import gradio as gr import os import base64 import logging import torch import threading import time import json from transformers import ( AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria, StoppingCriteriaList, ) from transformers import logging as hf_logging import spaces from llama_index.core import ( StorageContext, VectorStoreIndex, load_index_from_storage, Document as LlamaDocument, ) from llama_index.core import Settings from llama_index.core.node_parser import ( HierarchicalNodeParser, get_leaf_nodes, get_root_nodes, ) from llama_index.core.retrievers import AutoMergingRetriever from llama_index.core.storage.docstore import SimpleDocumentStore from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.embeddings.huggingface import HuggingFaceEmbedding # Import GPU-tagged model functions from model import ( get_llm_for_rag as get_llm_for_rag_gpu, get_embedding_model as get_embedding_model_gpu, generate_with_medswin, initialize_medical_model, global_medical_models, global_medical_tokenizers ) from tqdm import tqdm from langdetect import detect, LangDetectException # MCP imports try: from mcp import ClientSession, StdioServerParameters from mcp.client.stdio import stdio_client import asyncio try: import nest_asyncio nest_asyncio.apply() # Allow nested event loops except ImportError: pass # nest_asyncio is optional MCP_AVAILABLE = True except ImportError: MCP_AVAILABLE = False # Fallback imports if MCP is not available from ddgs import DDGS import requests from bs4 import BeautifulSoup try: from TTS.api import TTS TTS_AVAILABLE = True except ImportError: TTS_AVAILABLE = False TTS = None import numpy as np import soundfile as sf import tempfile os.environ["TOKENIZERS_PARALLELISM"] = "false" logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) hf_logging.set_verbosity_error() # Model configurations MEDSWIN_MODELS = { "MedSwin SFT": "MedSwin/MedSwin-7B-SFT", "MedSwin KD": "MedSwin/MedSwin-7B-KD", "MedSwin TA": "MedSwin/MedSwin-Merged-TA-SFT-0.7" } DEFAULT_MEDICAL_MODEL = "MedSwin TA" EMBEDDING_MODEL = "abhinand/MedEmbed-large-v0.1" # Domain-tuned medical embedding model TTS_MODEL = "maya-research/maya1" HF_TOKEN = os.environ.get("HF_TOKEN") if not HF_TOKEN: raise ValueError("HF_TOKEN not found in environment variables") # Gemini MCP configuration GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY") GEMINI_MODEL = os.environ.get("GEMINI_MODEL", "gemini-2.5-flash") # Default for harder tasks GEMINI_MODEL_LITE = os.environ.get("GEMINI_MODEL_LITE", "gemini-2.5-flash-lite") # For parsing and simple tasks # Custom UI TITLE = "

🩺 MedLLM Agent - Medical RAG & Web Search System

" DESCRIPTION = """

Advanced Medical AI Assistant powered by MedSwin models

šŸ“„ Document RAG: Answer based on uploaded medical documents

🌐 Web Search: Fetch knowledge from reliable online medical resources

šŸŒ Multi-language: Automatic translation for non-English queries

Upload PDF or text files to get started!

""" CSS = """ .upload-section { max-width: 400px; margin: 0 auto; padding: 10px; border: 2px dashed #ccc; border-radius: 10px; } .upload-button { background: #34c759 !important; color: white !important; border-radius: 25px !important; } .chatbot-container { margin-top: 20px; } .status-output { margin-top: 10px; font-size: 14px; } .processing-info { margin-top: 5px; font-size: 12px; color: #666; } .info-container { margin-top: 10px; padding: 10px; border-radius: 5px; } .file-list { margin-top: 0; max-height: 200px; overflow-y: auto; padding: 5px; border: 1px solid #eee; border-radius: 5px; } .stats-box { margin-top: 10px; padding: 10px; border-radius: 5px; font-size: 12px; } .submit-btn { background: #1a73e8 !important; color: white !important; border-radius: 25px !important; margin-left: 10px; padding: 5px 10px; font-size: 16px; } .input-row { display: flex; align-items: center; } .recording-timer { font-size: 12px; color: #666; text-align: center; margin-top: 5px; } .feature-badge { display: inline-block; padding: 3px 8px; margin: 2px; border-radius: 12px; font-size: 11px; font-weight: bold; } .badge-rag { background: #e3f2fd; color: #1976d2; } .badge-web { background: #f3e5f5; color: #7b1fa2; } @media (min-width: 768px) { .main-container { display: flex; justify-content: space-between; gap: 20px; } .upload-section { flex: 1; max-width: 300px; } .chatbot-container { flex: 2; margin-top: 0; } } """ # Global model storage - models are stored in model.py # Import the global model storage from model.py global_file_info = {} global_tts_model = None # MCP client storage global_mcp_session = None global_mcp_stdio_ctx = None # Store stdio context to keep it alive global_mcp_lock = threading.Lock() # Lock for thread-safe session access # MCP server configuration via environment variables # Gemini MCP server: