Spaces:
Sleeping
Sleeping
Add new features and fixes
Browse files- add new features like :
1. choose between multiple models
2. add optimized model for CPU using LCM method
3. add raw prompt input
4. add progress bar for generation
- fix some issues :
1. CPU/GPU compatibility and add force CPU mode for testing
2. fix About section and other documentation issues
- README.md +10 -18
- src/app.py +132 -24
- src/model/config.py +71 -3
- src/model/generator.py +150 -44
- src/utils/image_processor.py +81 -0
README.md
CHANGED
|
@@ -23,11 +23,19 @@ AI-powered meme generator using Stable Diffusion and LoRA fine-tuning.
|
|
| 23 |
|
| 24 |
## 🌟 Features
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
- Generate **custom Pepe memes** from text prompts
|
| 27 |
- Multiple **style presets** (happy, sad, smug, angry, etc.)
|
| 28 |
-
- **Add meme text overlays**
|
|
|
|
| 29 |
- Adjustable generation parameters (CFG, steps, seed, etc.)
|
| 30 |
-
- Batch generation and meme gallery system
|
|
|
|
| 31 |
|
| 32 |
---
|
| 33 |
|
|
@@ -54,22 +62,6 @@ pip install -r requirements.txt
|
|
| 54 |
streamlit run src/app.py
|
| 55 |
```
|
| 56 |
|
| 57 |
-
---
|
| 58 |
-
|
| 59 |
-
## 🚀 Deployment on Hugging Face Spaces
|
| 60 |
-
|
| 61 |
-
This app is optimized for deployment on Hugging Face Spaces with the following fixes:
|
| 62 |
-
|
| 63 |
-
- **CPU Compatibility**: Uses `torch.float32` on CPU deployments to avoid dtype errors
|
| 64 |
-
- **Memory Optimization**: Automatically enables attention and VAE slicing
|
| 65 |
-
- **Error Handling**: Proper exception handling for optional dependencies like xformers
|
| 66 |
-
- **Docker Support**: Updated Dockerfile with Python 3.11 and necessary system packages
|
| 67 |
-
|
| 68 |
-
### Deployment Fixes Applied:
|
| 69 |
-
- Fixed mixed dtype errors when running on CPU-only environments
|
| 70 |
-
- Removed autocast context that can cause tensor type mismatches
|
| 71 |
-
- Added proper device detection and dtype selection
|
| 72 |
-
- Enhanced error handling for optional GPU optimizations
|
| 73 |
|
| 74 |
---
|
| 75 |
|
|
|
|
| 23 |
|
| 24 |
## 🌟 Features
|
| 25 |
|
| 26 |
+
- **Multiple Model Support**: Switch between fine-tuned LoRA and base models
|
| 27 |
+
- Pepe Fine-tuned (LoRA) - Custom trained model
|
| 28 |
+
- Base SD 1.5 - Standard Stable Diffusion
|
| 29 |
+
- Dreamlike Photoreal 2.0 - Photorealistic style
|
| 30 |
+
- Openjourney v4 - Artistic Midjourney-style
|
| 31 |
+
- **Raw Prompt Mode**: Use exact prompts without automatic enhancements
|
| 32 |
- Generate **custom Pepe memes** from text prompts
|
| 33 |
- Multiple **style presets** (happy, sad, smug, angry, etc.)
|
| 34 |
+
- **Add meme text overlays** with automatic "MJ" signature
|
| 35 |
+
- **Real-time progress tracking** for each generation step
|
| 36 |
- Adjustable generation parameters (CFG, steps, seed, etc.)
|
| 37 |
+
- Batch generation and meme gallery system
|
| 38 |
+
- **GPU & CPU compatible** with automatic optimization
|
| 39 |
|
| 40 |
---
|
| 41 |
|
|
|
|
| 62 |
streamlit run src/app.py
|
| 63 |
```
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
---
|
| 67 |
|
src/app.py
CHANGED
|
@@ -41,12 +41,33 @@ def init_session_state():
|
|
| 41 |
st.session_state.generated_images = []
|
| 42 |
if 'generation_count' not in st.session_state:
|
| 43 |
st.session_state.generation_count = 0
|
|
|
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
@st.cache_resource
|
| 47 |
-
def load_generator():
|
| 48 |
-
"""Load and cache the generator"""
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
|
| 52 |
def get_example_prompts():
|
|
@@ -64,14 +85,41 @@ def main():
|
|
| 64 |
"""Main application"""
|
| 65 |
init_session_state()
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
# Header
|
| 68 |
st.title("🐸 Pepe the Frog Meme Generator")
|
| 69 |
st.markdown("Create custom Pepe memes using AI! Powered by Stable Diffusion.")
|
| 70 |
|
| 71 |
-
|
| 72 |
-
st.sidebar.header("⚙️ Settings")
|
| 73 |
|
| 74 |
# Style selection
|
|
|
|
| 75 |
style_options = {
|
| 76 |
"Default": "default",
|
| 77 |
"😊 Happy": "happy",
|
|
@@ -88,10 +136,28 @@ def main():
|
|
| 88 |
)
|
| 89 |
style = style_options[selected_style]
|
| 90 |
|
| 91 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
with st.sidebar.expander("🔧 Advanced Settings"):
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
use_seed = st.checkbox("Fixed Seed")
|
| 96 |
seed = st.number_input("Seed", 0, 999999, 42) if use_seed else None
|
| 97 |
|
|
@@ -133,7 +199,7 @@ def main():
|
|
| 133 |
if st.session_state.generated_images:
|
| 134 |
placeholder.image(
|
| 135 |
st.session_state.generated_images[-1],
|
| 136 |
-
|
| 137 |
)
|
| 138 |
else:
|
| 139 |
placeholder.info("Your meme will appear here...")
