Spaces:
Running
Running
File size: 23,180 Bytes
34f1a7a 040fd52 34f1a7a 010ba8f 34f1a7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 |
# TraceMind-AI - MCP Integration Guide
This document explains how TraceMind-AI integrates with MCP servers to provide AI-powered agent evaluation.
## Table of Contents
- [Overview](#overview)
- [Dual MCP Integration](#dual-mcp-integration)
- [Architecture](#architecture)
- [MCP Client Implementation](#mcp-client-implementation)
- [Agent Framework Integration](#agent-framework-integration)
- [MCP Tools Usage](#mcp-tools-usage)
- [Development Guide](#development-guide)
---
## Overview
TraceMind-AI demonstrates **enterprise MCP client usage** as part of the **Track 2: MCP in Action** submission. It showcases two distinct patterns of MCP integration:
1. **Direct MCP Client**: Python-based client connecting to remote MCP server via SSE transport
2. **Autonomous Agent**: `smolagents`-based agent with access to MCP tools for multi-step reasoning
Both patterns consume the same MCP server ([TraceMind-mcp-server](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server)) to provide AI-powered analysis of agent evaluation data.
---
## Dual MCP Integration
### Pattern 1: Direct MCP Client Integration
**Where**: Leaderboard insights, cost estimation dialogs, trace debugging
**How it works**:
```python
# TraceMind-AI calls MCP server directly
mcp_client = get_sync_mcp_client()
insights = mcp_client.analyze_leaderboard(
metric_focus="overall",
time_range="last_week",
top_n=5
)
# Display insights in UI
```
**Use cases**:
- Generate leaderboard insights when user clicks "Load Leaderboard"
- Estimate costs when user clicks "Estimate Cost" in New Evaluation form
- Debug traces when user asks questions in trace visualization
**Advantages**:
- Direct, fast execution
- Synchronous API (easy to integrate with Gradio)
- Predictable, structured responses
---
### Pattern 2: Autonomous Agent with MCP Tools
**Where**: Agent Chat tab
**How it works**:
```python
# smolagents agent discovers and uses MCP tools autonomously
from smolagents import ToolCallingAgent, MCPClient
# Agent initialized with MCP client
agent = ToolCallingAgent(
tools=[], # Tools loaded from MCP server
model=model_client,
mcp_client=MCPClient(mcp_server_url)
)
# User asks question
result = agent.run("What are the top 3 models and their costs?")
# Agent plans:
# 1. Call get_top_performers MCP tool
# 2. Extract costs from results
# 3. Format and present to user
```
**Use cases**:
- Answer complex questions requiring multi-step analysis
- Compare models across multiple dimensions
- Plan evaluation strategies with cost estimates
- Provide recommendations based on leaderboard data
**Advantages**:
- Natural language interface
- Multi-step reasoning
- Autonomous tool selection
- Context-aware responses
---
## Architecture
### System Overview
```
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β TraceMind-AI (Gradio App) - Track 2 β
β β
β βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
β β UI Layer (Gradio) β β
β β - Leaderboard tab β β
β β - Agent Chat tab β β
β β - New Evaluation tab β β
β β - Trace Visualization tab β β
β ββββββββββββββ¬ββββββββββββββββββββββββββββββ¬βββββββββββββββ β
β β β β
β βββββββββββββββββββββββββ ββββββββββββββββββββββββββββ β
β β Direct MCP Client β β Autonomous Agent β β
β β (sync_wrapper.py) β β (smolagents) β β
β β β β β β
β β - Synchronous API β β - Multi-step reasoning β β
β β - Tool calling β β - Tool discovery β β
β β - Error handling β β - Context management β β
β βββββββββββββ¬ββββββββββββ βββββββββββββββ¬βββββββββββββ β
β βββββββββββββββββββ¬ββββββββββββββ β
β β β
β MCP Protocol β
β (SSE Transport) β
