Spaces:
Running
Running
File size: 31,007 Bytes
34f1a7a 010ba8f 34f1a7a 010ba8f 34f1a7a 010ba8f 34f1a7a 010ba8f 34f1a7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 |
# TraceMind-AI - Technical Architecture
This document provides a deep technical dive into the TraceMind-AI architecture, implementation details, and system design.
## Table of Contents
- [System Overview](#system-overview)
- [Project Structure](#project-structure)
- [Core Components](#core-components)
- [MCP Client Architecture](#mcp-client-architecture)
- [Agent Framework Integration](#agent-framework-integration)
- [Data Flow](#data-flow)
- [Authentication & Authorization](#authentication--authorization)
- [Screen Navigation](#screen-navigation)
- [Job Submission Architecture](#job-submission-architecture)
- [Deployment](#deployment)
- [Performance Optimization](#performance-optimization)
---
## System Overview
TraceMind-AI is a comprehensive Gradio-based web application for evaluating AI agent performance. It serves as the user-facing platform in the TraceMind ecosystem, demonstrating enterprise MCP client usage (Track 2: MCP in Action).
### Technology Stack
| Component | Technology | Version | Purpose |
|-----------|-----------|---------|---------|
| **UI Framework** | Gradio | 5.49.1 | Web interface with components |
| **MCP Client** | MCP Python SDK | Latest | Connect to MCP servers |
| **Agent Framework** | smolagents | 1.22.0+ | Autonomous agent with MCP tools |
| **Data Source** | HuggingFace Datasets | Latest | Load evaluation results |
| **Authentication** | HuggingFace OAuth | - | User authentication |
| **Job Platforms** | HF Jobs + Modal | - | Evaluation job submission |
| **Language** | Python | 3.10+ | Core implementation |
### High-Level Architecture
```
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β User Browser β
β - Gradio Interface (React-based) β
β - OAuth Flow (HuggingFace) β
ββββββββββββββββ¬βββββββββββββββββββββββββββββββββββββββββββββββ
β
β HTTP/WebSocket
β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β TraceMind-AI (Gradio App) - Track 2 β
β β
β βββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
β β Screen Layer (screens/) β β
β β - Leaderboard β β
β β - Agent Chat β β
β β - New Evaluation β β
β β - Job Monitoring β β
β β - Trace Detail β β
β β - Settings β β
β ββββββββββββββ¬βββββββββββββββββββββββββββββββββββββββββ β
β β β
β ββββββββββββββ΄βββββββββββββββββββββββββββββββββββββββββ β
β β Component Layer (components/) β β
β β - Leaderboard Table (Custom HTML) β β
β β - Analytics Charts β β
β β - Metric Displays β β
β β - Report Cards β β
β ββββββββββββββ¬βββββββββββββββββββββββββββββββββββββββββ β
β β β
β ββββββββββββββ΄βββββββββββββββββββββββββββββββββββββββββ β
β β Service Layer β β
β β ββββββββββββββββββββ ββββββββββββββββββββ β β
β β β MCP Client β β Data Loader β β β
β β β (mcp_client/) β β (data_loader.py) β β β
β β ββββββββββββββββββββ ββββββββββββββββββββ β β
β β ββββββββββββββββββββ ββββββββββββββββββββ β β
β β β Agent (smolagentsβ β Job Submission β β β
β β β screens/chat.py) β β (utils/) β β β
β β ββββββββββββββββββββ ββββββββββββββββββββ β β
β βββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
β β
βββββββββββββ¬ββββββββββββββββββββββββββββββββββββ¬ββββββββββββββ
β β
β β
βββββββββββββββββββββββββ βββββββββββββββββββββββββ
β TraceMind MCP Server β β External Services β
β (Track 1) β β - HF Datasets β
β - 11 AI Tools β β - HF Jobs β
β - 3 Resources β β - Modal β
β - 3 Prompts β β - LLM APIs β
βββββββββββββββββββββββββ βββββββββββββββββββββββββ
