File size: 8,990 Bytes
f120be8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""
Sentiment Analysis Module
Analyzes emotional tone and sentiment evolution in messages.
"""

from textblob import TextBlob
from typing import List, Dict, Any
import re
from datetime import datetime


class SentimentAnalyzer:
    """Analyzes sentiment evolution across messages."""
    
    def __init__(self):
        """Initialize sentiment analyzer."""
        # Extended keyword lists with Spanish and English
        self.positive_words = {
            'love', 'excellent', 'amazing', 'fantastic', 'wonderful', 'great', 'good',
            'perfect', 'best', 'awesome', 'brilliant', 'outstanding', 'superb', 'trust',
            'confident', 'happy', 'thrilled', 'delighted', 'impressed', 'satisfied',
            'encanta', 'excelente', 'perfecto', 'increible', 'genial', 'bueno', 'maravilloso',
            'fantastico', 'sobresaliente', 'impresionado', 'satisfecho', 'love', 'adoro',
            'me encanta', 'fantástico', 'fabuloso', 'me gusta', 'bien', 'obra'
        }
        
        self.negative_words = {
            'hate', 'terrible', 'awful', 'horrible', 'bad', 'poor', 'worst',
            'disappointed', 'frustrated', 'angry', 'annoyed', 'upset', 'problem',
            'issue', 'bug', 'slow', 'expensive', 'difficult', 'fail', 'cancel',
            'doubt', 'concern', 'worried', 'unsure', 'alternative', 'competitor',
            'odio', 'terrible', 'horrible', 'malo', 'peor', 'problema', 'bugs',
            'caro', 'lento', 'difícil', 'fracaso', 'cancelar', 'competencia',
            'competidor', 'preocupacion', 'inquietud', 'alternativa', 'dudoso',
            'cambiar', 'adios', 'adiós', 'otros developers', 'más barato',
            'renunciar', 'renuncia', 'renuncie', 'partir', 'irme', 'me voy',
            'dejar', 'abandonar', 'salir', 'terminar', 'fin', 'otro trabajo',
            'mejor oferta', 'buscar', 'explorar', 'mejores', 'mejores roles'
        }
    
    def analyze_evolution(self, messages: List[Dict[str, Any]]) -> Dict[str, Any]:
        """
        Analyze how sentiment evolves across messages.
        
        Args:
            messages: List of {'timestamp': str, 'text': str, 'sender': str}
        
        Returns:
            Dictionary with sentiment evolution analysis
        """
        if not messages:
            return self._empty_analysis()
        
        # Analyze each message
        timeline = []
        sentiments = []
        
        for i, msg in enumerate(messages):
            # Handle both strings and dicts
            if isinstance(msg, dict):
                text = msg.get('text', '')
                timestamp = msg.get('timestamp', f'Message {i+1}')
            elif isinstance(msg, str):
                text = msg
                timestamp = f'Message {i+1}'
            else:
                text = str(msg)
                timestamp = f'Message {i+1}'
            
            sentiment_score = self._calculate_sentiment(text)
            sentiments.append(sentiment_score)
            
            timeline.append({
                'timestamp': timestamp,
                'text': text[:100] + '...' if len(text) > 100 else text,
                'sentiment_score': round(sentiment_score, 2),
                'sentiment_state': self._sentiment_state(sentiment_score),
                'message_index': i + 1
            })
        
        # Calculate trend
        trend = self._calculate_trend(sentiments)
        turning_points = self._find_turning_points(sentiments, timeline)
        overall_change = sentiments[-1] - sentiments[0] if sentiments else 0
        
        # Generate interpretation
        interpretation = self._generate_interpretation(
            sentiments, trend, turning_points
        )
        
        return {
            'timeline': timeline,
            'current_sentiment': round(sentiments[-1], 2) if sentiments else 0,
            'initial_sentiment': round(sentiments[0], 2) if sentiments else 0,
            'trend': trend,
            'turning_points': turning_points,
            'overall_change': round(overall_change, 2),
            'interpretation': interpretation,
            'message_count': len(messages)
        }
    
    def _calculate_sentiment(self, text: str) -> float:
        """
        Calculate sentiment score from 0-100.
        0 = very negative, 50 = neutral, 100 = very positive
        Uses keyword matching primarily, TextBlob for fine-tuning.
        """
        if not text:
            return 50.0
        
        text_lower = text.lower()
        