ββββββββββββββββββββββββββββββββββ¬βββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β TraceMind MCP Server - Track 1 β
β https://huggingface.co/spaces/MCP-1st-Birthday/ β
β TraceMind-mcp-server β
β β
β 11 AI-Powered Tools: β
β - analyze_leaderboard β
β - debug_trace β
β - estimate_cost β
β - compare_runs β
β - analyze_results β
β - get_top_performers β
β - get_leaderboard_summary β
β - get_dataset β
β - generate_synthetic_dataset β
β - push_dataset_to_hub β
β - generate_prompt_template β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
---
## MCP Client Implementation
### File Structure
```
TraceMind-AI/
βββ mcp_client/
β βββ __init__.py
β βββ client.py # Async MCP client
β βββ sync_wrapper.py # Synchronous wrapper for Gradio
βββ agent/
β βββ __init__.py
β βββ smolagents_setup.py # Agent with MCP integration
βββ app.py # Main Gradio app
```
### Async MCP Client (`client.py`)
```python
from mcp import ClientSession, StdioServerParameters
import mcp.types as types
class TraceMindMCPClient:
"""Async MCP client for TraceMind MCP Server"""
def __init__(self, mcp_server_url: str):
self.mcp_server_url = mcp_server_url
self.session = None
async def connect(self):
"""Establish connection to MCP server via SSE"""
# For HTTP-based MCP servers (HuggingFace Spaces)
self.session = ClientSession(
ServerParameters(
url=self.mcp_server_url,
transport="sse"
)
)
await self.session.__aenter__()
# List available tools
tools_result = await self.session.list_tools()
self.available_tools = {tool.name: tool for tool in tools_result.tools}
print(f"Connected to MCP server. Available tools: {list(self.available_tools.keys())}")
async def call_tool(self, tool_name: str, arguments: dict) -> str:
"""Call an MCP tool with given arguments"""
if not self.session:
raise RuntimeError("MCP client not connected. Call connect() first.")
if tool_name not in self.available_tools:
raise ValueError(f"Tool '{tool_name}' not available. Available: {list(self.available_tools.keys())}")
# Call the tool
result = await self.session.call_tool(tool_name, arguments=arguments)
# Extract text response
if result.content and len(result.content) > 0:
return result.content[0].text
return ""
async def analyze_leaderboard(self, **kwargs) -> str:
"""Wrapper for analyze_leaderboard tool"""
return await self.call_tool("analyze_leaderboard", kwargs)
async def estimate_cost(self, **kwargs) -> str:
"""Wrapper for estimate_cost tool"""
return await self.call_tool("estimate_cost", kwargs)
async def debug_trace(self, **kwargs) -> str:
"""Wrapper for debug_trace tool"""
return await self.call_tool("debug_trace", kwargs)
async def compare_runs(self, **kwargs) -> str:
"""Wrapper for compare_runs tool"""
return await self.call_tool("compare_runs", kwargs)
async def get_top_performers(self, **kwargs) -> str:
"""Wrapper for get_top_performers tool"""
return await self.call_tool("get_top_performers", kwargs)
async def disconnect(self):
"""Close MCP connection"""
if self.session:
await self.session.__aexit__(None, None, None)
```
### Synchronous Wrapper (`sync_wrapper.py`)
```python
import asyncio
from typing import Optional
from .client import TraceMindMCPClient
class SyncMCPClient:
"""Synchronous wrapper for async MCP client (Gradio-compatible)"""
def __init__(self, mcp_server_url: str):
self.mcp_server_url = mcp_server_url
self.async_client = TraceMindMCPClient(mcp_server_url)
self._connected = False
def _run_async(self, coro):
"""Run async coroutine in sync context"""
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(coro)
def initialize(self):
"""Connect to MCP server"""
if not self._connected:
self._run_async(self.async_client.connect())
self._connected = True
def analyze_leaderboard(self, **kwargs) -> str:
"""Synchronous wrapper for analyze_leaderboard"""