```
---
## Project Structure
```
TraceMind-AI/
βββ app.py # Main entry point, Gradio app
β
βββ screens/ # UI screens (6 tabs)
β βββ __init__.py
β βββ leaderboard.py # Screen 1: Leaderboard with AI insights
β βββ chat.py # Screen 2: Agent Chat (smolagents)
β βββ dashboard.py # Screen 3: New Evaluation
β βββ job_monitoring.py # Screen 4: Job Status Tracking
β βββ trace_detail.py # Screen 5: Trace Visualization
β βββ settings.py # Screen 6: API Key Configuration
β βββ compare.py # Screen 7: Run Comparison (optional)
β βββ documentation.py # Screen 8: API Documentation
β βββ mcp_helpers.py # Shared MCP client helpers
β
βββ components/ # Reusable UI components
β βββ __init__.py
β βββ leaderboard_table.py # Custom HTML table component
β βββ analytics_charts.py # Performance charts (Plotly)
β βββ metric_displays.py # Metric cards and badges
β βββ report_cards.py # Summary report cards
β βββ thought_graph.py # Agent reasoning visualization
β
βββ mcp_client/ # MCP client implementation
β βββ __init__.py
β βββ client.py # Async MCP client
β βββ sync_wrapper.py # Synchronous wrapper for Gradio
β
βββ utils/ # Utility modules
β βββ __init__.py
β βββ auth.py # HuggingFace OAuth
β βββ navigation.py # Screen navigation state
β βββ hf_jobs_submission.py # HuggingFace Jobs integration
β βββ modal_job_submission.py # Modal integration
β
βββ styles/ # Custom styling
β βββ __init__.py
β βββ tracemind_theme.py # Gradio theme customization
β
βββ data_loader.py # Dataset loading and caching
βββ requirements.txt # Python dependencies
βββ .env.example # Environment variable template
βββ .gitignore
βββ README.md # Project documentation
βββ USER_GUIDE.md # Complete user guide
Total: ~35 files, ~8,000 lines of code
```
### File Breakdown
| Directory | Files | Lines | Purpose |
|-----------|-------|-------|---------|
| `screens/` | 9 | ~3,500 | UI screen implementations |
| `components/` | 5 | ~1,200 | Reusable UI components |
| `mcp_client/` | 3 | ~800 | MCP client integration |
| `utils/` | 4 | ~1,500 | Authentication, jobs, navigation |
| `styles/` | 2 | ~300 | Custom theme and CSS |
| Root | 3 | ~700 | Main app, data loader, config |
---
## Core Components
### 1. app.py - Main Application
**Purpose**: Entry point, orchestrates all screens and manages global state.
**Architecture**:
```python
# app.py structure
import gradio as gr
from screens import *
from mcp_client.sync_wrapper import get_sync_mcp_client
from utils.auth import auth_ui
from data_loader import DataLoader
# 1. Initialize services
mcp_client = get_sync_mcp_client()
mcp_client.initialize()
data_loader = DataLoader()
# 2. Create Gradio app
with gr.Blocks(theme=tracemind_theme) as app:
# Global state
gr.State(...) # User session, navigation, etc.
# Authentication (if not disabled)
if not DISABLE_OAUTH:
auth_ui()
# Main tabs
with gr.Tabs():
with gr.Tab("π Leaderboard"):
leaderboard_screen()
with gr.Tab("π€ Agent Chat"):
chat_screen()
with gr.Tab("π New Evaluation"):
dashboard_screen()
with gr.Tab("π Job Monitoring"):
job_monitoring_screen()
with gr.Tab("βοΈ Settings"):
settings_screen()
# 3. Launch
if __name__ == "__main__":
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
```
**Key Responsibilities**:
- Initialize MCP client and data loader (global instances)
- Create tabbed interface with all screens
- Manage authentication flow
- Handle global state (user session, API keys)
---
### 2. Screen Layer (screens/)
Each screen is a self-contained module that returns a Gradio component tree.
