import gradio as gr import os import base64 import logging import torch import threading import time import json import concurrent.futures from transformers import ( AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria, StoppingCriteriaList, ) from transformers import logging as hf_logging import spaces from llama_index.core import ( StorageContext, VectorStoreIndex, load_index_from_storage, Document as LlamaDocument, ) from llama_index.core import Settings from llama_index.core.node_parser import ( HierarchicalNodeParser, get_leaf_nodes, get_root_nodes, ) from llama_index.core.retrievers import AutoMergingRetriever from llama_index.core.storage.docstore import SimpleDocumentStore from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.embeddings.huggingface import HuggingFaceEmbedding from tqdm import tqdm from langdetect import detect, LangDetectException os.environ["TOKENIZERS_PARALLELISM"] = "false" # Set logging to INFO level for cleaner output logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Custom logger handler to capture agentic thoughts class ThoughtCaptureHandler(logging.Handler): """Custom handler to capture internal thoughts from MedSwin and supervisor""" def __init__(self): super().__init__() self.thoughts = [] self.lock = threading.Lock() def emit(self, record): """Capture log messages that contain agentic thoughts""" try: msg = self.format(record) # Only capture messages from GEMINI SUPERVISOR or MEDSWIN if "[GEMINI SUPERVISOR]" in msg or "[MEDSWIN]" in msg or "[MAC]" in msg: # Remove timestamp and logger name for cleaner display # Format: "timestamp - logger - level - message" parts = msg.split(" - ", 3) if len(parts) >= 4: clean_msg = parts[-1] # Get the message part else: clean_msg = msg with self.lock: self.thoughts.append(clean_msg) except Exception: pass # Ignore formatting errors def get_thoughts(self): """Get all captured thoughts as a formatted string""" with self.lock: return "\n".join(self.thoughts) def clear(self): """Clear captured thoughts""" with self.lock: self.thoughts = [] # Set MCP client logging to WARNING to reduce noise mcp_client_logger = logging.getLogger("mcp.client") mcp_client_logger.setLevel(logging.WARNING) hf_logging.set_verbosity_error() # MCP imports MCP_CLIENT_INFO = None try: from mcp import ClientSession, StdioServerParameters from mcp import types as mcp_types from mcp.client.stdio import stdio_client import asyncio try: import nest_asyncio nest_asyncio.apply() # Allow nested event loops except ImportError: pass # nest_asyncio is optional MCP_AVAILABLE = True MCP_CLIENT_INFO = mcp_types.Implementation( name="MedLLM-Agent", version=os.environ.get("SPACE_VERSION", "local"), ) except ImportError as e: logger.warning(f"MCP SDK not available: {e}") MCP_AVAILABLE = False # Fallback imports if MCP is not available from ddgs import DDGS import requests from bs4 import BeautifulSoup try: from TTS.api import TTS TTS_AVAILABLE = True except ImportError: TTS_AVAILABLE = False TTS = None import numpy as np import soundfile as sf import tempfile # Model configurations MEDSWIN_MODELS = { "MedSwin SFT": "MedSwin/MedSwin-7B-SFT", "MedSwin KD": "MedSwin/MedSwin-7B-KD", "MedSwin TA": "MedSwin/MedSwin-Merged-TA-SFT-0.7" } DEFAULT_MEDICAL_MODEL = "MedSwin TA" EMBEDDING_MODEL = "abhinand/MedEmbed-large-v0.1" # Domain-tuned medical embedding model TTS_MODEL = "maya-research/maya1" HF_TOKEN = os.environ.get("HF_TOKEN") if not HF_TOKEN: raise ValueError("HF_TOKEN not found in environment variables") # Gemini MCP configuration GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY") GEMINI_MODEL = os.environ.get("GEMINI_MODEL", "gemini-2.5-flash") # Default for harder tasks GEMINI_MODEL_LITE = os.environ.get("GEMINI_MODEL_LITE", "gemini-2.5-flash-lite") # For parsing and simple tasks # Custom UI TITLE = "

đŸŠē MedLLM Agent - Medical RAG & Web Search System

" DESCRIPTION = """

Advanced Medical AI Assistant powered by MedSwin models

📄 Document RAG: Answer based on uploaded medical documents

🌐 Web Search: Fetch knowledge from reliable online medical resources

🌍 Multi-language: Automatic translation for non-English queries

Upload PDF or text files to get started!

""" CSS = """ .upload-section { max-width: 400px; margin: 0 auto; padding: 10px; border: 2px dashed #ccc; border-radius: 10px; } .upload-button { background: #34c759 !important; color: white !important; border-radius: 25px !important; } .chatbot-container { margin-top: 20px; } .status-output { margin-top: 10px; font-size: 14px; } .processing-info { margin-top: 5px; font-size: 12px; color: #666; } .info-container { margin-top: 10px; padding: 10px; border-radius: 5px; } .file-list { margin-top: 0; max-height: 200px; overflow-y: auto; padding: 5px; border: 1px solid #eee; border-radius: 5px; } .stats-box { margin-top: 10px; padding: 10px; border-radius: 5px; font-size: 12px; } .submit-btn { background: #1a73e8 !important; color: white !important; border-radius: 25px !important; margin-left: 10px; padding: 5px 10px; font-size: 16px; } .input-row { display: flex; align-items: center; } .recording-timer { font-size: 12px; color: #666; text-align: center; margin-top: 5px; } .feature-badge { display: inline-block; padding: 3px 8px; margin: 2px; border-radius: 12px; font-size: 11px; font-weight: bold; } .badge-rag { background: #e3f2fd; color: #1976d2; } .badge-web { background: #f3e5f5; color: #7b1fa2; } @media (min-width: 768px) { .main-container { display: flex; justify-content: space-between; gap: 20px; } .upload-section { flex: 1; max-width: 300px; } .chatbot-container { flex: 2; margin-top: 0; } } """ # Global model storage global_medical_models = {} global_medical_tokenizers = {} global_file_info = {} global_tts_model = None global_embed_model = None # MCP client storage global_mcp_session = None global_mcp_stdio_ctx = None # Store stdio context to keep it alive global_mcp_lock = threading.Lock() # Lock for thread-safe session access # MCP server configuration via environment variables # Gemini MCP server: Python-based server (agent.py) # This works on Hugging Face Spaces without requiring npm/Node.js # Make sure GEMINI_API_KEY is set in environment variables # # Default configuration uses the bundled agent.py script # To override: # export MCP_SERVER_COMMAND="python" # export MCP_SERVER_ARGS="/path/to/agent.py" script_dir = os.path.dirname(os.path.abspath(__file__)) agent_path = os.path.join(script_dir, "agent.py") MCP_SERVER_COMMAND = os.environ.get("MCP_SERVER_COMMAND", "python") MCP_SERVER_ARGS = os.environ.get("MCP_SERVER_ARGS", agent_path).split() if os.environ.get("MCP_SERVER_ARGS") else [agent_path] async def get_mcp_session(): """Get or create MCP client session with proper context management""" global global_mcp_session, global_mcp_stdio_ctx if not MCP_AVAILABLE: logger.warning("MCP not available - SDK not installed") return None # Check if session exists and is still valid if global_mcp_session is not None: # Trust that existing session is valid - verify only when actually using it return global_mcp_session # Create new session using correct MCP SDK pattern try: # Prepare environment variables for MCP server mcp_env = os.environ.copy() if GEMINI_API_KEY: mcp_env["GEMINI_API_KEY"] = GEMINI_API_KEY else: logger.warning("GEMINI_API_KEY not set in environment. Gemini MCP features may not work.") # Add other Gemini MCP configuration if set if os.environ.get("GEMINI_MODEL"): mcp_env["GEMINI_MODEL"] = os.environ.get("GEMINI_MODEL") if os.environ.get("GEMINI_TIMEOUT"): mcp_env["GEMINI_TIMEOUT"] = os.environ.get("GEMINI_TIMEOUT") if os.environ.get("GEMINI_MAX_OUTPUT_TOKENS"): mcp_env["GEMINI_MAX_OUTPUT_TOKENS"] = os.environ.get("GEMINI_MAX_OUTPUT_TOKENS") if os.environ.get("GEMINI_TEMPERATURE"): mcp_env["GEMINI_TEMPERATURE"] = os.environ.get("GEMINI_TEMPERATURE") logger.info("Creating MCP client session...") server_params = StdioServerParameters( command=MCP_SERVER_COMMAND, args=MCP_SERVER_ARGS, env=mcp_env ) # Correct MCP SDK usage: stdio_client is an async context manager # that yields (read, write) streams stdio_ctx = stdio_client(server_params) read, write = await stdio_ctx.__aenter__() # Create ClientSession from the streams session = ClientSession( read, write, client_info=MCP_CLIENT_INFO, ) # Initialize the session (this sends initialize request and waits for response + initialized notification) # The __aenter__() method handles the complete initialization handshake: # 1. Sends initialize request with client info # 2. Waits for initialize response from server # 3. Waits for initialized notification from server (this is critical!) # According to MCP protocol spec, the client MUST wait for the initialized notification # before sending any other requests (like list_tools) try: # The __aenter__() method properly handles the full initialization sequence # including waiting for the server's initialized notification # This is a blocking call that completes only after the server sends initialized await session.__aenter__() init_result = await session.initialize() server_info = getattr(init_result, "serverInfo", None) server_name = getattr(server_info, "name", "unknown") server_version = getattr(server_info, "version", "unknown") logger.info(f"✅ MCP session initialized (server={server_name} v{server_version})") except Exception as e: error_msg = str(e) error_type = type(e).__name__ logger.error(f"❌ MCP session initialization failed: {error_type}: {error_msg}") # Clean up and return None try: await session.__aexit__(None, None, None) except Exception: pass try: await stdio_ctx.__aexit__(None, None, None) except Exception: pass return None # Store both the session and stdio context to keep them alive global_mcp_session = session global_mcp_stdio_ctx = stdio_ctx logger.info("✅ MCP client session created successfully") return session except Exception as e: error_type = type(e).__name__ error_msg = str(e) logger.error(f"❌ Failed to create MCP client session: {error_type}: {error_msg}") global_mcp_session = None global_mcp_stdio_ctx = None return None MCP_TOOLS_CACHE_TTL = int(os.environ.get("MCP_TOOLS_CACHE_TTL", "60")) global_mcp_tools_cache = {"timestamp": 0.0, "tools": None} def invalidate_mcp_tools_cache(): """Invalidate cached MCP tool metadata""" global global_mcp_tools_cache global_mcp_tools_cache = {"timestamp": 0.0, "tools": None} async def get_cached_mcp_tools(force_refresh: bool = False): """Return cached MCP tools list to avoid repeated list_tools calls""" global global_mcp_tools_cache if not MCP_AVAILABLE: return [] now = time.time() if ( not force_refresh and global_mcp_tools_cache["tools"] and now - global_mcp_tools_cache["timestamp"] < MCP_TOOLS_CACHE_TTL ): return global_mcp_tools_cache["tools"] session = await get_mcp_session() if session is None: return [] try: tools_resp = await session.list_tools() tools_list = list(getattr(tools_resp, "tools", []) or []) global_mcp_tools_cache = {"timestamp": now, "tools": tools_list} return tools_list except Exception as e: logger.error(f"Failed to refresh MCP tools: {e}") invalidate_mcp_tools_cache() return [] async def call_agent(user_prompt: str, system_prompt: str = None, files: list = None, model: str = None, temperature: float = 0.2) -> str: """Call Gemini MCP generate_content tool""" if not MCP_AVAILABLE: logger.warning("MCP not available for Gemini call") return "" try: session = await get_mcp_session() if session is None: logger.warning("Failed to get MCP session for Gemini call") return "" tools = await get_cached_mcp_tools() if not tools: tools = await get_cached_mcp_tools(force_refresh=True) if not tools: logger.error("Unable to obtain MCP tool catalog for Gemini calls") return "" generate_tool = None for tool in tools: if tool.name == "generate_content" or "generate_content" in tool.name.lower(): generate_tool = tool logger.info(f"Found Gemini MCP tool: {tool.name}") break if not generate_tool: logger.warning(f"Gemini MCP generate_content tool not found. Available tools: {[t.name for t in