|
|
@@ -141,40 +207,58 @@ def main():
|
|
| 141 |
# Generate
|
| 142 |
if generate and prompt:
|
| 143 |
try:
|
| 144 |
-
generator = load_generator()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
|
|
|
| 148 |
|
| 149 |
for i in range(num_vars):
|
| 150 |
-
|
| 151 |
-
progress.progress((i + 1) / num_vars)
|
| 152 |
|
| 153 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
image = generator.generate(
|
| 155 |
prompt=prompt,
|
| 156 |
style=style,
|
| 157 |
num_inference_steps=steps,
|
| 158 |
guidance_scale=guidance,
|
| 159 |
-
seed=seed
|
|
|
|
|
|
|
| 160 |
)
|
| 161 |
|
| 162 |
# Add text if requested
|
| 163 |
if add_text and (top_text or bottom_text):
|
| 164 |
-
processor = ImageProcessor()
|
| 165 |
image = processor.add_meme_text(image, top_text, bottom_text)
|
| 166 |
|
|
|
|
|
|
|
|
|
|
| 167 |
st.session_state.generated_images.append(image)
|
| 168 |
st.session_state.generation_count += 1
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
-
progress
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
|
|
|
| 174 |
|
| 175 |
# Show result
|
| 176 |
if num_vars == 1:
|
| 177 |
-
placeholder.image(image,
|
| 178 |
|
| 179 |
# Download
|
| 180 |
buf = io.BytesIO()
|
|
@@ -190,7 +274,7 @@ def main():
|
|
| 190 |
cols = st.columns(min(num_vars, 2))
|
| 191 |
for idx, img in enumerate(st.session_state.generated_images[-num_vars:]):
|
| 192 |
with cols[idx % 2]:
|
| 193 |
-
st.image(img,
|
| 194 |
|
| 195 |
except Exception as e:
|
| 196 |
st.error(f"Error: {str(e)}")
|
|
@@ -205,7 +289,7 @@ def main():
|
|
| 205 |
cols = st.columns(4)
|
| 206 |
for idx, img in enumerate(reversed(st.session_state.generated_images[-8:])):
|
| 207 |
with cols[idx % 4]:
|
| 208 |
-
st.image(img,
|
| 209 |
|
| 210 |
# Footer
|
| 211 |
st.divider()
|
|
@@ -219,6 +303,30 @@ def main():
|
|
| 219 |
st.session_state.generated_images = []
|
| 220 |
st.session_state.generation_count = 0
|
| 221 |
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
|
| 224 |
if __name__ == "__main__":
|
|
|
|
| 41 |
st.session_state.generated_images = []
|
| 42 |
if 'generation_count' not in st.session_state:
|
| 43 |
st.session_state.generation_count = 0
|
| 44 |
+
if 'current_model' not in st.session_state:
|
| 45 |
+
st.session_state.current_model = None
|
| 46 |
|
| 47 |
|
| 48 |
@st.cache_resource
|
| 49 |
+
def load_generator(model_name: str = "Pepe Fine-tuned (LoRA)"):
|
| 50 |
+
"""Load and cache the generator based on selected model"""
|
| 51 |
+
config = ModelConfig()
|
| 52 |
+
model_config = config.AVAILABLE_MODELS[model_name]
|
| 53 |
+
|
| 54 |
+
# Update config with selected model settings
|
| 55 |
+
config.BASE_MODEL = model_config['base']
|
| 56 |
+
config.LORA_PATH = model_config.get('lora')
|
| 57 |
+
config.USE_LORA = model_config.get('use_lora', False)
|
| 58 |
+
config.TRIGGER_WORD = model_config.get('trigger_word', 'pepe the frog')
|
| 59 |
+
|
| 60 |
+
# LCM settings
|
| 61 |
+
config.USE_LCM = model_config.get('use_lcm', False)
|
| 62 |
+
config.LCM_LORA_PATH = model_config.get('lcm_lora')
|
| 63 |
+
|
| 64 |
+
# Log which model is being loaded
|
| 65 |
+
import logging
|
| 66 |
+
logger = logging.getLogger(__name__)
|
| 67 |
+
logger.info(f"Loading model: {model_name}")
|
| 68 |
+
logger.info(f"Base: {config.BASE_MODEL}, LoRA: {config.USE_LORA}, LCM: {config.USE_LCM}")
|
| 69 |
+
|
| 70 |
+
return PepeGenerator(config)
|
| 71 |
|
| 72 |
|
| 73 |
def get_example_prompts():
|
|
|
|
| 85 |
"""Main application"""
|
| 86 |
init_session_state()
|
| 87 |
|
| 88 |
+
# Sidebar (needs to be first to define selected_model)
|
| 89 |
+
st.sidebar.header("⚙️ Settings")
|
| 90 |
+
|
| 91 |
+
# Model selection
|
| 92 |
+
st.sidebar.subheader("🤖 Model Selection")
|
| 93 |
+
config = ModelConfig()
|
| 94 |
+
available_models = list(config.AVAILABLE_MODELS.keys())
|
| 95 |
+
selected_model = st.sidebar.selectbox(
|
| 96 |
+
"Choose Model",
|
| 97 |
+
available_models,
|
| 98 |
+
index=0,
|
| 99 |
+
help="Select which model to use for generation"
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Detect model change and auto-clear cache
|
| 103 |
+
if st.session_state.current_model is not None and st.session_state.current_model != selected_model:
|
| 104 |
+
st.cache_resource.clear()
|
| 105 |
+
st.sidebar.success(f"✅ Switched to: {selected_model}")
|
| 106 |
+
|
| 107 |
+
# Update current model in session state
|
| 108 |
+
st.session_state.current_model = selected_model
|
| 109 |
+
|
| 110 |
+
# Show LCM mode indicator if enabled
|
| 111 |
+
model_config = config.AVAILABLE_MODELS[selected_model]
|
| 112 |
+
if model_config.get('use_lcm', False):
|
| 113 |
+
st.sidebar.success("⚡ LCM Mode: 8x Faster! (6-8 steps optimal)")
|
| 114 |
+
|
| 115 |
# Header
|
| 116 |
st.title("🐸 Pepe the Frog Meme Generator")
|
| 117 |
st.markdown("Create custom Pepe memes using AI! Powered by Stable Diffusion.")