if not self._connected:
self.initialize()
return self._run_async(self.async_client.analyze_leaderboard(**kwargs))
def estimate_cost(self, **kwargs) -> str:
"""Synchronous wrapper for estimate_cost"""
if not self._connected:
self.initialize()
return self._run_async(self.async_client.estimate_cost(**kwargs))
def debug_trace(self, **kwargs) -> str:
"""Synchronous wrapper for debug_trace"""
if not self._connected:
self.initialize()
return self._run_async(self.async_client.debug_trace(**kwargs))
# ... (similar wrappers for other tools)
# Global instance for use in Gradio app
_mcp_client: Optional[SyncMCPClient] = None
def get_sync_mcp_client() -> SyncMCPClient:
"""Get or create global sync MCP client instance"""
global _mcp_client
if _mcp_client is None:
mcp_server_url = os.getenv(
"MCP_SERVER_URL",
"https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/sse"
)
_mcp_client = SyncMCPClient(mcp_server_url)
return _mcp_client
```
### Usage in Gradio App
```python
# app.py
from mcp_client.sync_wrapper import get_sync_mcp_client
# Initialize MCP client
mcp_client = get_sync_mcp_client()
mcp_client.initialize()
# Use in Gradio event handlers
def load_leaderboard():
"""Load leaderboard and generate AI insights"""
# Load dataset
ds = load_dataset("kshitijthakkar/smoltrace-leaderboard")
df = pd.DataFrame(ds)
# Get AI insights from MCP server
try:
insights = mcp_client.analyze_leaderboard(
metric_focus="overall",
time_range="last_week",
top_n=5
)
except Exception as e:
insights = f"β Error generating insights: {str(e)}"
return df, insights
# Gradio UI
with gr.Blocks() as app:
with gr.Tab("π Leaderboard"):
load_btn = gr.Button("Load Leaderboard")
insights_md = gr.Markdown(label="AI Insights")
leaderboard_table = gr.Dataframe()
load_btn.click(
fn=load_leaderboard,
outputs=[leaderboard_table, insights_md]
)
```
---
## Agent Framework Integration
### smolagents Setup
```python
# agent/smolagents_setup.py
from smolagents import ToolCallingAgent, MCPClient, HfApiModel
import os
def create_agent():
"""Create smolagents agent with MCP tool access"""
# 1. Configure MCP client
mcp_server_url = os.getenv(
"MCP_SERVER_URL",
"https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/sse"
)
mcp_client = MCPClient(mcp_server_url)
# 2. Configure LLM
model = HfApiModel(
model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
token=os.getenv("HF_TOKEN")
)
# 3. Create agent with MCP tools
agent = ToolCallingAgent(
tools=[], # MCP tools loaded automatically
model=model,
mcp_client=mcp_client,
max_steps=10,
verbosity_level=1
)
return agent
def run_agent_query(agent: ToolCallingAgent, query: str, show_reasoning: bool = False):
"""Run agent query and return response"""
try:
# Set verbosity based on show_reasoning flag
if show_reasoning:
agent.verbosity_level = 2 # Show tool execution logs
else:
agent.verbosity_level = 0 # Only show final answer
# Run agent
result = agent.run(query)
return result
except Exception as e:
return f"β Agent error: {str(e)}"
```
### Agent Chat UI
```python
# app.py
from agent.smolagents_setup import create_agent, run_agent_query
# Initialize agent (once at startup)
agent = create_agent()
def agent_chat(message: str, history: list, show_reasoning: bool):
"""Handle agent chat interaction"""
# Run agent query
response = run_agent_query(agent, message, show_reasoning)
# Update chat history
history.append((message, response))
return history, ""
# Gradio UI
with gr.Blocks() as app:
with gr.Tab("π€ Agent Chat"):
gr.Markdown("## Autonomous Agent with MCP Tools")
gr.Markdown("Ask questions about agent evaluations. The agent has access to all MCP tools.")
chatbot = gr.Chatbot(label="Agent Chat")
msg = gr.Textbox(label="Your Question", placeholder="What are the top 3 models and their costs?")
