File size: 10,306 Bytes
aa69d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#!/usr/bin/env python3
"""
Analyze the current chunking strategy by examining actual chunks created from English articles.
"""

import os
import sys

# Add the parent directory to Python path
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, current_dir)

def analyze_chunking_strategy():
    """Analyze how articles are being chunked."""
    print("πŸ” Chunking Strategy Analysis")
    print("=" * 60)
    
    try:
        from cve_factchecker.firebase_loader import FirebaseNewsLoader
        from cve_factchecker.retriever import VectorNewsRetriever
        from langchain.text_splitter import RecursiveCharacterTextSplitter
        
        # 1. Fetch a few English articles
        loader = FirebaseNewsLoader()
        print("πŸ“Š Fetching sample English articles...")
        articles = loader.fetch_english_articles(limit=3)
        
        if not articles:
            print("❌ No articles found")
            return
        
        print(f"βœ… Got {len(articles)} articles for analysis")
        
        # 2. Show article content before chunking
        print(f"\nπŸ“„ Article Content Analysis:")
        for i, article in enumerate(articles, 1):
            print(f"\n   Article {i}: {article.title[:80]}...")
            print(f"   Content Length: {len(article.content)} characters")
            print(f"   URL: {article.url}")
            print(f"   Content Preview: {article.content[:200]}...")
        
        # 3. Demonstrate chunking process
        print(f"\nπŸ”ͺ Chunking Process Analysis:")
        splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
        
        for i, article in enumerate(articles, 1):
            print(f"\n--- Article {i} Chunking ---")
            print(f"Title: {article.title}")
            print(f"Original Length: {len(article.content)} chars")
            
            # Create chunks
            chunks = splitter.split_text(article.content)
            print(f"Number of Chunks: {len(chunks)}")
            
            # Analyze each chunk
            for j, chunk in enumerate(chunks):
                print(f"\n  Chunk {j+1}:")
                print(f"    Length: {len(chunk)} characters")
                print(f"    Content: {chunk[:150]}...")
                if j < len(chunks) - 1:
                    # Check overlap with next chunk
                    next_chunk = chunks[j+1]
                    overlap = find_overlap(chunk, next_chunk)
                    print(f"    Overlap with next: {len(overlap)} chars")
                    if overlap:
                        print(f"    Overlap text: '{overlap[:50]}...'")
        
        # 4. Test the complete vector storage process
        print(f"\nπŸ—„οΈ Vector Storage Process:")
        retriever = VectorNewsRetriever()
        
        # Process one article to see the complete document creation
        test_article = articles[0]
        print(f"\nProcessing: {test_article.title[:50]}...")
        
        # Simulate the document creation process
        chunks = splitter.split_text(test_article.content)
        documents = []
        
        for i, chunk in enumerate(chunks):
            if len(chunk.strip()) < 30:
                continue
            
            # Show how page_content is constructed
            page_content = f"Title: {test_article.title}\n\n{chunk}"
            
            if test_article.source and test_article.source not in chunk:
                page_content += f"\n\nSource: {test_article.source}"
            
            metadata = {
                "url": test_article.url,
                "source": test_article.source,
                "published_date": test_article.published_date,
                "scraped_date": test_article.scraped_date,
                "id": test_article.article_id,
                "chunk_id": f"{test_article.article_id}_{i}",
                "title": test_article.title
            }
            
            documents.append({
                "page_content": page_content,
                "metadata": metadata
            })
        
        print(f"Created {len(documents)} document objects")
        
        # Show sample document structure
        if documents:
            print(f"\nπŸ“‹ Sample Document Structure:")
            sample_doc = documents[0]
            print(f"Page Content Length: {len(sample_doc['page_content'])} chars")
            print(f"Page Content Preview:")
            print(f"   {sample_doc['page_content'][:300]}...")
            print(f"\nMetadata:")
            for key, value in sample_doc['metadata'].items():
                print(f"   {key}: {value}")
        
        return True
        
    except Exception as e:
        print(f"❌ Analysis failed: {e}")
        import traceback
        traceback.print_exc()
        return False

def find_overlap(text1, text2):
    """Find overlapping text between two chunks."""
    # Look for overlap from the end of text1 to the beginning of text2
    max_overlap = min(200, len(text1), len(text2))  # Match chunk_overlap=200
    
    for i in range(max_overlap, 0, -1):
        if text1[-i:] == text2[:i]:
            return text1[-i:]
    return ""

def test_chunking_parameters():
    """Test different chunking parameters to understand the strategy."""
    print(f"\nπŸ§ͺ Chunking Parameters Test")
    print("=" * 60)
    
    try:
        from langchain.text_splitter import RecursiveCharacterTextSplitter
        from cve_factchecker.firebase_loader import FirebaseNewsLoader
        