|
| 118 |
|
| 119 |
+
st.sidebar.divider()
|
|
|
|
| 120 |
|
| 121 |
# Style selection
|
| 122 |
+
st.sidebar.subheader("🎨 Style & Prompt")
|
| 123 |
style_options = {
|
| 124 |
"Default": "default",
|
| 125 |
"😊 Happy": "happy",
|
|
|
|
| 136 |
)
|
| 137 |
style = style_options[selected_style]
|
| 138 |
|
| 139 |
+
# Raw prompt mode
|
| 140 |
+
use_raw_prompt = st.sidebar.checkbox(
|
| 141 |
+
"Raw Prompt Mode",
|
| 142 |
+
help="Use your exact prompt without trigger words or style modifiers"
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
# Advanced settings - adjust defaults based on LCM mode
|
| 146 |
+
is_lcm_mode = model_config.get('use_lcm', False)
|
| 147 |
+
|
| 148 |
with st.sidebar.expander("🔧 Advanced Settings"):
|
| 149 |
+
if is_lcm_mode:
|
| 150 |
+
# LCM needs fewer steps and lower guidance
|
| 151 |
+
steps = st.slider("Steps", 4, 12, 6, 1,
|
| 152 |
+
help="⚡ LCM Mode: 4-8 steps optimal. Recommended: 6")
|
| 153 |
+
guidance = st.slider("Guidance Scale", 1.0, 2.5, 1.5, 0.1,
|
| 154 |
+
help="⚡ LCM Mode: Lower guidance (1.0-2.0). Recommended: 1.5")
|
| 155 |
+
else:
|
| 156 |
+
# Normal mode settings
|
| 157 |
+
steps = st.slider("Steps", 15, 50, 25, 5,
|
| 158 |
+
help="Fewer steps = faster generation. 20-25 recommended for CPU")
|
| 159 |
+
guidance = st.slider("Guidance Scale", 1.0, 20.0, 7.5, 0.5)
|
| 160 |
+
|
| 161 |
use_seed = st.checkbox("Fixed Seed")
|
| 162 |
seed = st.number_input("Seed", 0, 999999, 42) if use_seed else None
|
| 163 |
|
|
|
|
| 199 |
if st.session_state.generated_images:
|
| 200 |
placeholder.image(
|
| 201 |
st.session_state.generated_images[-1],
|
| 202 |
+
width='stretch'
|
| 203 |
)
|
| 204 |
else:
|
| 205 |
placeholder.info("Your meme will appear here...")
|
|
|
|
| 207 |
# Generate
|
| 208 |
if generate and prompt:
|
| 209 |
try:
|
| 210 |
+
generator = load_generator(selected_model)
|
| 211 |
+
processor = ImageProcessor()
|
| 212 |
+
|
| 213 |
+
# Overall progress for multiple images
|
| 214 |
+
overall_progress = st.progress(0)
|
| 215 |
+
overall_status = st.empty()
|
| 216 |
|
| 217 |
+
# Progress for current image generation steps
|
| 218 |
+
step_progress = st.progress(0)
|
| 219 |
+
step_status = st.empty()
|
| 220 |
|
| 221 |
for i in range(num_vars):
|
| 222 |
+
overall_status.text(f"Generating image {i+1}/{num_vars}...")
|
|
|
|
| 223 |
|
| 224 |
+
# Define callback for step-by-step progress
|
| 225 |
+
def progress_callback(current_step: int, total_steps: int):
|
| 226 |
+
step_progress.progress(current_step / total_steps)
|
| 227 |
+
step_status.text(f"Step {current_step}/{total_steps}")
|
| 228 |
+
|
| 229 |
+
# Generate with progress callback
|
| 230 |
image = generator.generate(
|
| 231 |
prompt=prompt,
|
| 232 |
style=style,
|
| 233 |
num_inference_steps=steps,
|
| 234 |
guidance_scale=guidance,
|
| 235 |
+
seed=seed,
|
| 236 |
+
callback=progress_callback,
|
| 237 |
+
raw_prompt=use_raw_prompt
|
| 238 |
)
|
| 239 |
|
| 240 |
# Add text if requested
|
| 241 |
if add_text and (top_text or bottom_text):
|
|
|
|
| 242 |
image = processor.add_meme_text(image, top_text, bottom_text)
|
| 243 |
|
| 244 |
+
# Always add MJ signature
|
| 245 |
+
image = processor.add_signature(image, signature="MJaheen", font_size=10, opacity=200)
|
| 246 |
+
|
| 247 |
st.session_state.generated_images.append(image)
|
| 248 |
st.session_state.generation_count += 1
|
| 249 |
+
|
| 250 |
+
# Update overall progress
|
| 251 |
+
overall_progress.progress((i + 1) / num_vars)
|
| 252 |
|
| 253 |
+
# Clear progress indicators
|
| 254 |
+
overall_progress.empty()
|
| 255 |
+
overall_status.empty()
|
| 256 |
+
step_progress.empty()
|
| 257 |
+
step_status.empty()
|
| 258 |
|
| 259 |
# Show result
|
| 260 |
if num_vars == 1:
|
| 261 |
+
placeholder.image(image, width='stretch')
|
| 262 |
|
| 263 |
# Download
|
| 264 |
buf = io.BytesIO()
|
|
|
|
| 274 |
cols = st.columns(min(num_vars, 2))
|
| 275 |
for idx, img in enumerate(st.session_state.generated_images[-num_vars:]):
|
| 276 |
with cols[idx % 2]:
|
| 277 |
+
st.image(img, width='stretch')
|
| 278 |
|
| 279 |
except Exception as e:
|
| 280 |
