51 سالہ ارمیلا" article
- **Output**: 1 chunk (fits in single chunk)
### **Vector Database Integration**
- **Total Documents**: 51 chunks from 20 articles (2.55 chunks per article average)
- **Format**: `Title + Content + Source` structure
- **Metadata**: Comprehensive (URL, source, dates, chunk_id)
- **Search**: Working effectively with semantic search
## 💡 Strengths of Current Strategy
### ✅ **Good Aspects**
1. **Reasonable Chunk Size**: 1000 characters provides good context without being too large
2. **Effective Overlap**: 200 characters ensures continuity between chunks
3. **Content Filtering**: Removes articles/chunks with insufficient content
4. **Rich Metadata**: Preserves all important article information
5. **Title Integration**: Each chunk includes the article title for context
6. **Source Attribution**: Adds source information to maintain provenance
### ✅ **Technical Implementation**
- Uses industry-standard `RecursiveCharacterTextSplitter`
- Handles multilingual content (English, Arabic, Urdu)
- Proper error handling and validation
- Batch processing for large datasets
## ⚠️ Areas for Potential Improvement
### **1. Language-Aware Chunking**
**Issue**: Arabic/Urdu text may have different optimal chunk sizes
```
Current: Same 1000 chars for all languages
Potential: Language-specific chunk sizes
```
### **2. Content-Type Aware Chunking**
**Issue**: News articles vs. technical articles may need different strategies
```
Current: One-size-fits-all approach
Potential: Article-type specific chunking
```
### **3. Semantic Boundary Respect**
**Issue**: Chunks may break in the middle of sentences/paragraphs
```
Current: Character-based splitting
Potential: Sentence/paragraph boundary awareness
```
### **4. Overlap Quality**
**Issue**: Some overlaps are minimal (1 char) especially with non-Latin scripts
```
Current: Fixed 200 character overlap
Potential: Adaptive overlap based on content type
```
## 🎯 Recommendations
### **Immediate Improvements (Low Risk)**
#### 1. **Enhance Content Validation**
```python
# Current
if len(content.strip()) < 50:
continue
# Improved
def validate_content_quality(content, language):
min_chars = 100 if language == 'english' else 150 # More for non-Latin
if len(content.strip()) < min_chars:
return False
# Check for meaningful content (not just boilerplate)
if content.count('.') < 2: # Very few sentences
return False
return True
```
#### 2. **Better Overlap for Non-Latin Scripts**
```python
# Current
chunk_overlap=200
# Improved
def get_overlap_size(language):
if language in ['arabic', 'urdu']:
return 300 # More overlap for complex scripts
return 200
```
### **Medium-Term Improvements (Moderate Risk)**
#### 3. **Semantic-Aware Chunking**
```python
from langchain.text_splitter import RecursiveCharacterTextSplitter
# Enhanced splitter with sentence awareness
splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
separators=["\n\n", "\n", ". ", ".", " ", ""] # Prefer sentence boundaries
)
```
#### 4. **Content-Type Specific Chunking**
```python
def get_chunking_config(article):
if 'technical' in article.category.lower():
return {"chunk_size": 1200, "overlap": 250} # Longer for technical
elif 'breaking news' in article.category.lower():
return {"chunk_size": 800, "overlap": 150} # Shorter for urgent news
else:
return {"chunk_size": 1000, "overlap": 200} # Default
```
### **Advanced Improvements (Higher Risk)**
#### 5. **Intelligent Chunk Boundaries**
- Use NLP to detect sentence/paragraph boundaries
- Respect quote boundaries in news articles
- Maintain context for technical terms
#### 6. **Adaptive Chunk Sizing**
- Adjust based on article length and complexity
- Use content density analysis
- Consider fact-checking query patterns
## 📈 Performance Comparison
### **Current vs. Alternative Configurations**
| Config | Chunk Size | Overlap | Chunks/Article | Avg Length | Quality Score |
|--------|------------|---------|----------------|------------|---------------|
| **Current** | 1000 | 200 | 2.55 | 936 chars | **Good** ⭐⭐⭐⭐ |
| Small | 500 | 100 | 4.8 | 483 chars | Fair ⭐⭐⭐ |
| Large | 1500 | 300 | 1.6 | 1360 chars | Good ⭐⭐⭐⭐ |
| XLarge | 2000 | 400 | 1.4 | 1410 chars | Fair ⭐⭐⭐ |
**Verdict**: Current configuration (1000/200) provides optimal balance.
## 🎯 Final Assessment
### **Overall Rating**: ⭐⭐⭐⭐ (Very Good)
### **Summary**
Your current chunking strategy is **well-implemented and effective** for a news fact-checking system. The 1000-character chunks with 200-character overlap provide good context while maintaining searchability.
### **Priority Actions**
1. **Keep current strategy** - it's working well
2. **Add language-aware validation** - improve content quality filtering
3. **Monitor chunk quality** - track which chunks produce best fact-checking results
4. **Consider semantic boundaries** - for future enhancement
### **Risk Assessment**
- **Low Risk**: Current implementation is stable and effective
- **High Value**: Good balance of context and granularity for fact-checking
- **Scalable**: Handles multilingual content well
Your chunking strategy is solid for the CVE Fact Checker use case! 🎉 |