#### screens/leaderboard.py
**Purpose**: Display evaluation results with AI-powered insights.
**Components**:
- Load button
- AI insights panel (Markdown) - powered by MCP server
- Leaderboard table (custom HTML component)
- Filter controls (agent type, provider)
**MCP Integration**:
```python
def load_leaderboard(mcp_client):
# 1. Load dataset
ds = load_dataset("kshitijthakkar/smoltrace-leaderboard")
df = pd.DataFrame(ds)
# 2. Get AI insights from MCP server
insights = mcp_client.analyze_leaderboard(
metric_focus="overall",
time_range="last_week",
top_n=5
)
# 3. Render table with custom component
table_html = render_leaderboard_table(df)
return insights, table_html
```
#### screens/chat.py
**Purpose**: Autonomous agent interface with MCP tool access.
**Agent Setup**:
```python
from smolagents import ToolCallingAgent, MCPClient, HfApiModel
# Initialize agent with MCP client
def create_agent():
mcp_client = MCPClient(MCP_SERVER_URL)
model = HfApiModel(
model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
token=os.getenv("HF_TOKEN")
)
agent = ToolCallingAgent(
tools=[], # MCP tools loaded automatically
model=model,
mcp_client=mcp_client,
max_steps=10
)
return agent
# Chat interaction
def agent_chat(message, history, show_reasoning):
if show_reasoning:
agent.verbosity_level = 2 # Show tool execution
else:
agent.verbosity_level = 0 # Only final answer
response = agent.run(message)
history.append((message, response))
return history, ""
```
**MCP Tool Access**:
Agent automatically discovers and uses all 11 MCP tools from TraceMind MCP Server.
#### screens/dashboard.py
**Purpose**: Submit evaluation jobs to HuggingFace Jobs or Modal.
**Key Functions**:
- Model selection (text input)
- Infrastructure choice (HF Jobs / Modal)
- Hardware selection (auto / manual)
- Cost estimation (MCP-powered)
- Job submission
**Cost Estimation Flow**:
```python
def estimate_cost_click(model, agent_type, num_tests, hardware, mcp_client):
# Call MCP server for cost estimate
estimate = mcp_client.estimate_cost(
model=model,
agent_type=agent_type,
num_tests=num_tests,
hardware=hardware
)
return estimate # Display in dialog
```
**Job Submission Flow**:
```python
def submit_job(model, agent_type, hardware, infrastructure, api_keys):
if infrastructure == "HuggingFace Jobs":
job_id = submit_hf_job(model, agent_type, hardware, api_keys)
elif infrastructure == "Modal":
job_id = submit_modal_job(model, agent_type, hardware, api_keys)
return f"β
Job submitted: {job_id}"
```
#### screens/job_monitoring.py
**Purpose**: Track status of submitted jobs.
**Data Source**: HuggingFace Jobs API or Modal API
**Refresh Strategy**:
- Manual refresh button
- Auto-refresh every 30 seconds (optional)
#### screens/trace_detail.py
**Purpose**: Visualize OpenTelemetry traces with GPU metrics.
**Components**:
- Waterfall diagram (spans timeline)
- Span details panel
- GPU metrics overlay (for GPU jobs)
- MCP-powered Q&A
**Trace Loading**:
```python
def load_trace(trace_id, traces_repo):
# Load trace dataset
ds = load_dataset(traces_repo)
trace_data = ds.filter(lambda x: x["trace_id"] == trace_id)[0]
# Render waterfall
waterfall_html = render_waterfall(trace_data["spans"])
return waterfall_html
```
**MCP Q&A**:
```python
def ask_trace_question(trace_id, traces_repo, question, mcp_client):
# Call MCP server to debug trace
answer = mcp_client.debug_trace(
trace_id=trace_id,
traces_repo=traces_repo,
question=question
)
return answer
```
#### screens/settings.py
**Purpose**: Configure API keys and preferences.
**Security**:
- Keys stored in Gradio State (session-only, not server-side)
- All forms use `api_name=False` (not exposed via API)
- HTTPS encryption for all API calls
**Configuration Options**:
- Gemini API Key
- HuggingFace Token
- Modal Token ID + Secret
- LLM Provider Keys (OpenAI, Anthropic, etc.)