        # Primary: Count positive and negative keywords
        positive_count = sum(1 for word in self.positive_words if word in text_lower)
        negative_count = sum(1 for word in self.negative_words if word in text_lower)
        
        # Base score from keywords
        keyword_score = 50 + (positive_count * 10) - (negative_count * 10)
        
        # Use TextBlob for fine-tuning
        blob = TextBlob(text)
        polarity = blob.sentiment.polarity  # -1 to 1
        textblob_score = (polarity + 1) * 50
        
        # Combine: 70% keywords, 30% TextBlob
        # Keywords are more reliable for detecting sentiment in conversations
        final_score = (keyword_score * 0.7) + (textblob_score * 0.3)
        
        # Ensure score is in valid range
        return min(100, max(0, final_score))
    
    def _sentiment_state(self, score: float) -> str:
        """Classify sentiment into states."""
        if score >= 80:
            return "EXTREMELY_POSITIVE"
        elif score >= 60:
            return "POSITIVE"
        elif score >= 40:
            return "NEUTRAL"
        elif score >= 20:
            return "NEGATIVE"
        else:
            return "EXTREMELY_NEGATIVE"
    
    def _calculate_trend(self, sentiments: List[float]) -> str:
        """Determine overall trend."""
        if len(sentiments) < 2:
            return "insufficient_data"
        
        # Calculate slope
        first_half = sum(sentiments[:len(sentiments)//2]) / max(1, len(sentiments)//2)
        second_half = sum(sentiments[len(sentiments)//2:]) / max(1, len(sentiments) - len(sentiments)//2)
        
        diff = second_half - first_half
        
        if diff > 10:
            return "IMPROVING"
        elif diff < -10:
            return "DECLINING"
        else:
            return "STABLE"
    
    def _find_turning_points(self, sentiments: List[float], timeline: List[Dict]) -> List[Dict]:
        """Find significant sentiment changes."""
        turning_points = []
        
        for i in range(1, len(sentiments)):
            change = abs(sentiments[i] - sentiments[i-1])
            
            # Significant change: > 20 points
            if change > 20:
                turning_points.append({
                    'index': i,
                    'timestamp': timeline[i]['timestamp'],
                    'from_state': self._sentiment_state(sentiments[i-1]),
                    'to_state': self._sentiment_state(sentiments[i]),
                    'change_magnitude': round(change, 2),
                    'severity': 'CRITICAL' if change > 40 else 'HIGH' if change > 30 else 'MEDIUM'
                })
        
        return turning_points
    
    def _generate_interpretation(self, sentiments: List[float], trend: str, 
                                turning_points: List[Dict]) -> str:
        """Generate human-readable interpretation."""
        if not sentiments:
            return "No messages to analyze."
        
        current = sentiments[-1]
        initial = sentiments[0]
        
        # Base interpretation
        if trend == "DECLINING":
            base = f"Sentiment is DECLINING overall (from {initial:.0f} to {current:.0f})"
        elif trend == "IMPROVING":
            base = f"Sentiment is IMPROVING overall (from {initial:.0f} to {current:.0f})"
        else:
            base = f"Sentiment is STABLE (around {current:.0f})"
        
        # Add turning point info
        if turning_points:
            critical_points = [p for p in turning_points if p['severity'] == 'CRITICAL']
            if critical_points:
                base += f". WARNING: {len(critical_points)} critical sentiment shift(s) detected."
        
        # Final assessment
        if current < 30:
            base += " RISK LEVEL: CRITICAL - Immediate intervention recommended."
        elif current < 50:
            base += " RISK LEVEL: HIGH - Attention needed soon."
        elif current > 70:
            base += " Status: POSITIVE - No immediate action needed."
        
        return base
    
    def _empty_analysis(self) -> Dict[str, Any]:
        """Return empty analysis structure."""
        return {
            'timeline': [],
            'current_sentiment': 0,
            'initial_sentiment': 0,
            'trend': 'unknown',
            'turning_points': [],
            'overall_change': 0,
            'interpretation': 'No data provided',
            'message_count': 0
        }