st.error(f"Error: {str(e)}")
|
|
|
|
| 289 |
cols = st.columns(4)
|
| 290 |
for idx, img in enumerate(reversed(st.session_state.generated_images[-8:])):
|
| 291 |
with cols[idx % 4]:
|
| 292 |
+
st.image(img, width='stretch')
|
| 293 |
|
| 294 |
# Footer
|
| 295 |
st.divider()
|
|
|
|
| 303 |
st.session_state.generated_images = []
|
| 304 |
st.session_state.generation_count = 0
|
| 305 |
st.rerun()
|
| 306 |
+
|
| 307 |
+
# Personal Information
|
| 308 |
+
st.divider()
|
| 309 |
+
st.markdown("### 👨💻 About the Engineer")
|
| 310 |
+
info_col1, info_col2 = st.columns(2)
|
| 311 |
+
|
| 312 |
+
with info_col1:
|
| 313 |
+
st.markdown("""
|
| 314 |
+
**Contact Information:**
|
| 315 |
+
- 📧 Email: [[email protected]](mailto:[email protected])
|
| 316 |
+
- 🔗 LinkedIn: [Mohamed Jaheen](https://www.linkedin.com/in/mohamedjaheen/)
|
| 317 |
+
""")
|
| 318 |
+
|
| 319 |
+
with info_col2:
|
| 320 |
+
st.markdown("""
|
| 321 |
+
**About this App:**
|
| 322 |
+
- supported by worldquant university
|
| 323 |
+
- Built with Streamlit & Stable Diffusion
|
| 324 |
+
- Fine-tuned Pepe model available
|
| 325 |
+
- Open source and customizable
|
| 326 |
+
- MIT licences
|
| 327 |
+
""")
|
| 328 |
+
|
| 329 |
+
st.caption("© 2025 - AI Meme Generator (Pepe the Frog) | Made with ❤️ using Python and MJ")
|
| 330 |
|
| 331 |
|
| 332 |
if __name__ == "__main__":
|
src/model/config.py
CHANGED
|
@@ -8,12 +8,79 @@ from typing import Optional
|
|
| 8 |
class ModelConfig:
|
| 9 |
"""Model configuration parameters"""
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
LORA_PATH: str = "MJaheen/Pepe_The_Frog_model_v1_lora"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Default generation parameters
|
| 16 |
-
DEFAULT_STEPS: int = 50
|
| 17 |
DEFAULT_GUIDANCE: float = 7.5
|
| 18 |
DEFAULT_WIDTH: int = 512
|
| 19 |
DEFAULT_HEIGHT: int = 512
|
|
@@ -27,6 +94,7 @@ class ModelConfig:
|
|
| 27 |
# Performance
|
| 28 |
ENABLE_ATTENTION_SLICING: bool = True
|
| 29 |
ENABLE_VAE_SLICING: bool = True
|
|
|
|
| 30 |
|
| 31 |
# Available styles
|
| 32 |
AVAILABLE_STYLES: tuple = (
|
|
|
|
| 8 |
class ModelConfig:
|
| 9 |
"""Model configuration parameters"""
|
| 10 |
|
| 11 |
+
# Available models
|
| 12 |
+
AVAILABLE_MODELS: dict = None
|
| 13 |
+
|
| 14 |
+
def __post_init__(self):
|
| 15 |
+
if self.AVAILABLE_MODELS is None:
|
| 16 |
+
self.AVAILABLE_MODELS = {
|
| 17 |
+
"Pepe Fine-tuned (LoRA)": {
|
| 18 |
+
"base": "runwayml/stable-diffusion-v1-5",
|
| 19 |
+
"lora": "MJaheen/Pepe_The_Frog_model_v1_lora",
|
| 20 |
+
"trigger_word": "pepe_style_frog",
|
| 21 |
+
"use_lora": True,
|
| 22 |
+
"use_lcm": False
|
| 23 |
+
},
|
| 24 |
+
"Pepe + LCM (FAST)": {
|
| 25 |
+
"base": "runwayml/stable-diffusion-v1-5",
|
| 26 |
+
"lora": "MJaheen/Pepe_The_Frog_model_v1_lora",
|
| 27 |
+
"lcm_lora": "latent-consistency/lcm-lora-sdv1-5",
|
| 28 |
+
"trigger_word": "pepe_style_frog",
|
| 29 |
+
"use_lora": True,
|
| 30 |
+
"use_lcm": True
|
| 31 |
+
},
|
| 32 |
+
"Base SD 1.5": {
|
| 33 |
+
"base": "runwayml/stable-diffusion-v1-5",
|
| 34 |
+
"lora": None,
|
| 35 |
+
"trigger_word": "pepe the frog",
|
| 36 |
+
"use_lora": False,
|
| 37 |
+
"use_lcm": False
|
| 38 |
+
},
|
| 39 |
+
"Dreamlike Photoreal 2.0": {
|
| 40 |
+
"base": "dreamlike-art/dreamlike-photoreal-2.0",
|
| 41 |
+
"lora": None,
|
| 42 |
+
"trigger_word": "pepe the frog",
|
| 43 |
+
"use_lora": False,
|
| 44 |
+
"use_lcm": False
|
| 45 |
+
},
|
| 46 |
+
"Openjourney v4": {
|
| 47 |
+
"base": "prompthero/openjourney-v4",
|
| 48 |
+
"lora": None,
|
| 49 |
+
"trigger_word": "pepe the frog",
|
| 50 |
+
"use_lora": False,
|
| 51 |
+
"use_lcm": False
|
| 52 |
+
},
|
| 53 |
+
"Tiny SD (Fast CPU)": {
|
| 54 |
+
"base": "segmind/tiny-sd",
|
| 55 |
+
"lora": None,
|
| 56 |
+
"trigger_word": "pepe the frog",
|
| 57 |
+
"use_lora": False,
|
| 58 |
+
"use_lcm": False
|
| 59 |
+
},
|
| 60 |
+
"Small SD (Balanced CPU)": {
|
| 61 |
+
"base": "segmind/small-sd",
|
| 62 |
+
"lora": None,
|
| 63 |
+
"trigger_word": "pepe the frog",
|
| 64 |
+
"use_lora": False,
|
| 65 |
+
"use_lcm": False
|
| 66 |
+
}
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