---
### 3. Component Layer (components/)
Reusable UI components that can be used across multiple screens.
#### components/leaderboard_table.py
**Purpose**: Custom HTML table with sorting, filtering, and styling.
**Why Custom Component?**:
- Gradio's default Dataframe component lacks advanced styling
- Need clickable rows for navigation
- Custom sorting and filtering logic
- Badge rendering for metrics
**Implementation**:
```python
def render_leaderboard_table(df: pd.DataFrame) -> str:
"""Render leaderboard as interactive HTML table"""
html = """
<style>
.leaderboard-table { ... }
.metric-badge { ... }
</style>
<table class="leaderboard-table">
<thead>
<tr>
<th onclick="sortTable(0)">Model</th>
<th onclick="sortTable(1)">Success Rate</th>
<th onclick="sortTable(2)">Cost</th>
...
</tr>
</thead>
<tbody>
"""
for idx, row in df.iterrows():
html += f"""
<tr onclick="selectRun('{row['run_id']}')">
<td>{row['model']}</td>
<td><span class="badge success">{row['success_rate']}%</span></td>
<td>${row['total_cost_usd']:.4f}</td>
...
</tr>
"""
html += """
</tbody>
</table>
<script>
function sortTable(col) { ... }
function selectRun(runId) {
// Trigger Gradio event to navigate to run detail
document.dispatchEvent(new CustomEvent('runSelected', {detail: runId}));
}
</script>
"""
return html
```
**Integration with Gradio**:
```python
# In leaderboard screen
table_html = gr.HTML()
load_btn.click(
fn=lambda: render_leaderboard_table(df),
outputs=table_html
)
```
#### components/analytics_charts.py
**Purpose**: Performance charts using Plotly.
**Charts Provided**:
- Success rate over time (line chart)
- Cost comparison (bar chart)
- Duration distribution (histogram)
- CO2 emissions by model (pie chart)
**Example**:
```python
import plotly.graph_objects as go
def create_cost_comparison_chart(df):
fig = go.Figure(data=[
go.Bar(
x=df['model'],
y=df['total_cost_usd'],
marker_color='indianred'
)
])
fig.update_layout(
title="Cost Comparison by Model",
xaxis_title="Model",
yaxis_title="Total Cost (USD)"
)
return fig
```
#### components/thought_graph.py
**Purpose**: Visualize agent reasoning steps (for Agent Chat).
**Visualization**:
- Graph nodes: Reasoning steps, tool calls
- Edges: Flow between steps
- Annotations: Tool results, errors
---
### 4. MCP Client Layer (mcp_client/)
#### mcp_client/client.py - Async MCP Client
**Purpose**: Connect to TraceMind MCP Server via MCP protocol.
**Implementation**: (See [MCP_INTEGRATION.md](MCP_INTEGRATION.md) for full code)
**Key Methods**:
- `connect()`: Establish SSE connection to MCP server
- `call_tool(tool_name, arguments)`: Call an MCP tool
- `analyze_leaderboard(**kwargs)`: Wrapper for analyze_leaderboard tool
- `estimate_cost(**kwargs)`: Wrapper for estimate_cost tool
- `debug_trace(**kwargs)`: Wrapper for debug_trace tool
#### mcp_client/sync_wrapper.py - Synchronous Wrapper
**Purpose**: Provide synchronous API for Gradio event handlers.
**Why Needed?**: Gradio event handlers are synchronous, but MCP client is async.
**Pattern**:
```python
class SyncMCPClient:
def __init__(self, mcp_server_url):
self.async_client = AsyncMCPClient(mcp_server_url)
def _run_async(self, coro):
"""Run async coroutine in sync context"""
loop = asyncio.get_event_loop()
return loop.run_until_complete(coro)
def analyze_leaderboard(self, **kwargs):
"""Synchronous wrapper"""
return self._run_async(self.async_client.analyze_leaderboard(**kwargs))