Python-based server (agent.py) # This works on Hugging Face Spaces without requiring npm/Node.js # Make sure GEMINI_API_KEY is set in environment variables # # Default configuration uses the bundled agent.py script # To override: # export MCP_SERVER_COMMAND="python" # export MCP_SERVER_ARGS="/path/to/agent.py" script_dir = os.path.dirname(os.path.abspath(__file__)) agent_path = os.path.join(script_dir, "agent.py") MCP_SERVER_COMMAND = os.environ.get("MCP_SERVER_COMMAND", "python") MCP_SERVER_ARGS = os.environ.get("MCP_SERVER_ARGS", agent_path).split() if os.environ.get("MCP_SERVER_ARGS") else [agent_path] async def get_mcp_session(): """Get or create MCP client session with proper context management""" global global_mcp_session, global_mcp_stdio_ctx if not MCP_AVAILABLE: return None # Check if session exists and is still valid if global_mcp_session is not None: try: # Test if session is still alive by listing tools await global_mcp_session.list_tools() return global_mcp_session except Exception as e: logger.debug(f"Existing MCP session invalid, recreating: {e}") # Clean up old session try: if global_mcp_session is not None: await global_mcp_session.__aexit__(None, None, None) except: pass try: if global_mcp_stdio_ctx is not None: await global_mcp_stdio_ctx.__aexit__(None, None, None) except: pass global_mcp_session = None global_mcp_stdio_ctx = None # Create new session using correct MCP SDK pattern try: # Prepare environment variables for MCP server mcp_env = os.environ.copy() if GEMINI_API_KEY: mcp_env["GEMINI_API_KEY"] = GEMINI_API_KEY else: logger.warning("GEMINI_API_KEY not set in environment. Gemini MCP features may not work.") # Add other Gemini MCP configuration if set if os.environ.get("GEMINI_MODEL"): mcp_env["GEMINI_MODEL"] = os.environ.get("GEMINI_MODEL") if os.environ.get("GEMINI_TIMEOUT"): mcp_env["GEMINI_TIMEOUT"] = os.environ.get("GEMINI_TIMEOUT") if os.environ.get("GEMINI_MAX_OUTPUT_TOKENS"): mcp_env["GEMINI_MAX_OUTPUT_TOKENS"] = os.environ.get("GEMINI_MAX_OUTPUT_TOKENS") if os.environ.get("GEMINI_TEMPERATURE"): mcp_env["GEMINI_TEMPERATURE"] = os.environ.get("GEMINI_TEMPERATURE") logger.info(f"Creating MCP client session with command: {MCP_SERVER_COMMAND} {MCP_SERVER_ARGS}") server_params = StdioServerParameters( command=MCP_SERVER_COMMAND, args=MCP_SERVER_ARGS, env=mcp_env ) # Correct MCP SDK usage: stdio_client is an async context manager # that yields (read, write) streams stdio_ctx = stdio_client(server_params) read, write = await stdio_ctx.__aenter__() # Wait for the server process to fully start # The server needs time to: start Python, import modules, initialize Gemini client, start MCP server logger.info("ā³ Waiting for MCP server process to start...") # Increase wait time and add progressive checks for wait_attempt in range(5): await asyncio.sleep(1.0) # Check every second # Try to peek at the read stream to see if server is responding # (This is a simple check - the actual initialization will happen below) try: # Check if the process is still alive by attempting a small read with timeout # Note: This is a best-effort check pass except: pass logger.info("ā³ MCP server startup wait complete, proceeding with initialization...") # Create ClientSession from the streams # ClientSession handles initialization automatically when used as context manager # Use the session as a context manager to ensure proper initialization logger.info("šŸ”„ Creating MCP client session...") try: from mcp.types import ClientInfo try: client_info = ClientInfo( name="medllm-agent", version="1.0.0" ) session = ClientSession(read, write, client_info=client_info) except (TypeError, ValueError): # Fallback if ClientInfo parameters are incorrect session = ClientSession(read, write) except (ImportError, AttributeError): # Fallback if ClientInfo is not available session = ClientSession(read, write) # Initialize the session using context manager pattern # This properly handles the initialization handshake logger.info("šŸ”„ Initializing MCP session...") try: # Enter the session context - this triggers initialization await session.__aenter__() logger.info("āœ… MCP session initialized, verifying tools...") except Exception as e: logger.error(f"āŒ MCP session initialization failed: {e}") import traceback logger.debug(traceback.format_exc()) # Clean up and return None try: await stdio_ctx.