# Default model selection
|
| 70 |
+
SELECTED_MODEL: str = "Pepe Fine-tuned (LoRA)"
|
| 71 |
+
|
| 72 |
+
# Model paths (will be set based on selection)
|
| 73 |
+
BASE_MODEL: str = "runwayml/stable-diffusion-v1-5"
|
| 74 |
LORA_PATH: str = "MJaheen/Pepe_The_Frog_model_v1_lora"
|
| 75 |
+
USE_LORA: bool = True
|
| 76 |
+
TRIGGER_WORD: str = "pepe_style_frog"
|
| 77 |
+
|
| 78 |
+
# LCM settings
|
| 79 |
+
USE_LCM: bool = False
|
| 80 |
+
LCM_LORA_PATH: Optional[str] = None
|
| 81 |
|
| 82 |
# Default generation parameters
|
| 83 |
+
DEFAULT_STEPS: int = 25 # Reduced for faster CPU inference (was 50)
|
| 84 |
DEFAULT_GUIDANCE: float = 7.5
|
| 85 |
DEFAULT_WIDTH: int = 512
|
| 86 |
DEFAULT_HEIGHT: int = 512
|
|
|
|
| 94 |
# Performance
|
| 95 |
ENABLE_ATTENTION_SLICING: bool = True
|
| 96 |
ENABLE_VAE_SLICING: bool = True
|
| 97 |
+
FORCE_CPU: bool = True # Set to True to force CPU, False to use GPU if available
|
| 98 |
|
| 99 |
# Available styles
|
| 100 |
AVAILABLE_STYLES: tuple = (
|
src/model/generator.py
CHANGED
|
@@ -1,11 +1,12 @@
|
|
| 1 |
"""Pepe Meme Generator - Core generation logic"""
|
| 2 |
|
| 3 |
-
from typing import Optional, List
|
| 4 |
import torch
|
| 5 |
-
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
| 6 |
import streamlit as st
|
| 7 |
from PIL import Image
|
| 8 |
import logging
|
|
|
|
| 9 |
|
| 10 |
from .config import ModelConfig
|
| 11 |
|
|
@@ -14,40 +15,118 @@ logger = logging.getLogger(__name__)
|
|
| 14 |
|
| 15 |
class PepeGenerator:
|
| 16 |
"""Main generator class for creating Pepe memes"""
|
| 17 |
-
|
| 18 |
def __init__(self, config: Optional[ModelConfig] = None):
|
| 19 |
"""Initialize the generator"""
|
| 20 |
self.config = config or ModelConfig()
|
| 21 |
-
self.device = self._get_device()
|
| 22 |
-
self.pipe = self._load_model(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
logger.info(f"PepeGenerator initialized on {self.device}")
|
| 24 |
-
|
| 25 |
@staticmethod
|
| 26 |
@st.cache_resource
|
| 27 |
-
def _load_model(
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
# Determine appropriate dtype based on device
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
| 34 |
|
|
|
|
|
|
|
|
|
|
| 35 |
pipe = StableDiffusionPipeline.from_pretrained(
|
| 36 |
-
|
| 37 |
torch_dtype=torch_dtype,
|
| 38 |
safety_checker=None, # Disabled for meme generation - users must comply with SD license
|
| 39 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
#
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
# Enable memory optimizations
|
| 47 |
pipe.enable_attention_slicing()
|
| 48 |
pipe.enable_vae_slicing()
|
| 49 |
-
|
| 50 |
-
if device == "cuda":
|
| 51 |
pipe = pipe.to("cuda")
|
| 52 |
try:
|
| 53 |
pipe.enable_xformers_memory_efficient_attention()
|
|
@@ -56,16 +135,21 @@ class PepeGenerator:
|
|
| 56 |
except Exception as e:
|
| 57 |
logger.warning(f"Could not enable xformers: {e}")
|
| 58 |
else:
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
| 61 |
logger.info("Model loaded successfully")
|
| 62 |
return pipe
|
| 63 |
-
|
| 64 |
@staticmethod
|
| 65 |
-
def _get_device() -> str:
|
| 66 |
"""Determine the best available device"""
|
|
|
|
|
|
|
| 67 |
return "cuda" if torch.cuda.is_available() else "cpu"
|
| 68 |
-
|
| 69 |
def generate(
|
| 70 |
self,
|
| 71 |
prompt: str,
|
|
@@ -76,23 +160,42 @@ class PepeGenerator:
|
|
| 76 |
seed: Optional[int] = None,
|
| 77 |
width: int = 512,
|
| 78 |
height: int = 512,
|
|
|
|
|
|
|
| 79 |
) -> Image.Image:
|
| 80 |
-
"""Generate a single Pepe meme image
|
| 81 |
-
|
| 82 |
-
# Apply style preset
|
| 83 |
-
enhanced_prompt = self._apply_style_preset(prompt, style)
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
# Set default negative prompt
|
| 86 |
if negative_prompt is None:
|
| 87 |
negative_prompt = self.config.DEFAULT_NEGATIVE_PROMPT
|
| 88 |
-
|
| 89 |
# Set seed for reproducibility
|
| 90 |
generator = None
|
| 91 |
if seed is not None:
|
| 92 |
generator = torch.Generator(device=self.device).manual_seed(seed)
|
| 93 |
-
|
| 94 |
logger.info(f"Generating: {enhanced_prompt[:50]}...")