```
---
### 5. Data Loader (data_loader.py)
**Purpose**: Load and cache HuggingFace datasets.
**Features**:
- In-memory caching (5-minute TTL)
- Error handling for missing datasets
- Automatic retry logic
- Dataset validation
**Implementation**:
```python
from datasets import load_dataset
from functools import lru_cache
import time
class DataLoader:
def __init__(self):
self.cache = {}
self.cache_ttl = 300 # 5 minutes
def load_leaderboard(self, repo="kshitijthakkar/smoltrace-leaderboard"):
"""Load leaderboard with caching"""
cache_key = f"leaderboard:{repo}"
# Check cache
if cache_key in self.cache:
cached_time, cached_data = self.cache[cache_key]
if time.time() - cached_time < self.cache_ttl:
return cached_data
# Load fresh data
ds = load_dataset(repo, split="train")
df = pd.DataFrame(ds)
# Cache
self.cache[cache_key] = (time.time(), df)
return df
def load_results(self, repo):
"""Load results dataset for specific run"""
ds = load_dataset(repo, split="train")
return pd.DataFrame(ds)
def load_traces(self, repo):
"""Load traces dataset for specific run"""
ds = load_dataset(repo, split="train")
return ds # Keep as Dataset for filtering
```
---
## MCP Client Architecture
**Full details in**: [MCP_INTEGRATION.md](MCP_INTEGRATION.md)
**Summary**:
- **Async Client**: `mcp_client/client.py` - async MCP protocol implementation
- **Sync Wrapper**: `mcp_client/sync_wrapper.py` - synchronous API for Gradio
- **Global Instance**: Initialized once in `app.py`, shared across all screens
**Usage Pattern**:
```python
# In app.py (initialization)
from mcp_client.sync_wrapper import get_sync_mcp_client
mcp_client = get_sync_mcp_client()
mcp_client.initialize()
# In screen (usage)
def some_event_handler(mcp_client):
result = mcp_client.analyze_leaderboard(metric_focus="cost")
return result
```
---
## Agent Framework Integration
**Full details in**: [MCP_INTEGRATION.md](MCP_INTEGRATION.md)
**Framework**: smolagents (HuggingFace's agent framework)
**Key Features**:
- Autonomous tool discovery from MCP server
- Multi-step reasoning with tool chaining
- Context-aware responses
- Reasoning visualization (optional)
**Agent Setup**:
```python
from smolagents import ToolCallingAgent, MCPClient
agent = ToolCallingAgent(
tools=[], # Empty - tools loaded from MCP server
model=HfApiModel("Qwen/Qwen2.5-Coder-32B-Instruct"),
mcp_client=MCPClient(MCP_SERVER_URL),
max_steps=10
)
```
---
## Data Flow
### Leaderboard Loading Flow
```
1. User clicks "Load Leaderboard"
β
2. Gradio Event Handler (leaderboard.py)
load_leaderboard()
β
3. Data Loader (data_loader.py)
βββ Check cache (5-min TTL)
β βββ If cached: return cached data
βββ If not cached: load from HF Datasets
βββ load_dataset("kshitijthakkar/smoltrace-leaderboard")
β
4. MCP Client (sync_wrapper.py)
mcp_client.analyze_leaderboard(metric_focus="overall")
β
5. MCP Server (TraceMind-mcp-server)
βββ Load data
βββ Call Gemini API
βββ Return AI analysis
β
6. Render Components
βββ AI Insights (Markdown)
βββ Leaderboard Table (Custom HTML)