tools]}") invalidate_mcp_tools_cache() return "" # Prepare arguments arguments = { "user_prompt": user_prompt } if system_prompt: arguments["system_prompt"] = system_prompt if files: arguments["files"] = files if model: arguments["model"] = model if temperature is not None: arguments["temperature"] = temperature result = await session.call_tool(generate_tool.name, arguments=arguments) # Parse result if hasattr(result, 'content') and result.content: for item in result.content: if hasattr(item, 'text'): response_text = item.text.strip() return response_text logger.warning("âš ī¸ Gemini MCP returned empty or invalid result") return "" except Exception as e: logger.error(f"Gemini MCP call error: {e}") return "" def initialize_medical_model(model_name: str): """Initialize medical model (MedSwin) - download on demand""" global global_medical_models, global_medical_tokenizers if model_name not in global_medical_models or global_medical_models[model_name] is None: logger.info(f"Initializing medical model: {model_name}...") model_path = MEDSWIN_MODELS[model_name] tokenizer = AutoTokenizer.from_pretrained(model_path, token=HF_TOKEN) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", trust_remote_code=True, token=HF_TOKEN, torch_dtype=torch.float16 ) global_medical_models[model_name] = model global_medical_tokenizers[model_name] = tokenizer logger.info(f"Medical model {model_name} initialized successfully") return global_medical_models[model_name], global_medical_tokenizers[model_name] def initialize_tts_model(): """Initialize TTS model for text-to-speech""" global global_tts_model if not TTS_AVAILABLE: logger.warning("TTS library not installed. TTS features will be disabled.") return None if global_tts_model is None: try: logger.info("Initializing TTS model for voice generation...") global_tts_model = TTS(model_name=TTS_MODEL, progress_bar=False) logger.info("TTS model initialized successfully") except Exception as e: logger.warning(f"TTS model initialization failed: {e}") logger.warning("TTS features will be disabled. If pyworld dependency is missing, try: pip install TTS --no-deps && pip install coqui-tts") global_tts_model = None return global_tts_model def get_or_create_embed_model(): """Reuse embedding model to avoid reloading weights each request""" global global_embed_model if global_embed_model is None: logger.info("Initializing shared embedding model for RAG retrieval...") global_embed_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL, token=HF_TOKEN) return global_embed_model async def transcribe_audio_gemini(audio_path: str) -> str: """Transcribe audio using Gemini MCP""" if not MCP_AVAILABLE: return "" try: # Ensure we have an absolute path audio_path_abs = os.path.abspath(audio_path) # Prepare file object for Gemini MCP using path (as per Gemini MCP documentation) files = [{ "path": audio_path_abs }] # Use exact prompts from Gemini MCP documentation system_prompt = "You are a professional transcription service. Provide accurate, well-formatted transcripts." user_prompt = "Please transcribe this audio file. Include speaker identification if multiple speakers are present, and format it with proper punctuation and paragraphs, remove mumble, ignore non-verbal noises." result = await call_agent( user_prompt=user_prompt, system_prompt=system_prompt, files=files, model=GEMINI_MODEL_LITE, # Use lite model for transcription temperature=0.2 ) return result.strip() except Exception as e: logger.error(f"Gemini transcription error: {e}") return "" def transcribe_audio(audio): """Transcribe audio to text using Gemini MCP""" if audio is None: return "" try: # Handle file path (Gradio Audio component returns file path) if isinstance(audio, str): audio_path = audio elif isinstance(audio, tuple): # Handle tuple format (sample_rate, audio_data) sample_rate, audio_data = audio # Save to temp file with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: sf.write(tmp_file.name, audio_data, samplerate=sample_rate) audio_path = tmp_file.name else: audio_path = audio # Use Gemini MCP for transcription if MCP_AVAILABLE: try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio transcribed = nest_asyncio.run(transcribe_audio_gemini(audio_path)) if transcribed: logger.info(f"Transcribed via Gemini MCP: {transcribed[:50]}...") return transcribed except Exception as e: logger.error(f"Error in nested async transcription: {e}") else: transcribed = loop.run_until_complete(transcribe_audio_gemini(audio_path)) if transcribed: logger.info(f"Transcribed via Gemini MCP: {transcribed[:50]}...") return transcribed except Exception as e: logger.error(f"Gemini MCP transcription error: {e}") logger.warning("Gemini MCP transcription not available") return "" except Exception as e: logger.error(f"Transcription error: {e}") return "" async def generate_speech_mcp(text: str) -> str: """Generate speech using MCP TTS tool""" if not MCP_AVAILABLE: return None try: # Get MCP session session = await get_mcp_session() if session is None: return None # Find TTS tool tools = await session.list_tools() tts_tool = None for tool in tools.tools: if "tts" in tool.name.lower() or "speech" in tool.name.lower() or "synthesize" in tool.name.lower(): tts_tool = tool logger.info(f"Found MCP TTS tool: {tool.name}") break if tts_tool: result = await session.call_tool( tts_tool.name, arguments={"text": text, "language": "en"} ) # Parse result - MCP might return audio data or file path if hasattr(result, 'content') and result.content: for item in result.content: if hasattr(item, 'text'): # If it's a file path if os.path.exists(item.text): return item.text elif hasattr(item, 'data') and item.data: # If it's binary audio data, save it with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_file.write(item.data) return tmp_file.name return None except Exception as e: logger.warning(f"MCP TTS error: {e}") return None def generate_speech(text: str): """Generate speech from text using TTS model (with MCP fallback)""" if not text or len(text.strip()) == 0: return None # Try MCP first if available if MCP_AVAILABLE: try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio audio_path = nest_asyncio.run(generate_speech_mcp(text)) if audio_path: logger.info("Generated speech via MCP") return audio_path except: pass else: audio_path = loop.run_until_complete(generate_speech_mcp(text)) if audio_path: return audio_path except Exception as e: pass # MCP TTS not available, fallback to local # Fallback to local TTS model if not TTS_AVAILABLE: logger.error("TTS library not installed. Please install TTS to use voice generation.") return None global global_tts_model if global_tts_model is None: initialize_tts_model() if global_tts_model is None: logger.error("TTS model not available. Please check dependencies.") return None try: # Generate audio wav = global_tts_model.tts(text) # Save to temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: sf.write(tmp_file.name, wav, samplerate=22050) return tmp_file.name except Exception as e: logger.error(f"TTS error: {e}") return None def format_prompt_manually(messages: list, tokenizer) -> str: """Manually format prompt for models without chat template""" prompt_parts = [] # Combine system and user messages into a single instruction system_content = "" user_content = "" for msg in messages: role = msg.get("role", "user") content = msg.get("content", "") if role == "system": system_content = content elif role == "user": user_content = content elif role == "assistant": # Skip assistant messages in history for now (can be added if needed) pass # Format for MedAlpaca/LLaMA-based medical models # Common format: Instruction + Input -> Response if system_content: prompt = f"{system_content}\n\nQuestion: {user_content}\n\nAnswer:" else: prompt = f"Question: {user_content}\n\nAnswer:" return prompt def detect_language(text: str) -> str: """Detect language of input text""" try: lang = detect(text) return lang except LangDetectException: return "en" # Default to English if detection fails def format_url_as_domain(url: str) -> str: """Format URL as simple domain name (e.g., www.mayoclinic.org)""" if not url: return "" try: from urllib.parse import urlparse parsed = urlparse(url) domain = parsed.netloc or parsed.path # Remove www. prefix if present, but keep it for display if domain.startswith('www.'): return domain elif domain: return domain return url except Exception: # Fallback: try to extract domain manually if '://' in url: domain = url.split('://')[1].split('/')[0] return domain return url async def translate_text_gemini(text: str, target_lang: str = "en", source_lang: str = None) -> str: """Translate text using Gemini MCP""" if source_lang: user_prompt = f"Translate the following {source_lang} text to {target_lang}. Only provide the translation, no explanations:\n\n{text}" else: user_prompt = f"Translate the following text to {target_lang}. Only provide the translation, no explanations:\n\n{text}" # Use concise system prompt system_prompt = "You are a professional translator. Translate accurately and concisely." result = await call_agent( user_prompt=user_prompt, system_prompt=system_prompt, model=GEMINI_MODEL_LITE, # Use lite model for translation temperature=0.2 ) return result.strip() def translate_text(text: str, target_lang: str = "en", source_lang: str = None) -> str: """Translate text using Gemini MCP""" if not MCP_AVAILABLE: logger.warning("Gemini MCP not available for translation") return text # Return original text if translation fails try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio translated = nest_asyncio.run(translate_text_gemini(text, target_lang, source_lang)) if translated: logger.info(f"Translated via Gemini MCP: {translated[:50]}...") return translated except Exception as e: logger.error(f"Error in nested async translation: {e}") else: translated = loop.run_until_complete(translate_text_gemini(text, target_lang, source_lang)) if translated: logger.info(f"Translated via Gemini MCP: {translated[:50]}...") return translated except Exception as e: logger.error(f"Gemini MCP translation error: {e}") # Return original text if translation fails return text async def search_web_mcp_tool(query: str, max_results: int = 5) -> list: """Search web using MCP web search tool (e.g., DuckDuckGo MCP server)""" if not MCP_AVAILABLE: return [] try: tools = await get_cached_mcp_tools() if not tools: return [] search_tool = None for tool in tools: tool_name_lower = tool.name.lower() if any(keyword in tool_name_lower for keyword in ["search", "duckduckgo", "ddg", "web"]): search_tool = tool logger.info(f"Found web search MCP tool: {tool.name}") break if not search_tool: tools = await get_cached_mcp_tools(force_refresh=True) for tool in tools: tool_name_lower = tool.name.lower() if any(keyword in tool_name_lower for keyword in ["search", "duckduckgo", "ddg", "web"]): search_tool = tool logger.info(f"Found web search MCP tool after refresh: {tool.name}") break if search_tool: try: session = await get_mcp_session() if session is None: return [] # Call the search tool result = await session.call_tool( search_tool.name, arguments={"query": query, "max_results": max_results} ) # Parse result web_content = [] if hasattr(result, 'content') and result.content: for item in result.content: if hasattr(item, 'text'): try: data = json.loads(item.text) if isinstance(data, list): for entry in data[:max_results]: web_content.append({ 'title': entry.get('title', ''), 'url': entry.get('url', entry.get('href', '')), 'content': entry.get('body', entry.get('snippet', entry.get('content', ''))) }) elif isinstance(data, dict): if 'results' in data: for entry in data['results'][:max_results]: web_content.append({ 'title': entry.get('title', ''), 'url': entry.get('url', entry.get('href', '')), 'content': entry.get('body', entry.get('snippet', entry.get('content', ''))) }) else: web_content.append({ 'title': data.get('title', ''), 'url': data.get('url', data.get('href', '')), 'content': data.get('body', data.get('snippet', data.get('content', ''))) }) except