show_reasoning = gr.Checkbox(label="Show Agent Reasoning", value=False)
# Quick action buttons
with gr.Row():
quick_top = gr.Button("Quick: Top Models")
quick_cost = gr.Button("Quick: Cost Estimate")
quick_load = gr.Button("Quick: Load Leaderboard")
# Event handlers
msg.submit(agent_chat, [msg, chatbot, show_reasoning], [chatbot, msg])
quick_top.click(
lambda h, sr: agent_chat(
"What are the top 5 models by success rate with their costs?",
h,
sr
),
[chatbot, show_reasoning],
[chatbot, msg]
)
```
---
## MCP Tools Usage
### Tools Used in TraceMind-AI
| Tool | Where Used | Purpose |
|------|-----------|---------|
| `analyze_leaderboard` | Leaderboard tab | Generate AI insights when user loads leaderboard |
| `estimate_cost` | New Evaluation tab | Predict costs before submitting evaluation |
| `debug_trace` | Trace Visualization | Answer questions about execution traces |
| `compare_runs` | Compare Runs/Agent Chat | Compare two evaluation runs side-by-side |
| `analyze_results` | Agent Chat | Analyze detailed test results with optimization recommendations |
| `get_top_performers` | Agent Chat | Efficiently fetch top N models (90% token reduction) |
| `get_leaderboard_summary` | Agent Chat | Get high-level statistics (99% token reduction) |
| `get_dataset` | Agent Chat | Load SMOLTRACE datasets for detailed analysis |
### Example Tool Calls
**Example 1: Leaderboard Insights**
```python
# User clicks "Load Leaderboard" button
insights = mcp_client.analyze_leaderboard(
leaderboard_repo="kshitijthakkar/smoltrace-leaderboard",
metric_focus="overall",
time_range="last_week",
top_n=5
)
# Display in Gradio Markdown component
insights_md.value = insights
```
**Example 2: Cost Estimation**
```python
# User fills New Evaluation form and clicks "Estimate Cost"
estimate = mcp_client.estimate_cost(
model="meta-llama/Llama-3.1-8B",
agent_type="both",
num_tests=100,
hardware="auto"
)
# Display in dialog
gr.Info(estimate)
```
**Example 3: Agent Multi-Step Query**
```python
# User asks: "What are the top 3 models and how much do they cost?"
# Agent reasoning (internal):
# Step 1: Need to get top models by success rate
# β Call get_top_performers(metric="success_rate", top_n=3)
#
# Step 2: Extract cost information from results
# β Parse JSON response, get "total_cost_usd" field
#
# Step 3: Format response for user
# β Create markdown table with model names, success rates, costs
# Agent response:
"""
Here are the top 3 models by success rate:
1. **GPT-4**: 95.8% success rate, $0.05 per run
2. **Claude-3**: 94.1% success rate, $0.04 per run
3. **Llama-3.1-8B**: 93.4% success rate, $0.002 per run
GPT-4 leads in accuracy but is 25x more expensive than Llama-3.1.
For cost-sensitive workloads, Llama-3.1 offers the best value.
"""
```
---
## Development Guide
### Adding New MCP Tool Integration
1. **Add method to async client** (`client.py`):
```python
async def new_tool_name(self, **kwargs) -> str:
"""Wrapper for new_tool_name MCP tool"""
return await self.call_tool("new_tool_name", kwargs)
```
2. **Add synchronous wrapper** (`sync_wrapper.py`):
```python
def new_tool_name(self, **kwargs) -> str:
"""Synchronous wrapper for new_tool_name"""
if not self._connected:
self.initialize()
return self._run_async(self.async_client.new_tool_name(**kwargs))
```
3. **Use in Gradio app** (`app.py`):
```python
def handle_new_tool():
result = mcp_client.new_tool_name(param1="value1", param2="value2")
