--- title: MCP NLP Analytics emoji: πŸ“Š colorFrom: indigo colorTo: blue sdk: static app_file: index.html pinned: false tags: - building-mcp-track-01 --- # Sentiment Evolution Tracker – MCP Monitoring Stack Sentiment Evolution Tracker is an enterprise-ready monitoring stack that runs as a Model Context Protocol (MCP) server. It combines local sentiment analytics, churn prediction, alerting, and reporting, and can operate standalone or alongside Claude Desktop as an intelligent assistant. ## Why This Exists Traditional "use Claude once and move on" workflows do not keep historical context, trigger alerts, or generate portfolio-level insights. Sentiment Evolution Tracker solves that by providing: - Automated trend detection (RISING / DECLINING / STABLE) - Churn probability scoring with configurable thresholds - Persistent customer histories in SQLite - Real-time alerts when risk exceeds 70% - ASCII and HTML visualizations for demos and stakeholders - Seven MCP tools that Claude (or any MCP-compatible LLM) can invoke on demand ## πŸŽ₯ Demo Video A demo video (3-4 minutes) showing live sentiment analysis, risk detection, and MCP integration with Claude: **[Watch on YouTube](https://youtu.be/h2tNu2KTPQk)** The video demonstrates: - Live sentiment analysis of customer conversations - Risk detection and churn prediction - MCP tool invocation via Claude Desktop - Real-time alerts and reporting --- ## How to Use ### Quick Start (5 minutes) 1. **Clone and install:** ```powershell git clone https://github.com/RubenReyesss/mcp-nlp-analytics.git cd mcp-nlp-server pip install -r requirements.txt python -m textblob.download_corpora python -m nltk.downloader punkt averaged_perceptron_tagger ``` 2. **Populate demo data:** ```powershell python init_db.py python tools/populate_demo_data.py ``` 3. **View dashboard:** ```powershell python tools/dashboard.py ``` 4. **Generate HTML report:** ```powershell python tools/generate_report.py # Opens data/reporte_clientes.html in your browser ``` 5. **Integrate with Claude Desktop:** - Edit `config/claude_desktop_config.json` with your actual path - Restart Claude Desktop - Start the MCP server: `python src/mcp_server.py` - Now Claude can access all 7 sentiment analysis tools --- ## Installation ```powershell cd mcp-nlp-server pip install -r requirements.txt python -m textblob.download_corpora python -m nltk.downloader punkt averaged_perceptron_tagger ``` ## Daily Operations - `python init_db.py` – rebuilds the database from scratch (reset option) - `python tools\populate_demo_data.py` – loads deterministic demo customers - `python tools\dashboard.py` – terminal dashboard (Ctrl+C to exit) - `python tools\generate_report.py` – creates `data/reporte_clientes.html` - `python src\mcp_server.py` – launch the MCP server for Claude Desktop ## MCP Tool Suite | Tool | Purpose | | --- | --- | | `analyze_sentiment_evolution` | Calculates sentiment trajectory for a set of messages | | `detect_risk_signals` | Flags phrases that correlate with churn or dissatisfaction | | `predict_next_action` | Forecasts CHURN / ESCALATION / RESOLUTION outcomes | | `get_customer_history` | Retrieves full timeline, sentiment, and alerts for a customer | | `get_high_risk_customers` | Returns customers whose churn risk is above a threshold | | `get_database_statistics` | Portfolio-level KPIs (customers, alerts, sentiment mean) | | `save_analysis` | Persists a custom analysis entry with full metadata | ## Data Model (SQLite) - `customer_profiles` – customer metadata, lifetime sentiment, churn risk, timestamps - `conversations` – every analysis entry, trend, predicted action, confidence - `risk_alerts` – generated alerts with severity, notes, and resolution state Database files live in `data/sentiment_analysis.db`; scripts automatically create the directory if needed. ## Claude Desktop Integration `config/claude_desktop_config.json` registers the server: ```json { "mcpServers": { "sentiment-tracker": { "command": "python", "args": ["src/mcp_server.py"], "cwd": "C:/Users/Ruben Reyes/Desktop/MCP_1stHF/mcp-nlp-server" } } } ``` Restart Claude Desktop after editing the file. Once connected, the seven tools above appear automatically and can be invoked using natural language prompts. ## Documentation Map - `docs/QUICK_START.md` – five-minute functional checklist - `docs/ARCHITECTURE.md` – diagrams, module responsibilities, data flow - `docs/HOW_TO_SAVE_ANALYSIS.md` – practical guide for the `save_analysis` tool - `docs/EXECUTIVE_SUMMARY.md` – executive briefing for stakeholders - `docs/CHECKLIST_FINAL.md` – submission readiness checklist ## Tech Stack - Python 3.10+ - MCP SDK 0.1+ - SQLite (standard library) - TextBlob 0.17.x + NLTK 3.8.x - Chart.js for optional HTML visualizations ## Status - βœ… Production-style folder layout - βœ… Deterministic demo dataset for the hackathon video - βœ… Comprehensive English documentation - βœ… Tests for the `save_analysis` workflow (`tests/test_save_analysis.py`) Run `python tools\dashboard.py` or open the generated HTML report to verify data before your demo, then start the MCP server and launch Claude Desktop to show the agentic workflow in real time. --- ## Team | Role | Contributor | GitHub | |------|-------------|--------| | **Developer** | RubenReyesss | [@RubenReyesss](https://github.com/RubenReyesss) | --- ## Track This project is submitted to **Track 1: Building MCPs** (`building-mcp-track-01`). It demonstrates a production-ready MCP server that extends Claude's capabilities with persistent analytics, risk prediction, and alertingβ€”solving the limitation that Claude lacks memory, database writes, and automated monitoring. --- ## πŸ“± Social Media Post **Announcement on LinkedIn:** [Read the full post on LinkedIn](https://www.linkedin.com/posts/rubenreyesparra_mcp-nlp-analytics-a-hugging-face-space-activity-7400976539959390208-SG3Q?utm_source=share&utm_medium=member_desktop&rcm=ACoAAFIWAmYBYY2kpr1rhopcOJoKJgl2HvUdM-8) Featured in: MCP 1st Birthday Hackathon --- ## Resources - **GitHub Repository:** https://github.com/RubenReyesss/mcp-nlp-analytics - **Hugging Face Space:** https://huggingface.co/spaces/MCP-1st-Birthday/mcp-nlp-analytics - **Demo Video:** https://youtu.be/h2tNu2KTPQk - **LinkedIn Post:** https://www.linkedin.com/posts/rubenreyesparra_mcp-nlp-analytics-a-hugging-face-space-activity-7400976539959390208-SG3Q --- Made with ❀️ for the Anthropic MCP 1st Birthday Hackathon