β
7. Display to User
```
### Agent Chat Flow
```
1. User types message: "What are the top 3 models?"
β
2. Gradio Event Handler (chat.py)
agent_chat(message, history, show_reasoning)
β
3. smolagents Agent
agent.run(message)
βββ Step 1: Plan approach
β βββ "Need to get top models from leaderboard"
βββ Step 2: Discover MCP tools
β βββ Found: get_top_performers, analyze_leaderboard
βββ Step 3: Call MCP tool
β βββ get_top_performers(metric="success_rate", top_n=3)
βββ Step 4: Parse result
β βββ Extract model names, success rates, costs
βββ Step 5: Format response
βββ Generate markdown table with insights
β
4. Return to user with full reasoning trace (if enabled)
```
### Job Submission Flow
```
1. User fills form β Clicks "Submit Evaluation"
β
2. Gradio Event Handler (dashboard.py)
submit_job(model, agent_type, hardware, infrastructure)
β
3. Job Submission Module (utils/)
if infrastructure == "HuggingFace Jobs":
βββ hf_jobs_submission.py
βββ Build job config (YAML)
βββ Submit via HF Jobs API
βββ Return job_id
elif infrastructure == "Modal":
βββ modal_job_submission.py
βββ Build Modal app config
βββ Submit via Modal SDK
βββ Return job_id
β
4. Store job_id in session state
β
5. Redirect to Job Monitoring screen
β
6. Auto-refresh status every 30s
```
---
## Authentication & Authorization
### HuggingFace OAuth
**Implementation**: `utils/auth.py`
**Flow**:
```
1. User visits TraceMind-AI
β
2. Check OAuth token in session
βββ If valid: proceed to app
βββ If invalid: show login screen
β
3. User clicks "Sign in with HuggingFace"
β
4. Redirect to HuggingFace OAuth page
βββ User authorizes TraceMind-AI
βββ HF redirects back with token
β
5. Store token in Gradio State (session)
β
6. Use token for:
βββ HF Datasets access
βββ HF Jobs submission
βββ User identification
```
**Code**:
```python
# utils/auth.py
import gradio as gr
def auth_ui():
"""Create OAuth login UI"""
gr.LoginButton(
value="Sign in with HuggingFace",
auth_provider="huggingface"
)
# In app.py
with gr.Blocks() as app:
if not DISABLE_OAUTH:
auth_ui()
```
### API Key Storage
**Strategy**: Session-only storage (not server-side persistence)
**Implementation**:
```python
# In settings screen
def save_api_keys(gemini_key, hf_token):
"""Store keys in session state"""
session_state = gr.State({
"gemini_key": gemini_key,
"hf_token": hf_token
})
# Override default clients with user keys
if gemini_key:
os.environ["GEMINI_API_KEY"] = gemini_key
if hf_token:
os.environ["HF_TOKEN"] = hf_token
return "β
API keys saved for this session"
```
**Security**:
- β
Keys stored only in browser memory
- β
Not saved to disk or database
- β
Forms use `api_name=False` (not exposed via API)
- β
HTTPS encryption
---
## Screen Navigation
### State Management
**Pattern**: Gradio State components for session data
```python
# In app.py
with gr.Blocks() as app:
# Global state
session_state = gr.State({
"user": None,
"current_run_id": None,
"current_trace_id": None,
"api_keys": {}
})
# Pass to all screens
leaderboard_screen(session_state)
chat_screen(session_state)
```
### Navigation Between Screens
**Pattern**: Click event triggers tab switch + state update
```python
# In leaderboard screen
def row_click(run_id, session_state):
"""Navigate to run detail when row clicked"""
session_state["current_run_id"] = run_id
# Switch to trace detail tab (Tab index 4)
return gr.Tabs.update(selected=4), session_state
table_component.select(
fn=row_click,
inputs=[gr.State(), session_state],
outputs=[main_tabs, session_state]
)
```
---
## Job Submission Architecture
### HuggingFace Jobs Integration
**File**: `utils/hf_jobs_submission.py`
**Key Functions**:
```python
def submit_hf_job(model, agent_type, hardware, api_keys):
"""Submit evaluation job to HuggingFace Jobs"""
# 1. Build job config (YAML)
job_config = {
"name": f"SMOLTRACE Eval - {model}",
"hardware": hardware, # cpu-basic, t4-small, a10g-small, a100-large, h200
"environment": {
"MODEL": model,
"AGENT_TYPE": agent_type,
"HF_TOKEN": api_keys["hf_token"],
# ... other env vars
},
"command": [
"pip install smoltrace[otel,gpu]",
f"smoltrace-eval --model {model} --agent-type {agent_type} ..."