__aexit__(None, None, None) except: pass return None # Wait for the server to be fully ready after initialization await asyncio.sleep(1.0) # Wait after initialization # Verify the session works by listing tools with retries # This confirms the server is ready to handle requests max_init_retries = 15 # Increased retries tools_listed = False tools = None last_error = None for init_attempt in range(max_init_retries): try: tools = await session.list_tools() if tools and hasattr(tools, 'tools') and len(tools.tools) > 0: logger.info(f"āœ… MCP server ready with {len(tools.tools)} tools: {[t.name for t in tools.tools]}") tools_listed = True break elif tools and hasattr(tools, 'tools'): # Empty tools list - might be a server issue logger.warning(f"MCP server returned empty tools list (attempt {init_attempt + 1}/{max_init_retries})") if init_attempt < max_init_retries - 1: await asyncio.sleep(1.5) # Slightly longer wait continue else: # Invalid response format logger.warning(f"MCP server returned invalid tools response (attempt {init_attempt + 1}/{max_init_retries})") if init_attempt < max_init_retries - 1: await asyncio.sleep(1.5) continue except Exception as e: last_error = e error_str = str(e).lower() error_msg = str(e) # Log the actual error for debugging if init_attempt == 0: logger.debug(f"First list_tools attempt failed: {error_msg}") elif init_attempt < 3: logger.debug(f"list_tools attempt {init_attempt + 1} failed: {error_msg}") # Handle different error types if "initialization" in error_str or "before initialization" in error_str or "not initialized" in error_str: if init_attempt < max_init_retries - 1: wait_time = 0.5 * (init_attempt + 1) # Progressive wait: 0.5s, 1s, 1.5s... logger.debug(f"Server still initializing (attempt {init_attempt + 1}/{max_init_retries}), waiting {wait_time}s...") await asyncio.sleep(wait_time) continue elif "invalid request" in error_str or "invalid request parameters" in error_str: # Invalid request might mean the server isn't ready yet or there's a protocol issue if init_attempt < max_init_retries - 1: wait_time = 1.0 * (init_attempt + 1) # Longer wait for invalid request errors logger.debug(f"Invalid request error (attempt {init_attempt + 1}/{max_init_retries}), waiting {wait_time}s...") await asyncio.sleep(wait_time) continue else: # Last attempt failed - log detailed error logger.error(f"āŒ Invalid request parameters error persists. This may indicate a protocol mismatch.") import traceback logger.debug(traceback.format_exc()) elif init_attempt < max_init_retries - 1: wait_time = 0.5 * (init_attempt + 1) logger.debug(f"Tool listing attempt {init_attempt + 1}/{max_init_retries} failed: {error_msg}, waiting {wait_time}s...") await asyncio.sleep(wait_time) else: logger.error(f"āŒ Could not list tools after {max_init_retries} attempts. Last error: {error_msg}") import traceback logger.debug(traceback.format_exc()) # Don't continue - if we can't list tools, the session is not usable try: await session.__aexit__(None, None, None) except: pass try: await stdio_ctx.__aexit__(None, None, None) except: pass return None if not tools_listed: error_msg = str(last_error) if last_error else "Unknown error" logger.error(f"MCP server failed to initialize - tools could not be listed. Last error: {error_msg}") try: await session.__aexit__(None, None, None) except: pass try: await stdio_ctx.__aexit__(None, None, None) except: pass return None # Store both the session and stdio context to keep them alive global_mcp_session = session global_mcp_stdio_ctx = stdio_ctx logger.info("MCP client session created successfully") return session except Exception as e: logger.error(f"Failed to create MCP client session: {e}") import traceback logger.debug(traceback.format_exc()) global_mcp_session = None global_mcp_stdio_ctx = None return None async def call_agent(user_prompt: str, system_prompt: str = None, files: list = None, model: str = None, temperature: float = 0.2) -> str: """ Call Gemini MCP generate_content tool via MCP protocol. This function uses the MCP (Model Context Protocol) to call Gemini AI, NOT direct API calls. It connects to the bundled agent.py MCP server which provides the generate_content tool. Used for: translation, summarization, document parsing, transcription, reasoning """ if not MCP_AVAILABLE: logger.warning("MCP not available for Gemini call") return "" try: session = await get_mcp_session() if session is None: logger.warning("Failed to get MCP session for Gemini call") return "" # Retry listing tools if it fails the first time # Use more retries and longer waits since MCP server might need time max_retries = 5 tools = None for attempt in range(max_retries): try: tools = await session.list_tools() if tools and hasattr(tools, 'tools') and len(tools.tools) > 0: break else: raise ValueError("Empty tools list") except Exception as e: if attempt < max_retries - 1: wait_time = 1.0 * (attempt + 1) # Progressive wait logger.debug(f"Failed to list tools (attempt {attempt + 1}/{max_retries}), waiting {wait_time}s...") await asyncio.sleep(wait_time) else: logger.error(f"āŒ Failed to list MCP tools after {max_retries} attempts: {e}") return "" if not tools or not hasattr(tools, 'tools'): logger.error("Invalid tools response from