        # Get a test article
        loader = FirebaseNewsLoader()
        articles = loader.fetch_english_articles(limit=1)
        
        if not articles:
            print("❌ No test article available")
            return
        
        test_content = articles[0].content
        print(f"Test Content Length: {len(test_content)} characters")
        
        # Test different chunk sizes
        test_configs = [
            {"chunk_size": 500, "chunk_overlap": 100},
            {"chunk_size": 1000, "chunk_overlap": 200},   # Current setting
            {"chunk_size": 1500, "chunk_overlap": 300},
            {"chunk_size": 2000, "chunk_overlap": 400},
        ]
        
        for config in test_configs:
            splitter = RecursiveCharacterTextSplitter(
                chunk_size=config["chunk_size"],
                chunk_overlap=config["chunk_overlap"]
            )
            
            chunks = splitter.split_text(test_content)
            
            print(f"\nπŸ“Š Config: chunk_size={config['chunk_size']}, overlap={config['chunk_overlap']}")
            print(f"   Chunks created: {len(chunks)}")
            
            if chunks:
                chunk_lengths = [len(chunk) for chunk in chunks]
                avg_length = sum(chunk_lengths) / len(chunk_lengths)
                print(f"   Average chunk length: {avg_length:.0f} chars")
                print(f"   Chunk length range: {min(chunk_lengths)} - {max(chunk_lengths)} chars")
                
                # Show first chunk
                print(f"   First chunk preview: {chunks[0][:100]}...")
                
                # Test overlap
                if len(chunks) > 1:
                    overlap = find_overlap(chunks[0], chunks[1])
                    print(f"   Actual overlap: {len(overlap)} chars")
        
        return True
        
    except Exception as e:
        print(f"❌ Parameter test failed: {e}")
        return False

def analyze_current_vector_db():
    """Analyze what's currently in the vector database."""
    print(f"\nπŸ—„οΈ Current Vector Database Analysis")
    print("=" * 60)
    
    try:
        from cve_factchecker.retriever import VectorNewsRetriever
        
        retriever = VectorNewsRetriever()
        
        # Try a few different search queries to see what chunks look like
        test_queries = [
            "security vulnerability",
            "cyberattack",
            "data breach",
            "malware",
            "terrorism"
        ]
        
        for query in test_queries:
            print(f"\nπŸ” Search: '{query}'")
            results = retriever.semantic_search(query, k=2)
            
            if results:
                for i, result in enumerate(results, 1):
                    print(f"\n   Result {i}:")
                    print(f"   Title: {result['title'][:60]}...")
                    print(f"   Content Length: {len(result['content'])} chars")
                    print(f"   Content Preview: {result['content'][:200]}...")
                    print(f"   URL: {result['url']}")
                    print(f"   Source: {result['source']}")
                    
                    # Check chunk metadata
                    metadata = result.get('metadata', {})
                    if 'chunk_id' in metadata:
                        print(f"   Chunk ID: {metadata['chunk_id']}")
            else:
                print(f"   No results found")
            
            if results:
                break  # Stop after first successful query
        
        return True
        
    except Exception as e:
        print(f"❌ Vector DB analysis failed: {e}")
        return False

def main():
    """Main analysis function."""
    print("πŸ“Š CVE Fact Checker - Chunking Strategy Analysis")
    print("=" * 80)
    
    # Run all analyses
    success1 = analyze_chunking_strategy()
    success2 = test_chunking_parameters() if success1 else False
    success3 = analyze_current_vector_db() if success1 else False
    
    print(f"\nπŸ“‹ Analysis Summary:")
    print(f"   Chunking Process: {'βœ… Analyzed' if success1 else '❌ Failed'}")
    print(f"   Parameter Testing: {'βœ… Completed' if success2 else '❌ Failed'}")
    print(f"   Vector DB Content: {'βœ… Analyzed' if success3 else '❌ Failed'}")
    
    if success1:
        print(f"\nπŸ’‘ Current Chunking Strategy:")
        print(f"   πŸ“ Chunk Size: 1000 characters")
        print(f"   πŸ”„ Overlap: 200 characters")
        print(f"   πŸ”ͺ Splitter: RecursiveCharacterTextSplitter")
        print(f"   πŸ“ Format: Title + Content + Source")
        print(f"   🏷️ Metadata: URL, source, dates, chunk_id")
    
    return success1

if __name__ == "__main__":
    success = main()
    sys.exit(0 if success else 1)