return result
```
**Note**: Agent automatically discovers new tools from MCP server, no code changes needed!
### Testing MCP Integration
**Test 1: Connection**
```python
python -c "from mcp_client.sync_wrapper import get_sync_mcp_client; client = get_sync_mcp_client(); client.initialize(); print('β
MCP client connected')"
```
**Test 2: Tool Call**
```python
from mcp_client.sync_wrapper import get_sync_mcp_client
client = get_sync_mcp_client()
client.initialize()
result = client.analyze_leaderboard(
metric_focus="cost",
time_range="last_week",
top_n=3
)
print(result)
```
**Test 3: Agent**
```python
from agent.smolagents_setup import create_agent, run_agent_query
agent = create_agent()
response = run_agent_query(agent, "What are the top 3 models?", show_reasoning=True)
print(response)
```
### Debugging MCP Issues
**Issue**: Connection timeout
- **Check**: MCP server is running at specified URL
- **Check**: Network connectivity to HuggingFace Spaces
- **Check**: SSE transport is enabled on server
**Issue**: Tool not found
- **Check**: MCP server has the tool implemented
- **Check**: Tool name matches exactly (case-sensitive)
- **Check**: Client initialized successfully (call `initialize()` first)
**Issue**: Agent not using MCP tools
- **Check**: MCPClient is properly configured in agent setup
- **Check**: Agent has `max_steps > 0` to allow tool usage
- **Check**: Query requires tool usage (not answerable from agent's knowledge alone)
---
## Performance Considerations
### Token Optimization
**Problem**: Loading full leaderboard dataset consumes excessive tokens
**Solution**: Use token-optimized MCP tools
```python
# β BAD: Loads all 51 runs (50K+ tokens)
leaderboard = mcp_client.get_dataset("kshitijthakkar/smoltrace-leaderboard")
# β
GOOD: Returns only top 5 (5K tokens, 90% reduction)
top_performers = mcp_client.get_top_performers(top_n=5)
# β
BETTER: Returns summary stats (500 tokens, 99% reduction)
summary = mcp_client.get_leaderboard_summary()
```
### Caching
**Problem**: Repeated identical MCP calls waste time and credits
**Solution**: Implement client-side caching
```python
from functools import lru_cache
import time
@lru_cache(maxsize=32)
def cached_analyze_leaderboard(metric_focus: str, time_range: str, top_n: int, cache_key: int):
"""Cached MCP call with TTL via cache_key"""
return mcp_client.analyze_leaderboard(
metric_focus=metric_focus,
time_range=time_range,
top_n=top_n
)
# Use with 5-minute cache TTL
cache_key = int(time.time() // 300) # Changes every 5 minutes
insights = cached_analyze_leaderboard("overall", "last_week", 5, cache_key)
```
### Async Optimization
**Problem**: Sequential MCP calls block UI
**Solution**: Use async for parallel calls
```python
import asyncio
async def load_leaderboard_with_insights():
"""Load leaderboard and insights in parallel"""
# Start both operations concurrently
leaderboard_task = asyncio.create_task(load_dataset_async("kshitijthakkar/smoltrace-leaderboard"))
insights_task = asyncio.create_task(mcp_client.analyze_leaderboard(metric_focus="overall"))
# Wait for both to complete
leaderboard, insights = await asyncio.gather(leaderboard_task, insights_task)
return leaderboard, insights
```
---
## Security Considerations
### API Key Management
**DO**:
- Store API keys in environment variables or HF Spaces secrets
- Use session-only storage in Gradio (not server-side persistence)
- Rotate keys regularly
**DON'T**:
- Hardcode API keys in source code
- Expose keys in client-side JavaScript
- Log API keys in console or files
### MCP Server Trust
**Verify MCP server authenticity**:
- Use HTTPS URLs only
- Verify domain ownership (huggingface.co spaces)
- Review MCP server code before connecting (open source)
**Limit tool access**:
- Only connect to trusted MCP servers
- Review tool permissions before use
- Implement rate limiting for tool calls
---
## Related Documentation
- [USER_GUIDE.md](USER_GUIDE.md) - Complete UI walkthrough
- [ARCHITECTURE.md](ARCHITECTURE.md) - Technical architecture
- [TraceMind MCP Server Documentation](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server)
---
**Last Updated**: November 21, 2025
|