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
# Generate image (removed autocast for CPU compatibility)
|
| 97 |
output = self.pipe(
|
| 98 |
prompt=enhanced_prompt,
|
|
@@ -102,32 +205,32 @@ class PepeGenerator:
|
|
| 102 |
generator=generator,
|
| 103 |
width=width,
|
| 104 |
height=height,
|
|
|
|
| 105 |
)
|
| 106 |
-
|
| 107 |
return output.images[0]
|
| 108 |
-
|
| 109 |
def generate_batch(
|
| 110 |
self,
|
| 111 |
prompt: str,
|
| 112 |
num_images: int = 4,
|
| 113 |
**kwargs
|
| 114 |
) -> List[Image.Image]:
|
| 115 |
-
"""Generate multiple variations"""
|
| 116 |
images = []
|
| 117 |
for i in range(num_images):
|
| 118 |
if 'seed' not in kwargs:
|
| 119 |
kwargs['seed'] = torch.randint(0, 100000, (1,)).item()
|
| 120 |
-
|
| 121 |
image = self.generate(prompt, **kwargs)
|
| 122 |
images.append(image)
|
| 123 |
-
|
| 124 |
if 'seed' in kwargs:
|
| 125 |
del kwargs['seed']
|
| 126 |
-
|
| 127 |
return images
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
def _apply_style_preset(prompt: str, style: str) -> str:
|
| 131 |
"""Apply style-specific prompt enhancements"""
|
| 132 |
style_modifiers = {
|
| 133 |
"happy": "cheerful, smiling, joyful",
|
|
@@ -138,11 +241,14 @@ class PepeGenerator:
|
|
| 138 |
"surprised": "shocked, amazed, wide eyes",
|
| 139 |
}
|
| 140 |
|
| 141 |
-
|
|
|
|
| 142 |
|
|
|
|
|
|
|
| 143 |
if style in style_modifiers:
|
| 144 |
base = f"{base}, {style_modifiers[style]}"
|
| 145 |
-
|
| 146 |
base = f"{base}, high quality, detailed, meme art"
|
| 147 |
-
|
| 148 |
return base
|
|
|
|
| 1 |
"""Pepe Meme Generator - Core generation logic"""
|
| 2 |
|
| 3 |
+
from typing import Optional, List, Callable
|
| 4 |
import torch
|
| 5 |
+
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler, LCMScheduler
|
| 6 |
import streamlit as st
|
| 7 |
from PIL import Image
|
| 8 |
import logging
|
| 9 |
+
import os
|
| 10 |
|
| 11 |
from .config import ModelConfig
|
| 12 |
|
|
|
|
| 15 |
|
| 16 |
class PepeGenerator:
|
| 17 |
"""Main generator class for creating Pepe memes"""
|
| 18 |
+
|
| 19 |
def __init__(self, config: Optional[ModelConfig] = None):
|
| 20 |
"""Initialize the generator"""
|
| 21 |
self.config = config or ModelConfig()
|
| 22 |
+
self.device = self._get_device(self.config.FORCE_CPU)
|
| 23 |
+
self.pipe = self._load_model(
|
| 24 |
+
self.config.BASE_MODEL,
|
| 25 |
+
self.config.USE_LORA,
|
| 26 |
+
self.config.LORA_PATH,
|
| 27 |
+
self.config.FORCE_CPU,
|
| 28 |
+
self.config.USE_LCM,
|
| 29 |
+
self.config.LCM_LORA_PATH
|
| 30 |
+
)
|
| 31 |
logger.info(f"PepeGenerator initialized on {self.device}")
|
| 32 |
+
|
| 33 |
@staticmethod
|
| 34 |
@st.cache_resource
|
| 35 |
+
def _load_model(base_model: str, use_lora: bool, lora_path: Optional[str],
|
| 36 |
+
force_cpu: bool = False, use_lcm: bool = False,
|
| 37 |
+
lcm_lora_path: Optional[str] = None) -> StableDiffusionPipeline:
|
| 38 |
+
"""Load and cache the Stable Diffusion model with LoRA and LCM support"""
|
| 39 |
+
logger.info("="*60)
|
| 40 |
+
logger.info("LOADING NEW MODEL PIPELINE")
|
| 41 |
+
logger.info(f"Base Model: {base_model}")
|
| 42 |
+
logger.info(f"LoRA Enabled: {use_lora}")
|
| 43 |
+
if use_lora and lora_path:
|
| 44 |
+
logger.info(f"LoRA Path: {lora_path}")
|
| 45 |
+
logger.info(f"LCM Enabled: {use_lcm}")
|
| 46 |
+
if use_lcm and lcm_lora_path:
|
| 47 |
+
logger.info(f"LCM-LoRA Path: {lcm_lora_path}")
|
| 48 |
+
logger.info(f"Force CPU: {force_cpu}")
|
| 49 |
+
logger.info("="*60)
|
| 50 |
+
|
| 51 |
# Determine appropriate dtype based on device
|
| 52 |
+
if force_cpu:
|
| 53 |
+
device = "cpu"
|
| 54 |
+
logger.info("🔧 FORCED CPU MODE - GPU disabled for testing")
|
| 55 |
+
else:
|
| 56 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 57 |
|
| 58 |
+
torch_dtype = torch.float16 if (device == "cuda" and not force_cpu) else torch.float32
|
| 59 |
+
logger.info(f"Using device: {device}, dtype: {torch_dtype}")
|
| 60 |
+
|
| 61 |
pipe = StableDiffusionPipeline.from_pretrained(
|
| 62 |
+
base_model,
|
| 63 |
torch_dtype=torch_dtype,
|
| 64 |
safety_checker=None, # Disabled for meme generation - users must comply with SD license
|
| 65 |
)
|
| 66 |
+
|
| 67 |
+
# Load LoRA weights if configured
|
| 68 |
+
if use_lora and lora_path:
|
| 69 |
+
logger.info(f"Loading LoRA weights from: {lora_path}")
|
| 70 |
+
try:
|
| 71 |
+
# Check if it's a local path or Hugging Face model ID
|
| 72 |
+
# Explicitly name it "pepe" to avoid "default_0" naming
|
| 73 |
+
if os.path.exists(lora_path):
|
| 74 |
+
# Local path
|
| 75 |
+
pipe.load_lora_weights(lora_path, adapter_name="pepe")
|
| 76 |
+
logger.info("LoRA weights loaded successfully from local path")
|
| 77 |
+
elif "/" in lora_path:
|
| 78 |
+
# Hugging Face model ID (format: username/model_name)
|
| 79 |
+
pipe.load_lora_weights(lora_path, adapter_name="pepe")
|
| 80 |
+
logger.info(f"✅ LoRA weights loaded successfully from Hugging Face: {lora_path}")
|
| 81 |
+
else:
|
| 82 |
+
logger.warning(f"Invalid LoRA path format: {lora_path}")
|
| 83 |
+
|
| 84 |
+
# If not using LCM, set Pepe LoRA as the active adapter
|
| 85 |
+
if not use_lcm:
|
| 86 |
+
pipe.set_adapters(["pepe"])
|
| 87 |
+
logger.info("✅ Pepe LoRA active")
|
| 88 |
+
except Exception as e:
|
| 89 |
+
logger.error(f"Failed to load LoRA weights: {e}")
|
| 90 |
+
logger.info("Continuing without LoRA weights...")