MCP server") return "" # Find generate_content tool generate_tool = None for tool in tools.tools: if tool.name == "generate_content" or "generate_content" in tool.name.lower(): generate_tool = tool logger.info(f"Found Gemini MCP tool: {tool.name}") break if not generate_tool: logger.warning(f"Gemini MCP generate_content tool not found. Available tools: {[t.name for t in tools.tools]}") return "" # Prepare arguments arguments = { "user_prompt": user_prompt } if system_prompt: arguments["system_prompt"] = system_prompt if files: arguments["files"] = files if model: arguments["model"] = model if temperature is not None: arguments["temperature"] = temperature logger.info(f"šŸ”§ [MCP] Calling Gemini MCP tool '{generate_tool.name}' for: {user_prompt[:100]}...") logger.info(f"šŸ“‹ [MCP] Arguments: model={model}, temperature={temperature}, files={len(files) if files else 0}") result = await session.call_tool(generate_tool.name, arguments=arguments) # Parse result if hasattr(result, 'content') and result.content: for item in result.content: if hasattr(item, 'text'): response_text = item.text.strip() logger.info(f"āœ… [MCP] Gemini MCP returned response ({len(response_text)} chars)") return response_text logger.warning("āš ļø [MCP] Gemini MCP returned empty or invalid result") return "" except Exception as e: logger.error(f"Gemini MCP call error: {e}") import traceback logger.debug(traceback.format_exc()) return "" # initialize_medical_model is now imported from model.py def initialize_tts_model(): """Initialize TTS model for text-to-speech""" global global_tts_model if not TTS_AVAILABLE: logger.warning("TTS library not installed. TTS features will be disabled.") return None if global_tts_model is None: try: logger.info("Initializing TTS model for voice generation...") global_tts_model = TTS(model_name=TTS_MODEL, progress_bar=False) logger.info("TTS model initialized successfully") except Exception as e: logger.warning(f"TTS model initialization failed: {e}") logger.warning("TTS features will be disabled. If pyworld dependency is missing, try: pip install TTS --no-deps && pip install coqui-tts") global_tts_model = None return global_tts_model async def transcribe_audio_gemini(audio_path: str) -> str: """Transcribe audio using Gemini MCP""" if not MCP_AVAILABLE: return "" try: # Ensure we have an absolute path audio_path_abs = os.path.abspath(audio_path) # Prepare file object for Gemini MCP using path (as per Gemini MCP documentation) files = [{ "path": audio_path_abs }] # Use exact prompts from Gemini MCP documentation system_prompt = "You are a professional transcription service. Provide accurate, well-formatted transcripts." user_prompt = "Please transcribe this audio file. Include speaker identification if multiple speakers are present, and format it with proper punctuation and paragraphs, remove mumble, ignore non-verbal noises." result = await call_agent( user_prompt=user_prompt, system_prompt=system_prompt, files=files, model=GEMINI_MODEL_LITE, # Use lite model for transcription temperature=0.2 ) return result.strip() except Exception as e: logger.error(f"Gemini transcription error: {e}") import traceback logger.debug(traceback.format_exc()) return "" def transcribe_audio(audio): """Transcribe audio to text using Gemini MCP""" if audio is None: return "" try: # Handle file path (Gradio Audio component returns file path) if isinstance(audio, str): audio_path = audio elif isinstance(audio, tuple): # Handle tuple format (sample_rate, audio_data) sample_rate, audio_data = audio # Save to temp file with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: sf.write(tmp_file.name, audio_data, samplerate=sample_rate) audio_path = tmp_file.name else: audio_path = audio # Use Gemini MCP for transcription if MCP_AVAILABLE: try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio transcribed = nest_asyncio.run(transcribe_audio_gemini(audio_path)) if transcribed: logger.info(f"Transcribed via Gemini MCP: {transcribed[:50]}...") return transcribed except Exception as e: logger.error(f"Error in nested async transcription: {e}") else: transcribed = loop.run_until_complete(transcribe_audio_gemini(audio_path)) if transcribed: logger.info(f"Transcribed via Gemini MCP: {transcribed[:50]}...") return transcribed except Exception as e: logger.error(f"Gemini MCP transcription error: {e}") logger.warning("Gemini MCP transcription not available") return "" except Exception as e: logger.error(f"Transcription error: {e}") return "" async def generate_speech_mcp(text: str) -> str: """Generate speech using MCP TTS tool""" if not MCP_AVAILABLE: return None try: # Get MCP session session = await get_mcp_session() if session is None: return None # Find TTS tool tools = await session.list_tools() tts_tool = None for tool in tools.tools: if "tts" in tool.name.lower() or "speech" in tool.name.lower() or "synthesize" in tool.name.lower(): tts_tool = tool logger.info(f"Found MCP TTS tool: {tool.name}") break if tts_tool: result = await session.call_tool( tts_tool.name, arguments={"text": text, "language": "en"} ) # Parse result - MCP might return audio data or file path if hasattr(result, 'content') and result.content: for item in result.content: if hasattr(item, 'text'): # If it's a file path if os.path.exists(item.text): return item.text elif hasattr(item, 'data') and item.data: # If it's binary audio data, save it with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_file.write(item.data) return tmp_file.name return None except Exception as e: logger.debug(f"MCP TTS error: {e}") return None def generate_speech(text: str): """Generate speech from text using TTS model (with MCP fallback)""" if not text or len(text.strip()) == 0: return None # Try MCP first if available if MCP_AVAILABLE: try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio audio_path = nest_asyncio.run(generate_speech_mcp(text)) if audio_path: logger.info("Generated speech via MCP") return audio_path except: pass else: audio_path = loop.run_until_complete(generate_speech_mcp(text)) if audio_path: logger.info("Generated speech via MCP") return audio_path except Exception as e: logger.debug(f"MCP TTS not available: {e}") # Fallback to local TTS model if not TTS_AVAILABLE: logger.error("TTS library not installed. Please install TTS to use voice generation.") return None global global_tts_model if global_tts_model is None: initialize_tts_model() if global_tts_model is None: logger.error("TTS model not available. Please check dependencies.") return None try: # Generate audio wav = global_tts_model.tts(text) # Save to temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: sf.write(tmp_file.name, wav, samplerate=22050) return tmp_file.name except Exception as e: logger.error(f"TTS error: {e}") return None def format_prompt_manually(messages: list, tokenizer) -> str: """Manually format prompt for models without chat template Following the exact example pattern from MedAlpaca documentation: - Simple Question/Answer format - System prompt as instruction context - Clean formatting without extra special tokens - Ensure no double special tokens are added """ # Combine system and user messages into a single instruction system_content = "" user_content = "" for msg in messages: role = msg.get("role", "user") content = msg.get("content", "") if role == "system": system_content = content elif role == "user": user_content = content elif role == "assistant": # Skip assistant messages in history for now (can be added if needed) pass # Format for MedAlpaca/LLaMA-based medical models # Common format: Instruction + Input -> Response # Following the exact example pattern - keep it simple and clean # The tokenizer will add BOS token automatically, so we don't add it here if system_content: # Clean format: system instruction, then question, then answer prompt prompt = f"{system_content}\n\nQuestion: {user_content}\n\nAnswer:" else: prompt = f"Question: {user_content}\n\nAnswer:" # Ensure prompt is clean (no extra whitespace or special characters) prompt = prompt.strip() return prompt def detect_language(text: str) -> str: """Detect language of input text""" try: lang = detect(text) return lang except LangDetectException: return "en" # Default to English if detection fails def format_url_as_domain(url: str) -> str: """Format URL as simple domain name (e.g., www.mayoclinic.org)""" if not url: return "" try: from urllib.parse import urlparse parsed = urlparse(url) domain = parsed.netloc or parsed.path # Remove www. prefix if present, but keep it for display if domain.startswith('www.'): return domain elif domain: return domain return url except Exception: # Fallback: try to extract domain manually if '://' in url: domain = url.split('://')[1].split('/')[0] return domain return url async def translate_text_gemini(text: str, target_lang: str = "en", source_lang: str = None) -> str: """Translate text using Gemini MCP""" if source_lang: user_prompt = f"Translate the following {source_lang} text to {target_lang}. Only provide the translation, no explanations:\n\n{text}" else: user_prompt = f"Translate the following text to {target_lang}. Only provide the translation, no explanations:\n\n{text}" # Use concise system prompt system_prompt = "You are a professional translator. Translate accurately and concisely." result = await call_agent( user_prompt=user_prompt, system_prompt=system_prompt, model=GEMINI_MODEL_LITE, # Use lite model for translation temperature=0.2 ) return result.strip() def translate_text(text: str, target_lang: str = "en", source_lang: str = None) -> str: """Translate text using Gemini