json.JSONDecodeError: # If not JSON, treat as plain text web_content.append({ 'title': '', 'url': '', 'content': item.text[:1000] }) if web_content: return web_content except Exception as e: logger.error(f"Error calling web search MCP tool: {e}") else: logger.debug("No MCP web search tool discovered in current catalog") return [] except Exception as e: logger.error(f"Web search MCP tool error: {e}") return [] async def search_web_mcp(query: str, max_results: int = 5) -> list: """Search web using MCP tools - tries web search MCP tool first, then falls back to direct search""" # First try to use a dedicated web search MCP tool (like DuckDuckGo MCP server) results = await search_web_mcp_tool(query, max_results) if results: logger.info(f"✅ Web search via MCP tool: found {len(results)} results") return results # If no web search MCP tool available, use direct search (ddgs) # Note: Gemini MCP doesn't have web search capability, so we use direct API # The results will then be summarized using Gemini MCP logger.info("â„šī¸ [Direct API] No web search MCP tool found, using direct DuckDuckGo search (results will be summarized with Gemini MCP)") return search_web_fallback(query, max_results) def search_web_fallback(query: str, max_results: int = 5) -> list: """Fallback web search using DuckDuckGo directly (when MCP is not available)""" logger.info(f"🔍 [Direct API] Performing web search using DuckDuckGo API for: {query[:100]}...") # Always import here to ensure availability try: from ddgs import DDGS import requests from bs4 import BeautifulSoup except ImportError: logger.error("Fallback dependencies (ddgs, requests, beautifulsoup4) not available") return [] try: with DDGS() as ddgs: results = list(ddgs.text(query, max_results=max_results)) web_content = [] for result in results: try: url = result.get('href', '') title = result.get('title', '') snippet = result.get('body', '') # Try to fetch full content try: response = requests.get(url, timeout=5, headers={'User-Agent': 'Mozilla/5.0'}) if response.status_code == 200: soup = BeautifulSoup(response.content, 'html.parser') # Extract main content for script in soup(["script", "style"]): script.decompose() text = soup.get_text() # Clean and limit text lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) text = ' '.join(chunk for chunk in chunks if chunk) if len(text) > 1000: text = text[:1000] + "..." web_content.append({ 'title': title, 'url': url, 'content': snippet + "\n" + text[:500] if text else snippet }) else: web_content.append({ 'title': title, 'url': url, 'content': snippet }) except: web_content.append({ 'title': title, 'url': url, 'content': snippet }) except Exception as e: logger.error(f"Error processing search result: {e}") continue logger.info(f"✅ [Direct API] Web search completed: {len(web_content)} results") return web_content except Exception as e: logger.error(f"❌ [Direct API] Web search error: {e}") return [] def search_web(query: str, max_results: int = 5) -> list: """Search web using MCP tools (synchronous wrapper) - prioritizes MCP over direct ddgs""" # Always try MCP first if available if MCP_AVAILABLE: try: # Run async MCP search try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) if loop.is_running(): # If loop is already running, use nest_asyncio or create new thread try: import nest_asyncio results = nest_asyncio.run(search_web_mcp(query, max_results)) if results: # Only return if we got results from MCP return results except (ImportError, AttributeError): # Fallback: run in thread import concurrent.futures with concurrent.futures.ThreadPoolExecutor() as executor: future = executor.submit(asyncio.run, search_web_mcp(query, max_results)) results = future.result(timeout=30) if results: # Only return if we got results from MCP return results else: results = loop.run_until_complete(search_web_mcp(query, max_results)) if results: # Only return if we got results from MCP return results except Exception as e: logger.error(f"Error running async MCP search: {e}") # Only use ddgs fallback if MCP is not available or returned no results logger.info("â„šī¸ [Direct API] Falling back to direct DuckDuckGo search (MCP unavailable or returned no results)") return search_web_fallback(query, max_results) async def summarize_web_content_gemini(content_list: list, query: str) -> str: """Summarize web search results using Gemini MCP""" combined_content = "\n\n".join([f"Source: {item['title']}\n{item['content']}" for item in content_list[:3]]) user_prompt = f"""Summarize the following web search results related to the query: "{query}" Extract key medical information, facts, and insights. Be concise and focus on reliable information. Search Results: {combined_content} Summary:""" # Use concise system prompt system_prompt = "You are a medical information summarizer. Extract and summarize key medical facts accurately." result = await call_agent( user_prompt=user_prompt, system_prompt=system_prompt, model=GEMINI_MODEL, # Use full model for summarization temperature=0.5 ) return result.strip() def summarize_web_content(content_list: list, query: str) -> str: """Summarize web search results using Gemini MCP""" if not MCP_AVAILABLE: logger.warning("Gemini MCP not available for summarization") # Fallback: return first result's content if content_list: return content_list[0].get('content', '')[:500] return "" try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio summary = nest_asyncio.run(summarize_web_content_gemini(content_list, query)) if summary: return summary except Exception as e: logger.error(f"Error in nested async summarization: {e}") else: summary = loop.run_until_complete(summarize_web_content_gemini(content_list, query)) if summary: return summary except Exception as e: logger.error(f"Gemini MCP summarization error: {e}") # Fallback: return first result's content if content_list: return content_list[0].get('content', '')[:500] return "" def get_llm_for_rag(temperature=0.7, max_new_tokens=256, top_p=0.95, top_k=50): """Get LLM for RAG indexing (uses medical model)""" # Use medical model for RAG indexing instead of translation model medical_model_obj, medical_tokenizer = initialize_medical_model(DEFAULT_MEDICAL_MODEL) return HuggingFaceLLM( context_window=4096, max_new_tokens=max_new_tokens, tokenizer=medical_tokenizer, model=medical_model_obj, generate_kwargs={ "do_sample": True, "temperature": temperature, "top_k": top_k, "top_p": top_p } ) async def autonomous_reasoning_gemini(query: str) -> dict: """Autonomous reasoning using Gemini MCP""" reasoning_prompt = f"""Analyze this medical query and provide structured reasoning: Query: "{query}" Analyze: 1. Query Type: (diagnosis, treatment, drug_info, symptom_analysis, research, general_info) 2. Complexity: (simple, moderate, complex, multi_faceted) 3. Information Needs: What specific information is required? 4. Requires RAG: (yes/no) - Does this need document context? 5. Requires Web Search: (yes/no) - Does this need current/updated information? 6. Sub-questions: Break down into key sub-questions if complex Respond in JSON format: {{ "query_type": "...", "complexity": "...", "information_needs": ["..."], "requires_rag": true/false, "requires_web_search": true/false, "sub_questions": ["..."] }}""" # Use concise system prompt system_prompt = "You are a medical reasoning system. Analyze queries systematically and provide structured JSON responses." response = await call_agent( user_prompt=reasoning_prompt, system_prompt=system_prompt, model=GEMINI_MODEL, # Use full model for reasoning temperature=0.3 ) # Parse JSON response (with fallback) try: # Extract JSON from response json_start = response.find('{') json_end = response.rfind('}') + 1 if json_start >= 0 and json_end > json_start: reasoning = json.loads(response[json_start:json_end]) else: raise ValueError("No JSON found") except: # Fallback reasoning reasoning = { "query_type": "general_info", "complexity": "moderate", "information_needs": ["medical information"], "requires_rag": True, "requires_web_search": False, "sub_questions": [query] } logger.info(f"Reasoning analysis: {reasoning}") return reasoning def autonomous_reasoning(query: str, history: list) -> dict: """ Autonomous reasoning: Analyze query complexity, intent, and information needs. Returns reasoning analysis with query type, complexity, and required information sources. Uses Gemini MCP for reasoning. """ if not MCP_AVAILABLE: logger.warning("âš ī¸ Gemini MCP not available for reasoning, using fallback") # Fallback reasoning return { "query_type": "general_info", "complexity": "moderate", "information_needs": ["medical information"], "requires_rag": True, "requires_web_search": False, "sub_questions": [query] } try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio reasoning = nest_asyncio.run(autonomous_reasoning_gemini(query)) return reasoning except Exception as e: logger.error(f"Error in nested async reasoning: {e}") else: reasoning = loop.run_until_complete(autonomous_reasoning_gemini(query)) return reasoning except Exception as e: logger.error(f"Gemini MCP reasoning error: {e}") # Fallback reasoning only if all attempts failed logger.warning("âš ī¸ Falling back to default reasoning") return { "query_type": "general_info", "complexity": "moderate", "information_needs": ["medical information"], "requires_rag": True, "requires_web_search": False, "sub_questions": [query] } def create_execution_plan(reasoning: dict, query: str, has_rag_index: bool) -> dict: """ Planning: Create multi-step execution plan based on reasoning analysis. Returns execution plan with steps and strategy. """ plan = { "steps": [], "strategy": "sequential", "iterations": 1 } # Determine execution strategy if reasoning["complexity"] in ["complex", "multi_faceted"]: plan["strategy"] = "iterative" plan["iterations"] = 2 # Step 1: Language detection and translation plan["steps"].append({ "step": 1, "action": "detect_language", "description": "Detect query language and translate if needed" }) # Step 2: RAG retrieval (if needed and available) if reasoning.get("requires_rag", True) and has_rag_index: plan["steps"].append({ "step": 2, "action": "rag_retrieval", "description": "Retrieve relevant document context", "parameters": {"top_k": 15, "merge_threshold": 0.5} }) # Step 3: Web search (if needed) if reasoning.get("requires_web_search", False): plan["steps"].append({ "step": 3, "action": "web_search", "description": "Search web for current/updated information", "parameters": {"max_results": 5} }) # Step 4: Sub-question processing (if complex) if reasoning.get("sub_questions") and len(reasoning["sub_questions"]) > 1: plan["steps"].append({ "step": 4, "action": "multi_step_reasoning", "description": "Process sub-questions iteratively", "sub_questions": reasoning["sub_questions"] }) # Step 5: Synthesis and answer generation plan["steps"].append({ "step": len(plan["steps"]) + 1, "action": "synthesize_answer", "description": "Generate comprehensive answer from all sources" }) # Step 6: Self-reflection (for complex queries) if reasoning["complexity"] in ["complex", "multi_faceted"]: plan["steps"].append({ "step": len(plan["steps"]) + 1, "action": "self_reflection", "description": "Evaluate answer quality and completeness" }) logger.info(f"Execution plan created: {len(plan['steps'])} steps") return plan def autonomous_execution_strategy(reasoning: dict, plan: dict, use_rag: bool, use_web_search: bool, has_rag_index: bool) -> dict: """ Autonomous execution: Make decisions on information gathering strategy. Only suggests web search override, but respects user's RAG disable setting. """ strategy = { "use_rag": use_rag, # Respect user's RAG setting "use_web_search": use_web_search, "reasoning_override": False, "rationale": "" } # Respect user toggle; just log recommendation if web search is disabled if reasoning.get("requires_web_search", False) and not use_web_search: strategy["rationale"] = "Reasoning suggests web search for current information, but the user