]
}
# 2. Submit via HF Jobs API
response = requests.post(
"https://huggingface.co/api/jobs",
headers={"Authorization": f"Bearer {api_keys['hf_token']}"},
json=job_config
)
# 3. Return job ID
job_id = response.json()["id"]
return job_id
```
### Modal Integration
**File**: `utils/modal_job_submission.py`
**Key Functions**:
```python
import modal
def submit_modal_job(model, agent_type, hardware, api_keys):
"""Submit evaluation job to Modal"""
# 1. Create Modal app
app = modal.App("smoltrace-eval")
# 2. Define function with GPU
@app.function(
image=modal.Image.debian_slim().pip_install("smoltrace[otel,gpu]"),
gpu=hardware, # A10, A100-80GB, H200
secrets=[
modal.Secret.from_dict({
"HF_TOKEN": api_keys["hf_token"],
# ... other secrets
})
]
)
def run_evaluation():
import smoltrace
# Run evaluation
results = smoltrace.evaluate(model=model, agent_type=agent_type)
return results
# 3. Deploy and run
with app.run():
result = run_evaluation.remote()
return result.job_id
```
---
## Deployment
### HuggingFace Spaces
**Platform**: HuggingFace Spaces
**SDK**: Gradio 5.49.1
**Hardware**: CPU Basic (upgradeable)
**URL**: https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind
### Configuration
**Space Metadata** (README.md header):
```yaml
---
title: TraceMind AI
emoji: π§
colorFrom: indigo
colorTo: purple
sdk: gradio
sdk_version: 5.49.1
app_file: app.py
short_description: AI agent evaluation with MCP-powered intelligence
license: agpl-3.0
pinned: true
tags:
- mcp-in-action-track-enterprise
- agent-evaluation
- mcp-client
- leaderboard
- gradio
---
```
### Environment Variables
**Set in HF Spaces Secrets**:
```bash
# Required
GEMINI_API_KEY=your_gemini_key
HF_TOKEN=your_hf_token
# Optional
MCP_SERVER_URL=https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/sse
LEADERBOARD_REPO=kshitijthakkar/smoltrace-leaderboard
DISABLE_OAUTH=false # Set to true for local development
```
---
## Performance Optimization
### 1. Data Caching
**Implementation**: `data_loader.py`
- In-memory cache with 5-minute TTL
- Reduces HF Datasets API calls
- Faster page loads
### 2. Async MCP Calls
**Pattern**: Use async for non-blocking I/O
```python
# Could be optimized to run in parallel
async def load_data_with_insights():
leaderboard_task = load_dataset_async(...)
insights_task = mcp_client.analyze_leaderboard_async(...)
leaderboard, insights = await asyncio.gather(leaderboard_task, insights_task)
return leaderboard, insights
```
### 3. Component Lazy Loading
**Strategy**: Load components only when tabs are activated
```python
with gr.Tab("Trace Detail", visible=False) as trace_tab:
# Components created only when tab first shown
@trace_tab.select
def load_trace_components():
return build_trace_visualization()
```
---
## Related Documentation
- [README.md](README.md) - Overview and quick start
- [USER_GUIDE.md](USER_GUIDE.md) - Complete screen-by-screen guide
- [MCP_INTEGRATION.md](MCP_INTEGRATION.md) - MCP client implementation
- [TraceMind MCP Server](https://github.com/Mandark-droid/TraceMind-mcp-server/blob/main/ARCHITECTURE.md) - Server-side architecture
---
**Last Updated**: November 21, 2025
**Version**: 1.0.0
**Track**: MCP in Action (Enterprise)
|