MCP""" if not MCP_AVAILABLE: logger.warning("Gemini MCP not available for translation") return text # Return original text if translation fails try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio translated = nest_asyncio.run(translate_text_gemini(text, target_lang, source_lang)) if translated: logger.info(f"Translated via Gemini MCP: {translated[:50]}...") return translated except Exception as e: logger.error(f"Error in nested async translation: {e}") else: translated = loop.run_until_complete(translate_text_gemini(text, target_lang, source_lang)) if translated: logger.info(f"Translated via Gemini MCP: {translated[:50]}...") return translated except Exception as e: logger.error(f"Gemini MCP translation error: {e}") # Return original text if translation fails return text async def search_web_mcp_tool(query: str, max_results: int = 5) -> list: """ Search web using MCP web search tool (e.g., DuckDuckGo MCP server). This function uses MCP tools for web search, NOT direct API calls. It looks for MCP tools with names containing "search", "duckduckgo", "ddg", or "web". """ if not MCP_AVAILABLE: return [] try: session = await get_mcp_session() if session is None: return [] # Retry listing tools if it fails the first time max_retries = 3 tools = None for attempt in range(max_retries): try: tools = await session.list_tools() break except Exception as e: if attempt < max_retries - 1: await asyncio.sleep(0.5 * (attempt + 1)) else: logger.error(f"Failed to list MCP tools after {max_retries} attempts: {e}") return [] if not tools or not hasattr(tools, 'tools'): return [] # Look for web search tools (DuckDuckGo, search, etc.) search_tool = None for tool in tools.tools: tool_name_lower = tool.name.lower() if any(keyword in tool_name_lower for keyword in ["search", "duckduckgo", "ddg", "web"]): search_tool = tool logger.info(f"Found web search MCP tool: {tool.name}") break if search_tool: try: logger.info(f"šŸ” [MCP] Using web search MCP tool '{search_tool.name}' for: {query[:100]}...") # Call the search tool result = await session.call_tool( search_tool.name, arguments={"query": query, "max_results": max_results} ) # Parse result web_content = [] if hasattr(result, 'content') and result.content: for item in result.content: if hasattr(item, 'text'): try: data = json.loads(item.text) if isinstance(data, list): for entry in data[:max_results]: web_content.append({ 'title': entry.get('title', ''), 'url': entry.get('url', entry.get('href', '')), 'content': entry.get('body', entry.get('snippet', entry.get('content', ''))) }) elif isinstance(data, dict): if 'results' in data: for entry in data['results'][:max_results]: web_content.append({ 'title': entry.get('title', ''), 'url': entry.get('url', entry.get('href', '')), 'content': entry.get('body', entry.get('snippet', entry.get('content', ''))) }) else: web_content.append({ 'title': data.get('title', ''), 'url': data.get('url', data.get('href', '')), 'content': data.get('body', data.get('snippet', data.get('content', ''))) }) except json.JSONDecodeError: # If not JSON, treat as plain text web_content.append({ 'title': '', 'url': '', 'content': item.text[:1000] }) if web_content: logger.info(f"āœ… [MCP] Web search MCP tool returned {len(web_content)} results") return web_content except Exception as e: logger.error(f"Error calling web search MCP tool: {e}") return [] except Exception as e: logger.error(f"Web search MCP tool error: {e}") return [] async def search_web_mcp(query: str, max_results: int = 5) -> list: """Search web using MCP tools - tries web search MCP tool first, then falls back to direct search""" # First try to use a dedicated web search MCP tool (like DuckDuckGo MCP server) results = await search_web_mcp_tool(query, max_results) if results: logger.info(f"āœ… Web search via MCP tool: found {len(results)} results") return results # If no web search MCP tool available, use direct search (ddgs) # Note: Gemini MCP doesn't have web search capability, so we use direct API # The results will then be summarized using Gemini MCP logger.info("ā„¹ļø [Direct API] No web search MCP tool found, using direct DuckDuckGo search (results will be summarized with Gemini MCP)") return search_web_fallback(query, max_results) def search_web_fallback(query: str, max_results: int = 5) -> list: """Fallback web search using DuckDuckGo directly (when MCP is not available)""" logger.info(f"šŸ” [Direct API] Performing web search using DuckDuckGo API for: {query[:100]}...") # Always import here to ensure availability try: from ddgs import DDGS import requests from bs4 import BeautifulSoup except ImportError: logger.error("Fallback dependencies (ddgs, requests, beautifulsoup4) not available") return [] try: with DDGS() as ddgs: results = list(ddgs.text(query, max_results=max_results)) web_content = [] for result in results: try: url = result.get('href', '') title = result.get('title', '') snippet = result.get('body', '') # Try to fetch full content try: response = requests.get(url, timeout=5, headers={'User-Agent': 'Mozilla/5.0'}) if response.status_code == 200: soup = BeautifulSoup(response.content, 'html.parser') # Extract main content for script in soup(["script", "style"]): script.decompose() text = soup.get_text() # Clean and limit text lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) text = ' '.join(chunk for chunk in chunks if chunk) if len(text) > 1000: text = text[:1000] + "..." web_content.append({ 'title': title, 'url': url, 'content': snippet + "\n" + text[:500] if text else snippet }) else: web_content.append({ 'title': title, 'url': url, 'content': snippet }) except: web_content.append({ 'title': title, 'url': url, 'content': snippet }) except Exception as e: logger.error(f"Error processing search result: {e}") continue logger.info(f"āœ… [Direct API] Web search completed: {len(web_content)} results") return web_content except Exception as e: logger.error(f"āŒ [Direct API] Web search error: {e}") return [] def search_web(query: str, max_results: int = 5) -> list: """Search web using MCP tools (synchronous wrapper) - prioritizes MCP over direct ddgs""" # Always try MCP first if available if MCP_AVAILABLE: try: # Run async MCP search try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) if loop.is_running(): # If loop is already running, use nest_asyncio or create new thread try: import nest_asyncio results = nest_asyncio.run(search_web_mcp(query, max_results)) if results: # Only return if we got results from MCP return results except (ImportError, AttributeError): # Fallback: run in thread import concurrent.futures with concurrent.futures.ThreadPoolExecutor() as executor: future = executor.submit(asyncio.run, search_web_mcp(query, max_results)) results = future.result(timeout=30) if results: # Only return if we got results from MCP return results else: results = loop.run_until_complete(search_web_mcp(query, max_results)) if results: # Only return if we got results from MCP return results except Exception as e: logger.error(f"Error running async MCP search: {e}") # Only use ddgs fallback if MCP is not available or returned no results logger.info("ā„¹ļø [Direct API] Falling back to direct DuckDuckGo search (MCP unavailable or returned no results)") return search_web_fallback(query, max_results) async def summarize_web_content_gemini(content_list: list, query: str) -> str: """Summarize web search results using Gemini MCP""" logger.info(f"šŸ“ [MCP] Summarizing {len(content_list)} web search results using Gemini MCP...") combined_content = "\n\n".join([f"Source: {item['title']}\n{item['content']}" for item in content_list[:3]]) user_prompt = f"""Summarize the following web search results related to the query: "{query}" Extract key medical information, facts, and insights. Be concise and focus on reliable information. Search Results: {combined_content} Summary:""" # Use concise system prompt system_prompt = "You are a medical information summarizer. Extract and summarize key medical facts accurately." result = await call_agent( user_prompt=user_prompt, system_prompt=system_prompt, model=GEMINI_MODEL, # Use full model for summarization temperature=0.5 ) if result: logger.info(f"āœ… [MCP] Web content summarized successfully using Gemini MCP ({len(result)} chars)") else: logger.warning("āš ļø [MCP] Gemini MCP summarization returned empty result") return result.strip() def summarize_web_content(content_list: list, query: str) -> str: """Summarize web search results using Gemini MCP""" if not MCP_AVAILABLE: logger.warning("Gemini MCP not available for summarization") # Fallback: return first result's content if content_list: return content_list[0].get('content', '')[:500] return "" try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio summary = nest_asyncio.run(summarize_web_content_gemini(content_list, query)) if summary: return summary except Exception as e: logger.error(f"Error in nested async summarization: {e}") else: summary = loop.run_until_complete(summarize_web_content_gemini(content_list, query)) if summary: return summary except Exception as e: logger.error(f"Gemini MCP summarization error: {e}") # Fallback: return first result's content if content_list: return content_list[0].get('content', '')[:500] return "" # get_llm_for_rag is now imported from model.py as get_llm_for_rag_gpu async def autonomous_reasoning_gemini(query: str) -> dict: """Autonomous reasoning using Gemini MCP""" logger.info(f"🧠 [MCP] Analyzing query with Gemini MCP: {query[:100]}...") reasoning_prompt = f"""Analyze this medical query and provide structured reasoning: Query: "{query}" Analyze: 1. Query Type: (diagnosis, treatment, drug_info, symptom_analysis, research, general_info) 2. Complexity: (simple, moderate, complex, multi_faceted) 3. Information Needs: What specific information is required? 