kept it disabled." # Note: We don't override RAG setting because: # 1. User may have explicitly disabled it # 2. RAG requires documents to be uploaded # 3. We should respect user's explicit choice if strategy["rationale"]: logger.info(f"Autonomous reasoning note: {strategy['rationale']}") return strategy async def gemini_supervisor_breakdown_async(query: str, use_rag: bool, use_web_search: bool, time_elapsed: float, max_duration: int = 120) -> dict: """ Gemini Supervisor: Break user query into sub-topics (flexible number, explore different approaches) This is the main supervisor function that orchestrates the MAC architecture. All internal thoughts are logged, not displayed. """ remaining_time = max(15, max_duration - time_elapsed) mode_description = [] if use_rag: mode_description.append("RAG mode enabled - will use retrieved documents") if use_web_search: mode_description.append("Web search mode enabled - will search online sources") if not mode_description: mode_description.append("Direct answer mode - no additional context") # Calculate reasonable max topics based on time remaining # Allow more subtasks if we have time, but be flexible estimated_time_per_task = 8 # seconds per task max_topics_by_time = max(2, int((remaining_time - 20) / estimated_time_per_task)) max_topics = min(max_topics_by_time, 10) # Cap at 10, but allow more than 4 prompt = f"""You are a supervisor agent coordinating with a MedSwin medical specialist model. Break the following medical query into focused sub-topics that MedSwin can answer sequentially. Explore different potential approaches to comprehensively address the topic. Query: "{query}" Mode: {', '.join(mode_description)} Time Remaining: ~{remaining_time:.1f}s Maximum Topics: {max_topics} (adjust based on complexity - use as many as needed for thorough coverage) Return ONLY valid JSON (no markdown, no tables, no explanations): {{ "sub_topics": [ {{ "id": 1, "topic": "concise topic name", "instruction": "specific directive for MedSwin to answer this topic", "expected_tokens": 200, "priority": "high|medium|low", "approach": "brief description of approach/angle for this topic" }}, ... ], "strategy": "brief strategy description explaining the breakdown approach", "exploration_note": "brief note on different approaches explored" }} Guidelines: - Break down the query into as many subtasks as needed for comprehensive coverage - Explore different angles/approaches (e.g., clinical, diagnostic, treatment, prevention, research perspectives) - Each topic should be focused and answerable in ~200 tokens by MedSwin - Prioritize topics by importance (high priority first) - Don't limit yourself to 4 topics - use more if the query is complex or multi-faceted""" system_prompt = "You are a medical query supervisor. Break queries into structured JSON sub-topics, exploring different approaches. Return ONLY valid JSON." response = await call_agent( user_prompt=prompt, system_prompt=system_prompt, model=GEMINI_MODEL, temperature=0.3 ) try: # Extract JSON from response json_start = response.find('{') json_end = response.rfind('}') + 1 if json_start >= 0 and json_end > json_start: breakdown = json.loads(response[json_start:json_end]) logger.info(f"[GEMINI SUPERVISOR] Query broken into {len(breakdown.get('sub_topics', []))} sub-topics") logger.debug(f"[GEMINI SUPERVISOR] Breakdown: {json.dumps(breakdown, indent=2)}") return breakdown else: raise ValueError("Supervisor JSON not found") except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] Breakdown parsing failed: {exc}") # Fallback: simple breakdown breakdown = { "sub_topics": [ {"id": 1, "topic": "Core Question", "instruction": "Address the main medical question", "expected_tokens": 200, "priority": "high", "approach": "direct answer"}, {"id": 2, "topic": "Clinical Details", "instruction": "Provide key clinical insights", "expected_tokens": 200, "priority": "medium", "approach": "clinical perspective"}, ], "strategy": "Sequential answer with key points", "exploration_note": "Fallback breakdown - basic coverage" } logger.warning(f"[GEMINI SUPERVISOR] Using fallback breakdown") return breakdown async def gemini_supervisor_search_strategies_async(query: str, time_elapsed: float) -> dict: """ Gemini Supervisor: In search mode, break query into 1-4 searching strategies Returns JSON with search strategies that will be executed with ddgs """ prompt = f"""You are supervising web search for a medical query. Break this query into 1-4 focused search strategies (each targeting 1-2 sources). Query: "{query}" Return ONLY valid JSON: {{ "search_strategies": [ {{ "id": 1, "strategy": "search query string", "target_sources": 1, "focus": "what to search for" }}, ... ], "max_strategies": 4 }} Keep strategies focused and avoid overlap.""" system_prompt = "You are a search strategy supervisor. Create focused search queries. Return ONLY valid JSON." response = await call_agent( user_prompt=prompt, system_prompt=system_prompt, model=GEMINI_MODEL_LITE, # Use lite model for search planning temperature=0.2 ) try: json_start = response.find('{') json_end = response.rfind('}') + 1 if json_start >= 0 and json_end > json_start: strategies = json.loads(response[json_start:json_end]) logger.info(f"[GEMINI SUPERVISOR] Created {len(strategies.get('search_strategies', []))} search strategies") logger.debug(f"[GEMINI SUPERVISOR] Strategies: {json.dumps(strategies, indent=2)}") return strategies else: raise ValueError("Search strategies JSON not found") except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] Search strategies parsing failed: {exc}") return { "search_strategies": [ {"id": 1, "strategy": query, "target_sources": 2, "focus": "main query"} ], "max_strategies": 1 } async def gemini_supervisor_rag_brainstorm_async(query: str, retrieved_docs: str, time_elapsed: float) -> dict: """ Gemini Supervisor: In RAG mode, brainstorm retrieved documents into 1-4 short contexts These contexts will be passed to MedSwin to support decision-making """ # Limit retrieved docs to avoid token overflow max_doc_length = 3000 if len(retrieved_docs) > max_doc_length: retrieved_docs = retrieved_docs[:max_doc_length] + "..." prompt = f"""You are supervising RAG context preparation for a medical query. Brainstorm the retrieved documents into 1-4 concise, focused contexts that MedSwin can use. Query: "{query}" Retrieved Documents: {retrieved_docs} Return ONLY valid JSON: {{ "contexts": [ {{ "id": 1, "context": "concise summary of relevant information (keep under 500 chars)", "focus": "what this context covers", "relevance": "high|medium|low" }}, ... ], "max_contexts": 4 }} Keep contexts brief and factual. Avoid redundancy.""" system_prompt = "You are a RAG context supervisor. Summarize documents into concise contexts. Return ONLY valid JSON." response = await call_agent( user_prompt=prompt, system_prompt=system_prompt, model=GEMINI_MODEL_LITE, # Use lite model for RAG brainstorming temperature=0.2 ) try: json_start = response.find('{') json_end = response.rfind('}') + 1 if json_start >= 0 and json_end > json_start: contexts = json.loads(response[json_start:json_end]) logger.info(f"[GEMINI SUPERVISOR] Brainstormed {len(contexts.get('contexts', []))} RAG contexts") logger.debug(f"[GEMINI SUPERVISOR] Contexts: {json.dumps(contexts, indent=2)}") return contexts else: raise ValueError("RAG contexts JSON not found") except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] RAG brainstorming parsing failed: {exc}") # Fallback: use retrieved docs as single context return { "contexts": [ {"id": 1, "context": retrieved_docs[:500], "focus": "retrieved information", "relevance": "high"} ], "max_contexts": 1 } def gemini_supervisor_breakdown(query: str, use_rag: bool, use_web_search: bool, time_elapsed: float, max_duration: int = 120) -> dict: """Wrapper to obtain supervisor breakdown synchronously""" if not MCP_AVAILABLE: logger.warning("[GEMINI SUPERVISOR] MCP unavailable, using fallback breakdown") return { "sub_topics": [ {"id": 1, "topic": "Core Question", "instruction": "Address the main medical question", "expected_tokens": 200, "priority": "high", "approach": "direct answer"}, {"id": 2, "topic": "Clinical Details", "instruction": "Provide key clinical insights", "expected_tokens": 200, "priority": "medium", "approach": "clinical perspective"}, ], "strategy": "Sequential answer with key points", "exploration_note": "Fallback breakdown - basic coverage" } try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio return nest_asyncio.run( gemini_supervisor_breakdown_async(query, use_rag, use_web_search, time_elapsed, max_duration) ) except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] Nested breakdown execution failed: {exc}") raise return loop.run_until_complete( gemini_supervisor_breakdown_async(query, use_rag, use_web_search, time_elapsed, max_duration) ) except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] Breakdown request failed: {exc}") return { "sub_topics": [ {"id": 1, "topic": "Core Question", "instruction": "Address the main medical question", "expected_tokens": 200, "priority": "high", "approach": "direct answer"}, ], "strategy": "Direct answer", "exploration_note": "Fallback breakdown - single topic" } def gemini_supervisor_search_strategies(query: str, time_elapsed: float) -> dict: """Wrapper to obtain search strategies synchronously""" if not MCP_AVAILABLE: logger.warning("[GEMINI SUPERVISOR] MCP unavailable for search strategies") return { "search_strategies": [ {"id": 1, "strategy": query, "target_sources": 2, "focus": "main query"} ], "max_strategies": 1 } try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio return nest_asyncio.run(gemini_supervisor_search_strategies_async(query, time_elapsed)) except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] Nested search strategies execution failed: {exc}") return { "search_strategies": [ {"id": 1, "strategy": query, "target_sources": 2, "focus": "main query"} ], "max_strategies": 1 } return loop.run_until_complete(gemini_supervisor_search_strategies_async(query, time_elapsed)) except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] Search strategies request failed: {exc}") return { "search_strategies": [ {"id": 1, "strategy": query, "target_sources": 2, "focus": "main query"} ], "max_strategies": 1 } def gemini_supervisor_rag_brainstorm(query: str, retrieved_docs: str, time_elapsed: float) -> dict: """Wrapper to obtain RAG brainstorm synchronously""" if not MCP_AVAILABLE: logger.warning("[GEMINI SUPERVISOR] MCP unavailable for RAG brainstorm") return { "contexts": [ {"id": 1, "context": retrieved_docs[:500], "focus": "retrieved information", "relevance": "high"} ], "max_contexts": 1 } try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio return nest_asyncio.run(gemini_supervisor_rag_brainstorm_async(query, retrieved_docs, time_elapsed)) except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] Nested RAG brainstorm execution failed: {exc}") return { "contexts": [ {"id": 1, "context": retrieved_docs[:500], "focus": "retrieved information", "relevance": "high"} ], "max_contexts": 1 } return loop.run_until_complete(gemini_supervisor_rag_brainstorm_async(query, retrieved_docs, time_elapsed)) except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] RAG brainstorm request failed: {exc}") return { "contexts": [ {"id": 1, "context": retrieved_docs[:500], "focus": "retrieved information", "relevance": "high"} ], "max_contexts": 1 } @spaces.GPU(max_duration=120) def execute_medswin_task( medical_model_obj, medical_tokenizer, task_instruction: str, context: str, system_prompt_base: str, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float ) -> str: """ MedSwin Specialist: Execute a single task assigned by Gemini Supervisor This function is tagged with @spaces.GPU to run on GPU (ZeroGPU equivalent) All internal thoughts are logged, only final answer is returned """ # Build task-specific prompt if context: full_prompt = f"{system_prompt_base}\n\nContext:\n{context}\n\nTask: {task_instruction}\n\nAnswer concisely with key bullet points (Markdown format, no tables):" else: full_prompt = f"{system_prompt_base}\n\nTask: {task_instruction}\n\nAnswer concisely with key bullet points (Markdown format, no tables):" messages = [{"role": "system", "content": full_prompt}] # Format prompt if hasattr(medical_tokenizer, 'chat_template') and medical_tokenizer.chat_template is not None: try: prompt = medical_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) except Exception as e: logger.warning(f"[MEDSWIN] Chat template failed, using manual formatting: {e}") prompt = format_prompt_manually(messages, medical_tokenizer) else: prompt = format_prompt_manually(messages, medical_tokenizer) # Tokenize and generate inputs = medical_tokenizer(prompt, return_tensors="pt").to(medical_model_obj.device) eos_token_id = medical_tokenizer.eos_token_id or medical_tokenizer.pad_token_id with torch.no_grad(): outputs = medical_model_obj.generate( **inputs, max_new_tokens=min(max_new_tokens, 800), # Limit per task temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=penalty, do_sample=True, eos_token_id=eos_token_id, pad_token_id=medical_tokenizer.pad_token_id or eos_token_id ) # Decode response response = medical_tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) # Clean response - remove any table-like formatting, ensure Markdown bullets response = response.strip() # Remove table markers if present if "|" in response and "---" in response: logger.warning("[MEDSWIN] Detected table format, converting to Markdown bullets") # Simple conversion: split by lines and convert to bullets lines = [line.strip() for line in response.split('\n') if line.strip() and not line.strip().startswith('|') and '---' not in line] response = '\n'.join([f"- {line}" if not line.startswith('-') else line for line in lines]) logger.info(f"[MEDSWIN] Task completed: {len(response)} chars generated") return response async def gemini_supervisor_synthesize_async(query: str, medswin_answers: list, rag_contexts: list, search_contexts: list, breakdown: dict) -> str: """ Gemini Supervisor: Synthesize final answer from all MedSwin responses with clear context Provides better context to create a comprehensive, well-structured final answer """ # Prepare context summary context_summary = "" if rag_contexts: context_summary += f"Document Context Available: {len(rag_contexts)} context(s) from uploaded documents.\n" if search_contexts: context_summary += f"Web Search Context Available: {len(search_contexts)} search result(s).\n" # Combine all MedSwin answers all_answers_text = "\n\n---\n\n".join([f"## {i+1}. {ans}" for i, ans in enumerate(medswin_answers)]) prompt = f"""You are a supervisor agent synthesizing a comprehensive medical answer from multiple specialist responses. Original Query: "{query}" Context Available: {context_summary} MedSwin Specialist Responses (from {len(medswin_answers)} sub-topics): {all_answers_text} Your task: 1. Synthesize all responses into a coherent, comprehensive final answer 2. Integrate information from all sub-topics seamlessly 3. Ensure the answer directly addresses the original query 4. Maintain clinical accuracy and clarity 5. Use clear structure with appropriate headings and bullet points 6. Remove redundancy and contradictions 7. Ensure all important points from MedSwin responses are included Return the final synthesized answer in Markdown format. Do not add meta-commentary or explanations - just provide the final answer.""" system_prompt = "You are a medical answer synthesis supervisor. Create comprehensive, well-structured final answers from multiple specialist responses." result = await call_agent( user_prompt=prompt, system_prompt=system_prompt, model=GEMINI_MODEL, temperature=0.3 ) return result.strip() async def gemini_supervisor_challenge_async(query: str, current_answer: str, medswin_answers: list, rag_contexts: list, search_contexts: list) -> dict: """ Gemini Supervisor: Challenge and evaluate the current answer, suggesting improvements Returns evaluation with suggestions for enhancement """ context_info = "" if rag_contexts: context_info += f"Document contexts: {len(rag_contexts)} available.\n" if search_contexts: context_info += f"Search contexts: {len(search_contexts)} available.\n" all_answers_text = "\n\n---\n\n".join([f"## {i+1}. {ans}" for i, ans in enumerate(medswin_answers)]) prompt = f"""You are a supervisor agent evaluating and challenging a medical answer for quality and completeness. Original Query: "{query}" Available Context: {context_info} MedSwin Specialist Responses: {all_answers_text} Current Synthesized Answer: {current_answer[:2000]} Evaluate this answer and provide: 1. Completeness: Does it fully address the query? What's missing? 2. Accuracy: Are there any inaccuracies or contradictions? 3. Clarity: Is it well-structured and clear? 4. Context Usage: Are document/search contexts properly utilized? 5. Improvement Suggestions: Specific ways to enhance the answer Return ONLY valid JSON: {{ "is_optimal": true/false, "completeness_score": 0-10, "accuracy_score": 0-10, "clarity_score": 0-10, "missing_aspects": ["..."], "inaccuracies": ["..."], "improvement_suggestions": ["..."], "needs_more_context": true/false, "enhancement_instructions": "specific instructions for improving the answer" }}""" system_prompt = "You are a medical answer quality evaluator. Provide honest, constructive feedback in JSON format. Return ONLY valid JSON." response = await call_agent( user_prompt=prompt, system_prompt=system_prompt, model=GEMINI_MODEL, temperature=0.3 ) try: json_start = response.find('{') json_end = response.rfind('}') + 1 if json_start >= 0 and json_end > json_start: evaluation = json.loads(response[json_start:json_end]) logger.info(f"[GEMINI SUPERVISOR] Challenge evaluation: optimal={evaluation.get('is_optimal', False)}, scores={evaluation.get('completeness_score', 'N/A')}/{evaluation.get('accuracy_score', 'N/A')}/{evaluation.get('clarity_score', 'N/A')}") return evaluation else: raise ValueError("Evaluation JSON not found") except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] Challenge evaluation parsing failed: {exc}") return { "is_optimal": True, "completeness_score": 7, "accuracy_score": 7, "clarity_score": 7, "missing_aspects": [], "inaccuracies": [], "improvement_suggestions": [], "needs_more_context": False, "enhancement_instructions": "" } async def gemini_supervisor_enhance_answer_async(query: str, current_answer: str, enhancement_instructions: str, medswin_answers: list, rag_contexts: list, search_contexts: list) -> str: """ Gemini Supervisor: Enhance the answer based on challenge feedback """ context_info = "" if rag_contexts: context_info += f"Document contexts: {len(rag_contexts)} available.\n" if search_contexts: context_info += f"Search contexts: {len(search_contexts)} available.\n" all_answers_text = "\n\n---\n\n".join([f"## {i+1}. {ans}" for i, ans in enumerate(medswin_answers)]) prompt = f"""You are a supervisor agent enhancing a medical answer based on evaluation feedback. Original Query: "{query}" Available Context: {context_info} MedSwin Specialist Responses: {all_answers_text} Current Answer (to enhance): {current_answer} Enhancement Instructions: {enhancement_instructions} Create an enhanced version of the answer that: 1. Addresses all improvement suggestions 2. Fills in missing aspects 3. Corrects any inaccuracies 4. Improves clarity and structure 5. Better utilizes available context 6. Maintains all valuable information from the current answer Return the enhanced answer in Markdown format. Do not add meta-commentary.""" system_prompt = "You are a medical answer enhancement supervisor. Improve answers based on evaluation feedback while maintaining accuracy." result = await call_agent( user_prompt=prompt, system_prompt=system_prompt, model=GEMINI_MODEL, temperature=0.3 ) return result.strip() async def gemini_supervisor_check_clarity_async(query: str, answer: str, use_web_search: bool) -> dict: """ Gemini Supervisor: Check if answer is unclear or supervisor is unsure (only when search mode enabled) Returns decision on whether to trigger additional search """ if not use_web_search: # Only check clarity when search mode is enabled return {"is_unclear": False, "needs_search": False, "search_queries": []} prompt = f"""You are a supervisor agent evaluating answer clarity and completeness. Query: "{query}" Current Answer: {answer[:1500]} Evaluate: 1. Is the answer unclear or incomplete? 2. Are there gaps that web search could fill? 3. Is the supervisor (you) unsure about certain aspects? Return ONLY valid JSON: {{ "is_unclear": true/false, "needs_search": true/false, "uncertainty_areas": ["..."], "search_queries": ["specific search queries to fill gaps"], "rationale": "brief explanation" }} Only suggest search if the answer is genuinely unclear or has significant gaps that search could address.""" system_prompt = "You are a clarity evaluator. Assess if additional web search is needed. Return ONLY valid JSON." response = await call_agent( user_prompt=prompt, system_prompt=system_prompt, model=GEMINI_MODEL_LITE, temperature=0.2 ) try: json_start = response.find('{') json_end = response.rfind('}') + 1 if json_start >= 0 and json_end > json_start: evaluation = json.loads(response[json_start:json_end]) logger.info(f"[GEMINI SUPERVISOR] Clarity check: unclear={evaluation.get('is_unclear', False)}, needs_search={evaluation.get('needs_search', False)}") return evaluation else: raise ValueError("Clarity check JSON not found") except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] Clarity check parsing failed: {exc}") return {"is_unclear": False, "needs_search": False, "search_queries": []} def gemini_supervisor_synthesize(query: str, medswin_answers: list, rag_contexts: list, search_contexts: list, breakdown: dict) -> str: """Wrapper to synthesize answer synchronously""" if not MCP_AVAILABLE: logger.warning("[GEMINI SUPERVISOR] MCP unavailable for synthesis, using simple concatenation") return "\n\n".join(medswin_answers) try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio return nest_asyncio.run(gemini_supervisor_synthesize_async(query, medswin_answers, rag_contexts, search_contexts, breakdown)) except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] Nested synthesis failed: {exc}") return "\n\n".join(medswin_answers) return loop.run_until_complete(gemini_supervisor_synthesize_async(query, medswin_answers, rag_contexts, search_contexts, breakdown)) except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] Synthesis failed: {exc}") return "\n\n".join(medswin_answers) def gemini_supervisor_challenge(query: str, current_answer: str, medswin_answers: list, rag_contexts: list, search_contexts: list) -> dict: """Wrapper to challenge answer synchronously""" if not MCP_AVAILABLE: return {"is_optimal": True, "completeness_score": 7, "accuracy_score": 7, "clarity_score": 7, "missing_aspects": [], "inaccuracies": [], "improvement_suggestions": [], "needs_more_context": False, "enhancement_instructions": ""} try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio return nest_asyncio.run(gemini_supervisor_challenge_async(query, current_answer, medswin_answers, rag_contexts, search_contexts)) except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] Nested challenge failed: {exc}") return {"is_optimal": True, "completeness_score": 7, "accuracy_score": 7, "clarity_score": 7, "missing_aspects": [], "inaccuracies": [], "improvement_suggestions": [], "needs_more_context": False, "enhancement_instructions": ""} return loop.run_until_complete(gemini_supervisor_challenge_async(query, current_answer, medswin_answers, rag_contexts, search_contexts)) except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] Challenge failed: {exc}") return {"is_optimal": True, "completeness_score": 7, "accuracy_score": 7, "clarity_score": 7, "missing_aspects": [], "inaccuracies": [], "improvement_suggestions": [], "needs_more_context": False, "enhancement_instructions": ""} def