|
| 91 |
|
| 92 |
+
# Load LCM-LoRA on top if configured (this enables fast inference!)
|
| 93 |
+
if use_lcm and lcm_lora_path:
|
| 94 |
+
logger.info(f"Loading LCM-LoRA from: {lcm_lora_path}")
|
| 95 |
+
try:
|
| 96 |
+
# Load LCM-LoRA as a separate adapter
|
| 97 |
+
pipe.load_lora_weights(lcm_lora_path, adapter_name="lcm")
|
| 98 |
+
logger.info("✅ LCM-LoRA loaded successfully")
|
| 99 |
+
|
| 100 |
+
# If we have both Pepe LoRA and LCM-LoRA, fuse them
|
| 101 |
+
if use_lora:
|
| 102 |
+
logger.info("Fusing Pepe LoRA + LCM-LoRA adapters...")
|
| 103 |
+
# Use the correct adapter names: "pepe" and "lcm"
|
| 104 |
+
pipe.set_adapters(["pepe", "lcm"], adapter_weights=[1.0, 1.0])
|
| 105 |
+
logger.info("✅ Both LoRAs fused successfully (pepe + lcm)")
|
| 106 |
+
else:
|
| 107 |
+
# Only LCM, set it as active
|
| 108 |
+
pipe.set_adapters(["lcm"])
|
| 109 |
+
logger.info("✅ LCM-LoRA active (solo mode)")
|
| 110 |
+
except Exception as e:
|
| 111 |
+
logger.error(f"Failed to load LCM-LoRA: {e}")
|
| 112 |
+
logger.info("Continuing without LCM...")
|
| 113 |
+
use_lcm = False
|
| 114 |
+
|
| 115 |
+
# Set appropriate scheduler based on LCM mode
|
| 116 |
+
if use_lcm:
|
| 117 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 118 |
+
logger.info("⚡ Using LCM Scheduler (few-step mode)")
|
| 119 |
+
else:
|
| 120 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
| 121 |
+
pipe.scheduler.config
|
| 122 |
+
)
|
| 123 |
+
logger.info("🔧 Using DPM Solver Scheduler (standard mode)")
|
| 124 |
+
|
| 125 |
# Enable memory optimizations
|
| 126 |
pipe.enable_attention_slicing()
|
| 127 |
pipe.enable_vae_slicing()
|
| 128 |
+
|
| 129 |
+
if device == "cuda" and not force_cpu:
|
| 130 |
pipe = pipe.to("cuda")
|
| 131 |
try:
|
| 132 |
pipe.enable_xformers_memory_efficient_attention()
|
|
|
|
| 135 |
except Exception as e:
|
| 136 |
logger.warning(f"Could not enable xformers: {e}")
|
| 137 |
else:
|
| 138 |
+
if force_cpu:
|
| 139 |
+
logger.info("Running on CPU - FORCED for testing")
|
| 140 |
+
else:
|
| 141 |
+
logger.info("Running on CPU - memory optimizations applied")
|
| 142 |
+
|
| 143 |
logger.info("Model loaded successfully")
|
| 144 |
return pipe
|
| 145 |
+
|
| 146 |
@staticmethod
|
| 147 |
+
def _get_device(force_cpu: bool = False) -> str:
|
| 148 |
"""Determine the best available device"""
|
| 149 |
+
if force_cpu:
|
| 150 |
+
return "cpu"
|
| 151 |
return "cuda" if torch.cuda.is_available() else "cpu"
|
| 152 |
+
|
| 153 |
def generate(
|
| 154 |
self,
|
| 155 |
prompt: str,
|
|
|
|
| 160 |
seed: Optional[int] = None,
|
| 161 |
width: int = 512,
|
| 162 |
height: int = 512,
|
| 163 |
+
callback: Optional[Callable[[int, int], None]] = None,
|
| 164 |
+
raw_prompt: bool = False,
|
| 165 |
) -> Image.Image:
|
| 166 |
+
"""Generate a single Pepe meme image
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
+
Args:
|
| 169 |
+
callback: Optional callback function (current_step, total_steps)
|
| 170 |
+
raw_prompt: If True, use prompt as-is without modifications
|
| 171 |
+
"""
|
| 172 |
+
|
| 173 |
+
# Apply style preset or use raw prompt
|
| 174 |
+
if raw_prompt:
|
| 175 |
+
enhanced_prompt = prompt
|
| 176 |
+
else:
|
| 177 |
+
enhanced_prompt = self._apply_style_preset(prompt, style)
|
| 178 |
+
|
| 179 |
# Set default negative prompt
|
| 180 |
if negative_prompt is None:
|
| 181 |
negative_prompt = self.config.DEFAULT_NEGATIVE_PROMPT
|
| 182 |
+
|
| 183 |
# Set seed for reproducibility
|
| 184 |
generator = None
|
| 185 |
if seed is not None:
|
| 186 |
generator = torch.Generator(device=self.device).manual_seed(seed)
|
| 187 |
+
|
| 188 |
logger.info(f"Generating: {enhanced_prompt[:50]}...")
|
| 189 |
+
logger.debug(f"Full prompt: {enhanced_prompt}")
|
| 190 |
+
logger.debug(f"Model config - Base: {self.config.BASE_MODEL}, LoRA: {self.config.USE_LORA}")
|
| 191 |
+
|
| 192 |
+
# Create callback wrapper if provided (using new API)
|
| 193 |
+
callback_on_step_end_fn = None
|
| 194 |
+
if callback:
|
| 195 |
+
def callback_on_step_end_fn(pipe, step, timestep, callback_kwargs):
|
| 196 |
+
callback(step + 1, num_inference_steps)
|
| 197 |
+
return callback_kwargs
|
| 198 |
+
|
| 199 |
# Generate image (removed autocast for CPU compatibility)
|
| 200 |
output = self.pipe(
|
| 201 |
prompt=enhanced_prompt,
|
|
|
|
| 205 |
generator=generator,
|
| 206 |
width=width,
|
| 207 |
height=height,
|
| 208 |
+
callback_on_step_end=callback_on_step_end_fn,
|
| 209 |
)
|
| 210 |
+
|
| 211 |
return output.images[0]
|
| 212 |
+
|
| 213 |
def generate_batch(
|
| 214 |
self,
|
| 215 |
prompt: str,
|
| 216 |
num_images: int = 4,
|
| 217 |
**kwargs
|
| 218 |
) -> List[Image.Image]:
|
| 219 |
+
"""Generate multiple variations with callback support"""
|
| 220 |
images = []
|
| 221 |
for i in range(num_images):
|
| 222 |
if 'seed' not in kwargs:
|
| 223 |
kwargs['seed'] = torch.randint(0, 100000, (1,)).item()
|
| 224 |
+
|
| 225 |
image = self.generate(prompt, **kwargs)
|
| 226 |
images.append(image)
|
| 227 |
+
|
| 228 |
if 'seed' in kwargs:
|
| 229 |
del kwargs['seed']
|
| 230 |
+
|
| 231 |
return images
|
| 232 |
+
|
| 233 |
+
def _apply_style_preset(self, prompt: str, style: str) -> str:
|
|
|
|
| 234 |
"""Apply style-specific prompt enhancements"""
|
| 235 |
style_modifiers = {
|
| 236 |
"happy": "cheerful, smiling, joyful",
|
|
|
|
| 241 |
"surprised": "shocked, amazed, wide eyes",
|
| 242 |
}
|
| 243 |
|
| 244 |
+
# Use trigger word from config
|
| 245 |
+
trigger_word = self.config.TRIGGER_WORD
|
| 246 |
|
| 247 |
+
base = f"{trigger_word}, {prompt}"
|
| 248 |
+
|
| 249 |
if style in style_modifiers:
|
| 250 |
base = f"{base}, {style_modifiers[style]}"
|
| 251 |
+
|
| 252 |
base = f"{base}, high quality, detailed, meme art"
|
| 253 |
+
|
| 254 |
return base
|
src/utils/image_processor.py
CHANGED
|
@@ -72,6 +72,87 @@ class ImageProcessor:
|
|
| 72 |
# Draw main text
|
| 73 |
draw.text(position, text, font=font, fill="white", anchor="mm")
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
@staticmethod
|
| 76 |
def enhance_image(
|
| 77 |
image: Image.Image,
|
|
|
|
| 72 |
# Draw main text
|
| 73 |
draw.text(position, text, font=font, fill="white", anchor="mm")
|
| 74 |
|
| 75 |
+
@staticmethod
|
| 76 |
+
def add_signature(
|
| 77 |
+
image: Image.Image,
|
| 78 |
+
signature: str = "MJ",
|
| 79 |
+
position: str = "bottom-right",
|
| 80 |
+
font_size: int = 20,
|
| 81 |
+
opacity: int = 180,
|
| 82 |
+
) -> Image.Image:
|
| 83 |
+
"""Add a small signature/watermark to the image
|
| 84 |
+
|
| 85 |
+
Args:
|
| 86 |
+
image: Input image
|
| 87 |
+
signature: Text to add as signature
|
| 88 |
+
position: Position of signature (bottom-right, bottom-left, top-right, top-left)
|
| 89 |
+
font_size: Size of the signature font
|
| 90 |
+
opacity: Opacity of the signature (0-255)
|
| 91 |
+
"""
|
| 92 |
+
img = image.copy()
|
| 93 |
+
|
| 94 |
+
# Create a transparent overlay
|
| 95 |
+
overlay = Image.new('RGBA', img.size, (255, 255, 255, 0))
|
| 96 |
+
draw = ImageDraw.Draw(overlay)
|
| 97 |
+
|
| 98 |
+
# Load font
|
| 99 |
+
try:
|
| 100 |
+
font = ImageFont.truetype("arial.ttf", font_size)
|
| 101 |
+
except:
|
| 102 |
+
try:
|
| 103 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", font_size)
|
| 104 |
+
except:
|
| 105 |
+
font = ImageFont.load_default()
|
| 106 |
+
logger.warning("Using default font for signature")
|
| 107 |
+
|
| 108 |
+
# Calculate text size and position
|
| 109 |
+
bbox = draw.textbbox((0, 0), signature, font=font)
|
| 110 |
+
text_width = bbox[2] - bbox[0]
|
| 111 |
+
text_height = bbox[3] - bbox[1]
|
| 112 |
+
|
| 113 |
+
padding = 10
|
| 114 |
+
|
| 115 |
+
if position == "bottom-right":
|
| 116 |
+
x = img.width - text_width - padding
|
| 117 |
+
y = img.height - text_height - padding
|
| 118 |
+
elif position == "bottom-left":
|
| 119 |
+
x = padding
|
| 120 |
+
y = img.height - text_height - padding
|
| 121 |
+
elif position == "top-right":
|
| 122 |
+
x = img.width - text_width - padding
|
| 123 |
+
y = padding
|
| 124 |
+
elif position == "top-left":
|
| 125 |
+
x = padding
|
| 126 |
+
y = padding
|
| 127 |
+
else:
|
| 128 |
+
x = img.width - text_width - padding
|
| 129 |
+
y = img.height - text_height - padding
|
| 130 |
+
|
| 131 |
+
# Draw signature with semi-transparent background
|
| 132 |
+
bg_padding = 5
|
| 133 |
+
draw.rectangle(
|
| 134 |
+
[x - bg_padding, y - bg_padding,
|
| 135 |
+
x + text_width + bg_padding, y + text_height + bg_padding],
|
| 136 |
+
fill=(0, 0, 0, opacity // 2)
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
# Draw text
|
| 140 |
+
draw.text((x, y), signature, font=font, fill=(255, 255, 255, opacity))
|
| 141 |
+
|
| 142 |
+
# Convert to RGB if needed and composite
|
| 143 |
+
if img.mode != 'RGBA':
|
| 144 |
+
img = img.convert('RGBA')
|
| 145 |
+
|
| 146 |
+
img = Image.alpha_composite(img, overlay)
|
| 147 |
+
|
| 148 |
+
# Convert back to RGB
|
| 149 |
+
if img.mode == 'RGBA':
|
| 150 |
+
rgb_img = Image.new('RGB', img.size, (255, 255, 255))
|
| 151 |
+
rgb_img.paste(img, mask=img.split()[3])
|
| 152 |
+
return rgb_img
|
| 153 |
+
|
| 154 |
+
return img
|
| 155 |
+
|
| 156 |
@staticmethod
|
| 157 |
def enhance_image(
|
| 158 |
image: Image.Image,
|