gemini_supervisor_enhance_answer(query: str, current_answer: str, enhancement_instructions: str, medswin_answers: list, rag_contexts: list, search_contexts: list) -> str: """Wrapper to enhance answer synchronously""" if not MCP_AVAILABLE: return current_answer try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio return nest_asyncio.run(gemini_supervisor_enhance_answer_async(query, current_answer, enhancement_instructions, medswin_answers, rag_contexts, search_contexts)) except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] Nested enhancement failed: {exc}") return current_answer return loop.run_until_complete(gemini_supervisor_enhance_answer_async(query, current_answer, enhancement_instructions, medswin_answers, rag_contexts, search_contexts)) except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] Enhancement failed: {exc}") return current_answer def gemini_supervisor_check_clarity(query: str, answer: str, use_web_search: bool) -> dict: """Wrapper to check clarity synchronously""" if not MCP_AVAILABLE or not use_web_search: return {"is_unclear": False, "needs_search": False, "search_queries": []} try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio return nest_asyncio.run(gemini_supervisor_check_clarity_async(query, answer, use_web_search)) except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] Nested clarity check failed: {exc}") return {"is_unclear": False, "needs_search": False, "search_queries": []} return loop.run_until_complete(gemini_supervisor_check_clarity_async(query, answer, use_web_search)) except Exception as exc: logger.error(f"[GEMINI SUPERVISOR] Clarity check failed: {exc}") return {"is_unclear": False, "needs_search": False, "search_queries": []} async def self_reflection_gemini(answer: str, query: str) -> dict: """Self-reflection using Gemini MCP""" reflection_prompt = f"""Evaluate this medical answer for quality and completeness: Query: "{query}" Answer: "{answer[:1000]}" Evaluate: 1. Completeness: Does it address all aspects of the query? 2. Accuracy: Is the medical information accurate? 3. Clarity: Is it clear and well-structured? 4. Sources: Are sources cited appropriately? 5. Missing Information: What important information might be missing? Respond in JSON: {{ "completeness_score": 0-10, "accuracy_score": 0-10, "clarity_score": 0-10, "overall_score": 0-10, "missing_aspects": ["..."], "improvement_suggestions": ["..."] }}""" # Use concise system prompt system_prompt = "You are a medical answer quality evaluator. Provide honest, constructive feedback." response = await call_agent( user_prompt=reflection_prompt, system_prompt=system_prompt, model=GEMINI_MODEL, # Use full model for reflection temperature=0.3 ) try: json_start = response.find('{') json_end = response.rfind('}') + 1 if json_start >= 0 and json_end > json_start: reflection = json.loads(response[json_start:json_end]) else: reflection = {"overall_score": 7, "improvement_suggestions": []} except: reflection = {"overall_score": 7, "improvement_suggestions": []} logger.info(f"Self-reflection score: {reflection.get('overall_score', 'N/A')}") return reflection def self_reflection(answer: str, query: str, reasoning: dict) -> dict: """ Self-reflection: Evaluate answer quality and completeness. Returns reflection with quality score and improvement suggestions. """ if not MCP_AVAILABLE: logger.warning("Gemini MCP not available for reflection, using fallback") return {"overall_score": 7, "improvement_suggestions": []} try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio return nest_asyncio.run(self_reflection_gemini(answer, query)) except Exception as e: logger.error(f"Error in nested async reflection: {e}") else: return loop.run_until_complete(self_reflection_gemini(answer, query)) except Exception as e: logger.error(f"Gemini MCP reflection error: {e}") return {"overall_score": 7, "improvement_suggestions": []} async def parse_document_gemini(file_path: str, file_extension: str) -> str: """Parse document using Gemini MCP""" if not MCP_AVAILABLE: return "" try: # Read file and encode to base64 with open(file_path, 'rb') as f: file_content = base64.b64encode(f.read()).decode('utf-8') # Determine MIME type from file extension mime_type_map = { '.pdf': 'application/pdf', '.doc': 'application/msword', '.docx': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document', '.txt': 'text/plain', '.md': 'text/markdown', '.json': 'application/json', '.xml': 'application/xml', '.csv': 'text/csv' } mime_type = mime_type_map.get(file_extension, 'application/octet-stream') # Prepare file object for Gemini MCP (use content for base64) files = [{ "content": file_content, "type": mime_type }] # Use concise system prompt system_prompt = "Extract all text content from the document accurately." user_prompt = "Extract all text content from this document. Return only the extracted text, preserving structure and formatting where possible." result = await call_agent( user_prompt=user_prompt, system_prompt=system_prompt, files=files, model=GEMINI_MODEL_LITE, # Use lite model for parsing temperature=0.2 ) return result.strip() except Exception as e: logger.error(f"Gemini document parsing error: {e}") return "" def extract_text_from_document(file): """Extract text from document using Gemini MCP""" file_name = file.name file_extension = os.path.splitext(file_name)[1].lower() # Handle text files directly if file_extension == '.txt': text = file.read().decode('utf-8') return text, len(text.split()), None # For PDF, Word, and other documents, use Gemini MCP # Save file to temporary location for processing try: with tempfile.NamedTemporaryFile(delete=False, suffix=file_extension) as tmp_file: # Write file content to temp file file.seek(0) # Reset file pointer tmp_file.write(file.read()) tmp_file_path = tmp_file.name # Use Gemini MCP to parse document if MCP_AVAILABLE: try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio text = nest_asyncio.run(parse_document_gemini(tmp_file_path, file_extension)) except Exception as e: logger.error(f"Error in nested async document parsing: {e}") text = "" else: text = loop.run_until_complete(parse_document_gemini(tmp_file_path, file_extension)) # Clean up temp file try: os.unlink(tmp_file_path) except: pass if text: return text, len(text.split()), None else: return None, 0, ValueError(f"Failed to extract text from {file_extension} file using Gemini MCP") except Exception as e: logger.error(f"Gemini MCP document parsing error: {e}") # Clean up temp file try: os.unlink(tmp_file_path) except: pass return None, 0, ValueError(f"Error parsing {file_extension} file: {str(e)}") else: # Clean up temp file try: os.unlink(tmp_file_path) except: pass return None, 0, ValueError(f"Gemini MCP not available. Cannot parse {file_extension} files.") except Exception as e: logger.error(f"Error processing document: {e}") return None, 0, ValueError(f"Error processing {file_extension} file: {str(e)}") @spaces.GPU(max_duration=120) def create_or_update_index(files, request: gr.Request): global global_file_info if not files: return "Please provide files.", "" start_time = time.time() user_id = request.session_hash save_dir = f"./{user_id}_index" # Initialize LlamaIndex modules llm = get_llm_for_rag() embed_model = get_or_create_embed_model() Settings.llm = llm Settings.embed_model = embed_model file_stats = [] new_documents = [] for file in tqdm(files, desc="Processing files"): file_basename = os.path.basename(file.name) text, word_count, error = extract_text_from_document(file) if error: logger.error(f"Error processing file {file_basename}: {str(error)}") file_stats.append({ "name": file_basename, "words": 0, "status": f"error: {str(error)}" }) continue doc = LlamaDocument( text=text, metadata={ "file_name": file_basename, "word_count": word_count, "source": "user_upload" } ) new_documents.append(doc) file_stats.append({ "name": file_basename, "words": word_count, "status": "processed" }) global_file_info[file_basename] = { "word_count": word_count, "processed_at": time.time() } node_parser = HierarchicalNodeParser.from_defaults( chunk_sizes=[2048, 512, 128], chunk_overlap=20 ) logger.info(f"Parsing {len(new_documents)} documents into hierarchical nodes") new_nodes = node_parser.get_nodes_from_documents(new_documents) new_leaf_nodes = get_leaf_nodes(new_nodes) new_root_nodes = get_root_nodes(new_nodes) logger.info(f"Generated {len(new_nodes)} total nodes ({len(new_root_nodes)} root, {len(new_leaf_nodes)} leaf)") if os.path.exists(save_dir): logger.info(f"Loading existing index from {save_dir}") storage_context = StorageContext.from_defaults(persist_dir=save_dir) index = load_index_from_storage(storage_context, settings=Settings) docstore = storage_context.docstore docstore.add_documents(new_nodes) for node in tqdm(new_leaf_nodes, desc="Adding leaf nodes to index"): index.insert_nodes([node]) total_docs = len(docstore.docs) logger.info(f"Updated index with {len(new_nodes)} new nodes from {len(new_documents)} files") else: logger.info("Creating new index") docstore = SimpleDocumentStore() storage_context = StorageContext.from_defaults(docstore=docstore) docstore.add_documents(new_nodes) index = VectorStoreIndex( new_leaf_nodes, storage_context=storage_context, settings=Settings ) total_docs = len(new_documents) logger.info(f"Created new index with {len(new_nodes)} nodes from {len(new_documents)} files") index.storage_context.persist(persist_dir=save_dir) # custom outputs after processing files file_list_html = "
" for stat in file_stats: status_color = "#4CAF50" if stat["status"] == "processed" else "#f44336" file_list_html += f"
● {stat['name']} - {stat['words']} words
" file_list_html += "
" processing_time = time.time() - start_time stats_output = f"
" stats_output += f"✓ Processed {len(files)} files in {processing_time:.2f} seconds
" stats_output += f"✓ Created {len(new_nodes)} nodes ({len(new_leaf_nodes)} leaf nodes)
" stats_output += f"✓ Total documents in index: {total_docs}
" stats_output += f"✓ Index saved to: {save_dir}
" stats_output += "
" output_container = f"
" output_container += file_list_html output_container += stats_output output_container += "
" return f"Successfully indexed {len(files)} files.", output_container @spaces.GPU(max_duration=120) def stream_chat( message: str, history: list, system_prompt: str, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float, retriever_k: int, merge_threshold: float, use_rag: bool, medical_model: str, use_web_search: bool, disable_agentic_reasoning: bool, show_thoughts: bool, request: gr.Request ): if not request: yield history + [{"role": "assistant", "content": "Session initialization failed. Please refresh the page."}], "" return # Set up thought capture handler if show_thoughts is enabled thought_handler = None if show_thoughts: thought_handler = ThoughtCaptureHandler() thought_handler.setLevel(logging.INFO) thought_handler.clear() # Start fresh logger.addHandler(thought_handler) session_start = time.time() soft_timeout = 100 hard_timeout = 118 # stop slightly before HF max duration (120s) def elapsed(): return time.time() - session_start user_id = request.session_hash index_dir = f"./{user_id}_index" has_rag_index = os.path.exists(index_dir) # ===== MAC ARCHITECTURE: GEMINI SUPERVISOR + MEDSWIN SPECIALIST ===== # All internal thoughts are logged, only final answer is displayed original_lang = detect_language(message) original_message = message needs_translation = original_lang != "en" pipeline_diagnostics = { "reasoning": None, "plan": None, "strategy_decisions": [], "stage_metrics": {}, "search": {"strategies": [], "total_results": 0} } def record_stage(stage_name: str, start_time: float): pipeline_diagnostics["stage_metrics"][stage_name] = round(time.time() - start_time, 3) translation_stage_start = time.time() if needs_translation: logger.info(f"[GEMINI SUPERVISOR] Detected non-English language: {original_lang}, translating...") message = translate_text(message, target_lang="en", source_lang=original_lang) logger.info(f"[GEMINI SUPERVISOR] Translated query: {message[:100]}...") record_stage("translation", translation_stage_start) # Determine final modes (respect user settings and availability) final_use_rag = use_rag and has_rag_index and not disable_agentic_reasoning final_use_web_search = use_web_search and not disable_agentic_reasoning plan = None if not disable_agentic_reasoning: reasoning_stage_start = time.time() reasoning = autonomous_reasoning(message, history) record_stage("autonomous_reasoning", reasoning_stage_start) pipeline_diagnostics["reasoning"] = reasoning plan = create_execution_plan(reasoning, message, has_rag_index) pipeline_diagnostics["plan"] = plan execution_strategy = autonomous_execution_strategy( reasoning, plan, final_use_rag, final_use_web_search, has_rag_index ) if final_use_rag and not reasoning.get("requires_rag", True): final_use_rag = False pipeline_diagnostics["strategy_decisions"].append("Skipped RAG per autonomous reasoning") elif not final_use_rag and reasoning.get("requires_rag", True) and not has_rag_index: pipeline_diagnostics["strategy_decisions"].append("Reasoning wanted RAG but no index available") if final_use_web_search and not reasoning.get("requires_web_search", False): final_use_web_search = False pipeline_diagnostics["strategy_decisions"].append("Skipped web search per autonomous reasoning") elif not final_use_web_search and reasoning.get("requires_web_search", False): if not use_web_search: pipeline_diagnostics["strategy_decisions"].append("User disabled web search despite reasoning request") else: pipeline_diagnostics["strategy_decisions"].append("Web search requested by reasoning but disabled by mode") else: pipeline_diagnostics["strategy_decisions"].append("Agentic reasoning disabled by user") # ===== STEP 1: GEMINI SUPERVISOR - Break query into sub-topics ===== if disable_agentic_reasoning: logger.info("[MAC] Agentic reasoning disabled - using MedSwin alone") # Simple breakdown for direct mode breakdown = { "sub_topics": [ {"id": 1, "topic": "Answer", "instruction": message, "expected_tokens": 400, "priority": "high", "approach": "direct answer"} ], "strategy": "Direct answer", "exploration_note": "Direct mode - no breakdown" } else: logger.info("[GEMINI SUPERVISOR] Breaking query into sub-topics...") breakdown = gemini_supervisor_breakdown(message, final_use_rag, final_use_web_search, elapsed(), max_duration=120) logger.info(f"[GEMINI SUPERVISOR] Created {len(breakdown.get('sub_topics', []))} sub-topics") # ===== STEP 2: GEMINI SUPERVISOR - Handle Search Mode ===== search_contexts = [] web_urls = [] if final_use_web_search: search_stage_start = time.time() logger.info("[GEMINI SUPERVISOR] Search mode: Creating search strategies...") search_strategies = gemini_supervisor_search_strategies(message, elapsed()) # Execute searches for each strategy all_search_results = [] strategy_jobs = [] for strategy in search_strategies.get("search_strategies", [])[:4]: # Max 4 strategies search_query = strategy.get("strategy", message) target_sources = strategy.get("target_sources", 2) strategy_jobs.append({ "query": search_query, "target_sources": target_sources, "meta": strategy }) def execute_search(job): job_start = time.time() try: results = search_web(job["query"], max_results=job["target_sources"]) duration = time.time() - job_start return results, duration, None except Exception as exc: return [], time.time() - job_start, exc def record_search_diag(job, duration, results_count, error=None): entry = { "query": job["query"], "target_sources": job["target_sources"], "duration": round(duration, 3), "results": results_count } if error: entry["error"] = str(error) pipeline_diagnostics["search"]["strategies"].append(entry) if strategy_jobs: max_workers = min(len(strategy_jobs), 4) if len(strategy_jobs) > 1: with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor: future_map = {executor.submit(execute_search, job): job for job in strategy_jobs} for future in concurrent.futures.as_completed(future_map): job = future_map[future] try: results, duration, error = future.result() except Exception as exc: results, duration, error = [], 0.0, exc record_search_diag(job, duration, len(results), error) if not error and results: all_search_results.extend(results) web_urls.extend([r.get('url', '') for r in results if r.get('url')]) else: job = strategy_jobs[0] results, duration, error = execute_search(job) record_search_diag(job, duration, len(results), error) if not error and results: all_search_results.extend(results) web_urls.extend([r.get('url', '') for r in results if r.get('url')]) else: pipeline_diagnostics["strategy_decisions"].append("No viable web search strategies returned") pipeline_diagnostics["search"]["total_results"] = len(all_search_results) # Summarize search results with Gemini if all_search_results: logger.info(f"[GEMINI SUPERVISOR] Summarizing {len(all_search_results)} search results...") search_summary = summarize_web_content(all_search_results, message) if search_summary: search_contexts.append(search_summary) logger.info(f"[GEMINI SUPERVISOR] Search summary created: {len(search_summary)} chars") record_stage("web_search", search_stage_start) # ===== STEP 3: GEMINI SUPERVISOR - Handle RAG Mode ===== rag_contexts = [] if final_use_rag and has_rag_index: rag_stage_start = time.time() if elapsed() >= soft_timeout - 10: logger.warning("[GEMINI SUPERVISOR] Skipping RAG due to time pressure") final_use_rag = False else: logger.info("[GEMINI SUPERVISOR] RAG mode: Retrieving documents...") embed_model = get_or_create_embed_model() Settings.embed_model = embed_model storage_context = StorageContext.from_defaults(persist_dir=index_dir) index = load_index_from_storage(storage_context, settings=Settings) base_retriever = index.as_retriever(similarity_top_k=retriever_k) auto_merging_retriever = AutoMergingRetriever( base_retriever, storage_context=storage_context, simple_ratio_thresh=merge_threshold, verbose=False # Reduce logging noise ) merged_nodes = auto_merging_retriever.retrieve(message) retrieved_docs = "\n\n".join([n.node.text for n in merged_nodes]) logger.info(f"[GEMINI SUPERVISOR] Retrieved {len(merged_nodes)} document nodes") # Brainstorm retrieved docs into contexts logger.info("[GEMINI SUPERVISOR] Brainstorming RAG contexts...") rag_brainstorm = gemini_supervisor_rag_brainstorm(message, retrieved_docs, elapsed()) rag_contexts = [ctx.get("context", "") for ctx in rag_brainstorm.get("contexts", [])] logger.info(f"[GEMINI SUPERVISOR] Created {len(rag_contexts)} RAG contexts") record_stage("rag_retrieval", rag_stage_start) # ===== STEP 4: MEDSWIN SPECIALIST - Execute tasks sequentially ===== # Initialize medical model medical_model_obj, medical_tokenizer = initialize_medical_model(medical_model) # Base system prompt for MedSwin (clean, no internal thoughts) base_system_prompt = system_prompt if system_prompt else "As a medical specialist, provide clinical and concise answers. Use Markdown format with bullet points. Do not use tables." # Prepare context for MedSwin (combine RAG and search contexts) combined_context = "" if rag_contexts: combined_context += "Document Context:\n" + "\n\n".join(rag_contexts[:4]) # Max 4 contexts if search_contexts: if combined_context: combined_context += "\n\n" combined_context += "Web Search Context:\n" + "\n\n".join(search_contexts) # Execute MedSwin tasks for each sub-topic logger.info(f"[MEDSWIN] Executing {len(breakdown.get('sub_topics', []))} tasks sequentially...") medswin_answers = [] updated_history = history + [ {"role": "user", "content": original_message}, {"role": "assistant", "content": ""} ] thoughts_text = thought_handler.get_thoughts() if thought_handler else "" yield updated_history, thoughts_text medswin_stage_start = time.time() for idx, sub_topic in enumerate(breakdown.get("sub_topics", []), 1): if elapsed() >= hard_timeout - 5: logger.warning(f"[MEDSWIN] Time limit approaching, stopping at task {idx}") break task_instruction = sub_topic.get("instruction", "") topic_name = sub_topic.get("topic", f"Topic {idx}") priority = sub_topic.get("priority", "medium") logger.info(f"[MEDSWIN] Executing task {idx}/{len(breakdown.get('sub_topics', []))}: {topic_name} (priority: {priority})") # Select relevant context for this task (if multiple contexts available) task_context = combined_context if len(rag_contexts) > 1 and idx <= len(rag_contexts): # Use corresponding RAG context if available task_context = rag_contexts[idx - 1] if idx <= len(rag_contexts) else combined_context # Execute MedSwin task (with GPU tag) try: task_answer = execute_medswin_task( medical_model_obj=medical_model_obj, medical_tokenizer=medical_tokenizer, task_instruction=task_instruction, context=task_context if task_context else "", system_prompt_base=base_system_prompt, temperature=temperature, max_new_tokens=min(max_new_tokens, 800), # Limit per task top_p=top_p, top_k=top_k, penalty=penalty ) # Format task answer with topic header formatted_answer = f"## {topic_name}\n\n{task_answer}" medswin_answers.append(formatted_answer) logger.info(f"[MEDSWIN] Task {idx} completed: {len(task_answer)} chars") # Stream partial answer as we complete each task partial_final = "\n\n".join(medswin_answers) updated_history[-1]["content"] = partial_final thoughts_text = thought_handler.get_thoughts() if thought_handler else "" yield updated_history, thoughts_text except Exception as e: logger.error(f"[MEDSWIN] Task {idx} failed: {e}") # Continue with next task continue record_stage("medswin_tasks", medswin_stage_start) # ===== STEP 5: GEMINI SUPERVISOR - Synthesize final answer with clear context ===== logger.info("[GEMINI SUPERVISOR] Synthesizing final answer from all MedSwin responses...") raw_medswin_answers = [ans.split('\n\n', 1)[1] if '\n\n' in ans else ans for ans in medswin_answers] # Remove headers for synthesis synthesis_stage_start = time.time() final_answer = gemini_supervisor_synthesize(message, raw_medswin_answers, rag_contexts, search_contexts, breakdown) record_stage("synthesis", synthesis_stage_start) if not final_answer or len(final_answer.strip()) < 50: # Fallback to simple concatenation if synthesis fails logger.warning("[GEMINI SUPERVISOR] Synthesis failed or too short, using concatenation") final_answer = "\n\n".join(medswin_answers) if medswin_answers else "I apologize, but I was unable to generate a response." # Clean final answer - ensure no tables, only Markdown bullets if "|" in final_answer and "---" in final_answer: logger.warning("[MEDSWIN] Final answer contains tables, converting to bullets") lines = final_answer.split('\n') cleaned_lines = [] for line in lines: if '|' in line and '---' not in line: # Convert table row to bullet points cells = [cell.strip() for cell in line.split('|') if cell.strip()] if cells: cleaned_lines.append(f"- {' / '.join(cells)}") elif '---' not in line: cleaned_lines.append(line) final_answer = '\n'.join(cleaned_lines) # ===== STEP 6: GEMINI SUPERVISOR - Challenge and enhance answer iteratively ===== max_challenge_iterations = 2 # Limit iterations to avoid timeout challenge_iteration = 0 challenge_stage_start = time.time() while challenge_iteration < max_challenge_iterations and elapsed() < soft_timeout - 15: challenge_iteration += 1 logger.info(f"[GEMINI SUPERVISOR] Challenge iteration {challenge_iteration}/{max_challenge_iterations}...") evaluation = gemini_supervisor_challenge(message, final_answer, raw_medswin_answers, rag_contexts, search_contexts) if evaluation.get("is_optimal", False): logger.info(f"[GEMINI SUPERVISOR] Answer confirmed optimal after {challenge_iteration} iteration(s)") break enhancement_instructions = evaluation.get("enhancement_instructions", "") if not enhancement_instructions: logger.info("[GEMINI SUPERVISOR] No enhancement instructions, considering answer optimal") break logger.info(f"[GEMINI SUPERVISOR] Enhancing answer based on feedback...") enhanced_answer = gemini_supervisor_enhance_answer( message, final_answer, enhancement_instructions, raw_medswin_answers, rag_contexts, search_contexts ) if enhanced_answer and len(enhanced_answer.strip()) > len(final_answer.strip()) * 0.8: # Ensure enhancement is substantial final_answer = enhanced_answer logger.info(f"[GEMINI SUPERVISOR] Answer enhanced (new length: {len(final_answer)} chars)") else: logger.info("[GEMINI SUPERVISOR] Enhancement did not improve answer significantly, stopping") break record_stage("challenge_loop", challenge_stage_start) # ===== STEP 7: Conditional search trigger (only when search mode enabled) ===== if final_use_web_search and elapsed() < soft_timeout - 10: logger.info("[GEMINI SUPERVISOR] Checking if additional search is needed...") clarity_stage_start = time.time() clarity_check = gemini_supervisor_check_clarity(message, final_answer, final_use_web_search) record_stage("clarity_check", clarity_stage_start) if clarity_check.get("needs_search", False) and clarity_check.get("search_queries"): logger.info(f"[GEMINI SUPERVISOR] Triggering additional search: {clarity_check.get('search_queries', [])}") additional_search_results = [] followup_stage_start = time.time() for search_query in clarity_check.get("search_queries", [])[:3]: # Limit to 3 additional searches if elapsed() >= soft_timeout - 5: break extra_start = time.time() results = search_web(search_query, max_results=2) extra_duration = time.time() - extra_start pipeline_diagnostics["search"]["strategies"].append({ "query": search_query, "target_sources": 2, "duration": round(extra_duration, 3), "results": len(results), "type": "followup" }) additional_search_results.extend(results) web_urls.extend([r.get('url', '') for r in results if r.get('url')]) if additional_search_results: pipeline_diagnostics["search"]["total_results"] += len(additional_search_results) logger.info(f"[GEMINI SUPERVISOR] Summarizing {len(additional_search_results)} additional search results...") additional_summary = summarize_web_content(additional_search_results, message) if additional_summary: # Enhance answer with additional search context search_contexts.append(additional_summary) logger.info("[GEMINI SUPERVISOR] Enhancing answer with additional search context...") enhanced_with_search = gemini_supervisor_enhance_answer( message, final_answer, f"Incorporate the following additional information from web search: {additional_summary}", raw_medswin_answers, rag_contexts, search_contexts ) if enhanced_with_search and len(enhanced_with_search.strip()) > 50: final_answer = enhanced_with_search logger.info("[GEMINI SUPERVISOR] Answer enhanced with additional search context") record_stage("followup_search", followup_stage_start) citations_text = "" # ===== STEP 8: Finalize answer (translate, add citations, format) ===== # Translate back if needed if needs_translation and final_answer: logger.info(f"[GEMINI SUPERVISOR] Translating response back to {original_lang}...") final_answer = translate_text(final_answer, target_lang=original_lang, source_lang="en") # Add citations if web sources were used if web_urls: unique_urls = list(dict.fromkeys(web_urls)) # Preserve order, remove duplicates citation_links = [] for url in unique_urls[:5]: # Limit to 5 citations domain = format_url_as_domain(url) if domain: citation_links.append(f"[{domain}]({url})") if citation_links: citations_text = "\n\n**Sources:** " + ", ".join(citation_links) # Add speaker icon speaker_icon = ' 🔊' final_answer_with_metadata = final_answer + citations_text + speaker_icon # Update history with final answer (ONLY final answer, no internal thoughts) updated_history[-1]["content"] = final_answer_with_metadata thoughts_text = thought_handler.get_thoughts() if thought_handler else "" yield updated_history, thoughts_text # Clean up thought handler if thought_handler: logger.removeHandler(thought_handler) # Log completion diag_summary = { "stage_metrics": pipeline_diagnostics["stage_metrics"], "decisions": pipeline_diagnostics["strategy_decisions"], "search": pipeline_diagnostics["search"], } try: logger.info(f"[MAC] Diagnostics summary: {json.dumps(diag_summary)[:1200]}") except Exception: logger.info(f"[MAC] Diagnostics summary (non-serializable)") logger.info(f"[MAC] Final answer generated: {len(final_answer)} chars, {len(breakdown.get('sub_topics', []))} tasks completed") def generate_speech_for_message(text: str): """Generate speech for a message and return audio file""" audio_path = generate_speech(text) if audio_path: return audio_path return None def create_demo(): with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo: gr.HTML(TITLE) gr.HTML(DESCRIPTION) with gr.Row(elem_classes="main-container"): with gr.Column(elem_classes="upload-section"): file_upload = gr.File( file_count="multiple", label="Drag and Drop Files Here", file_types=[".pdf", ".txt", ".doc", ".docx", ".md", ".json", ".xml", ".csv"], elem_id="file-upload" ) upload_button = gr.Button("Upload & Index", elem_classes="upload-button") status_output = gr.Textbox( label="Status", placeholder="Upload files to start...", interactive=False ) file_info_output = gr.HTML( label="File Information", elem_classes="processing-info" ) upload_button.click( fn=create_or_update_index, inputs=[file_upload], outputs=[status_output, file_info_output] ) with gr.Column(elem_classes="chatbot-container"): chatbot = gr.Chatbot( height=500, placeholder="Chat with MedSwin... Type your question below.", show_label=False, type="messages" ) with gr.Row(elem_classes="input-row"): message_input = gr.Textbox( placeholder="Type your medical question here...", show_label=False, container=False, lines=1, scale=10 ) mic_button = gr.Audio( sources=["microphone"], type="filepath", label="", show_label=False, container=False, scale=1 ) submit_button = gr.Button("➤", elem_classes="submit-btn", scale=1) # Timer display for recording (shown below input row) recording_timer = gr.Textbox( value="", label="", show_label=False, interactive=False, visible=False, container=False, elem_classes="recording-timer" ) # Handle microphone transcription import time recording_start_time = [None] def handle_recording_start(): """Called when recording starts""" recording_start_time[0] = time.time() return gr.update(visible=True, value="Recording... 0s") def handle_recording_stop(audio): """Called when recording stops""" recording_start_time[0] = None if audio is None: return gr.update(visible=False, value=""), "" transcribed = transcribe_audio(audio) return gr.update(visible=False, value=""), transcribed # Use JavaScript for timer updates (simpler than Gradio Timer) mic_button.start_recording( fn=handle_recording_start, outputs=[recording_timer] ) mic_button.stop_recording( fn=handle_recording_stop, inputs=[mic_button], outputs=[recording_timer, message_input] ) # TTS component for generating speech from messages with gr.Row(visible=False) as tts_row: tts_text = gr.Textbox(visible=False) tts_audio = gr.Audio(label="Generated Speech", visible=False) # Function to generate speech when speaker icon is clicked def generate_speech_from_chat(history): """Extract last assistant message and generate speech""" if not history or len(history) == 0: return None last_msg = history[-1] if last_msg.get("role") == "assistant": text = last_msg.get("content", "").replace(" 🔊", "").strip() if text: audio_path = generate_speech(text) return audio_path return None # Add TTS button that appears when assistant responds tts_button = gr.Button("🔊 Play Response", visible=False, size="sm") # Update TTS button visibility and generate speech def update_tts_button(history): if history and len(history) > 0 and history[-1].get("role") == "assistant": return gr.update(visible=True) return gr.update(visible=False) chatbot.change( fn=update_tts_button, inputs=[chatbot], outputs=[tts_button] ) tts_button.click( fn=generate_speech_from_chat, inputs=[chatbot], outputs=[tts_audio] ) with gr.Accordion("âš™ī¸ Advanced Settings", open=False): with gr.Row(): disable_agentic_reasoning = gr.Checkbox( value=False, label="Disable agentic reasoning", info="Use MedSwin model alone without agentic reasoning, RAG, or web search" ) show_agentic_thought = gr.Button( "Show agentic thought", size="sm" ) # Scrollable textbox for agentic thoughts (initially hidden) agentic_thoughts_box = gr.Textbox( label="Agentic Thoughts", placeholder="Internal thoughts from MedSwin and supervisor will appear here...", lines=8, max_lines=15, interactive=False, visible=False, elem_classes="agentic-thoughts" ) with gr.Row(): use_rag = gr.Checkbox( value=False, label="Enable Document RAG", info="Answer based on uploaded documents (upload required)" ) use_web_search = gr.Checkbox( value=False, label="Enable Web Search (MCP)", info="Fetch knowledge from online medical resources" ) medical_model = gr.Radio( choices=list(MEDSWIN_MODELS.keys()), value=DEFAULT_MEDICAL_MODEL, label="Medical Model", info="MedSwin TA (default), others download on first use" ) system_prompt = gr.Textbox( value="As a medical specialist, provide detailed and accurate answers based on the provided medical documents and context. Ensure all information is clinically accurate and cite sources when available.", label="System Prompt", lines=3 ) with gr.Tab("Generation Parameters"): temperature = gr.Slider( minimum=0, maximum=1, step=0.1, value=0.2, label="Temperature" ) max_new_tokens = gr.Slider( minimum=512, maximum=4096, step=128, value=2048, label="Max New Tokens", info="Increased for medical models to prevent early stopping" ) top_p = gr.Slider( minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Top P" ) top_k = gr.Slider( minimum=1, maximum=100, step=1, value=50, label="Top K" ) penalty = gr.Slider( minimum=0.0, maximum=2.0, step=0.1, value=1.2, label="Repetition Penalty" ) with gr.Tab("Retrieval Parameters"): retriever_k = gr.Slider( minimum=5, maximum=30, step=1, value=15, label="Initial Retrieval Size (Top K)" ) merge_threshold = gr.Slider( minimum=0.1, maximum=0.9, step=0.1, value=0.5, label="Merge Threshold (lower = more merging)" ) # Toggle function for showing/hiding agentic thoughts show_thoughts_state = gr.State(value=False) def toggle_thoughts_box(current_state): """Toggle visibility of agentic thoughts box""" new_state = not current_state return gr.update(visible=new_state), new_state show_agentic_thought.click( fn=toggle_thoughts_box, inputs=[show_thoughts_state], outputs=[agentic_thoughts_box, show_thoughts_state] ) submit_button.click( fn=stream_chat, inputs=[ message_input, chatbot, system_prompt, temperature, max_new_tokens, top_p, top_k, penalty, retriever_k, merge_threshold, use_rag, medical_model, use_web_search, disable_agentic_reasoning, show_thoughts_state ], outputs=[chatbot, agentic_thoughts_box] ) message_input.submit( fn=stream_chat, inputs=[ message_input, chatbot, system_prompt, temperature, max_new_tokens, top_p, top_k, penalty, retriever_k, merge_threshold, use_rag, medical_model, use_web_search, disable_agentic_reasoning, show_thoughts_state ], outputs=[chatbot, agentic_thoughts_box] ) return demo if __name__ == "__main__": # Preload models on startup logger.info("Preloading models on startup...") logger.info("Initializing default medical model (MedSwin TA)...") initialize_medical_model(DEFAULT_MEDICAL_MODEL) logger.info("Preloading TTS model...") try: initialize_tts_model() if global_tts_model is not None: logger.info("TTS model preloaded successfully!") else: logger.warning("TTS model not available - will use MCP or disable voice generation") except Exception as e: logger.warning(f"TTS model preloading failed: {e}") logger.warning("Text-to-speech will use MCP or be disabled") # Check Gemini MCP availability if MCP_AVAILABLE: logger.info("Gemini MCP is available for translation, summarization, document parsing, and transcription") else: logger.warning("Gemini MCP not available - translation, summarization, document parsing, and transcription features will be limited") logger.info("Model preloading complete!") demo = create_demo() demo.launch()