4. Requires RAG: (yes/no) - Does this need document context? 5. Requires Web Search: (yes/no) - Does this need current/updated information? 6. Sub-questions: Break down into key sub-questions if complex Respond in JSON format: {{ "query_type": "...", "complexity": "...", "information_needs": ["..."], "requires_rag": true/false, "requires_web_search": true/false, "sub_questions": ["..."] }}""" # Use concise system prompt system_prompt = "You are a medical reasoning system. Analyze queries systematically and provide structured JSON responses." response = await call_agent( user_prompt=reasoning_prompt, system_prompt=system_prompt, model=GEMINI_MODEL, # Use full model for reasoning temperature=0.3 ) # Parse JSON response (with fallback) try: # Extract JSON from response json_start = response.find('{') json_end = response.rfind('}') + 1 if json_start >= 0 and json_end > json_start: reasoning = json.loads(response[json_start:json_end]) else: raise ValueError("No JSON found") except: # Fallback reasoning reasoning = { "query_type": "general_info", "complexity": "moderate", "information_needs": ["medical information"], "requires_rag": True, "requires_web_search": False, "sub_questions": [query] } logger.info(f"Reasoning analysis: {reasoning}") return reasoning def autonomous_reasoning(query: str, history: list) -> dict: """ Autonomous reasoning: Analyze query complexity, intent, and information needs. Returns reasoning analysis with query type, complexity, and required information sources. Uses Gemini MCP for reasoning. """ if not MCP_AVAILABLE: logger.warning("āš ļø Gemini MCP not available for reasoning, using fallback") # Fallback reasoning return { "query_type": "general_info", "complexity": "moderate", "information_needs": ["medical information"], "requires_rag": True, "requires_web_search": False, "sub_questions": [query] } try: logger.info("šŸ¤” [MCP] Using Gemini MCP for autonomous reasoning...") loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio reasoning = nest_asyncio.run(autonomous_reasoning_gemini(query)) if reasoning and reasoning.get("query_type") != "general_info": # Check if we got real reasoning logger.info(f"āœ… [MCP] Gemini MCP reasoning successful: {reasoning.get('query_type')}, complexity: {reasoning.get('complexity')}") return reasoning else: logger.warning("āš ļø [MCP] Gemini MCP returned fallback reasoning, using it anyway") return reasoning except Exception as e: logger.error(f"āŒ Error in nested async reasoning: {e}") import traceback logger.debug(traceback.format_exc()) else: reasoning = loop.run_until_complete(autonomous_reasoning_gemini(query)) if reasoning and reasoning.get("query_type") != "general_info": logger.info(f"āœ… [MCP] Gemini MCP reasoning successful: {reasoning.get('query_type')}, complexity: {reasoning.get('complexity')}") return reasoning else: logger.warning("āš ļø [MCP] Gemini MCP returned fallback reasoning, using it anyway") return reasoning except Exception as e: logger.error(f"āŒ Gemini MCP reasoning error: {e}") import traceback logger.debug(traceback.format_exc()) # Fallback reasoning only if all attempts failed logger.warning("āš ļø Falling back to default reasoning") return { "query_type": "general_info", "complexity": "moderate", "information_needs": ["medical information"], "requires_rag": True, "requires_web_search": False, "sub_questions": [query] } def create_execution_plan(reasoning: dict, query: str, has_rag_index: bool) -> dict: """ Planning: Create multi-step execution plan based on reasoning analysis. Returns execution plan with steps and strategy. """ plan = { "steps": [], "strategy": "sequential", "iterations": 1 } # Determine execution strategy if reasoning["complexity"] in ["complex", "multi_faceted"]: plan["strategy"] = "iterative" plan["iterations"] = 2 # Step 1: Language detection and translation plan["steps"].append({ "step": 1, "action": "detect_language", "description": "Detect query language and translate if needed" }) # Step 2: RAG retrieval (if needed and available) if reasoning.get("requires_rag", True) and has_rag_index: plan["steps"].append({ "step": 2, "action": "rag_retrieval", "description": "Retrieve relevant document context", "parameters": {"top_k": 15, "merge_threshold": 0.5} }) # Step 3: Web search (if needed) if reasoning.get("requires_web_search", False): plan["steps"].append({ "step": 3, "action": "web_search", "description": "Search web for current/updated information", "parameters": {"max_results": 5} }) # Step 4: Sub-question processing (if complex) if reasoning.get("sub_questions") and len(reasoning["sub_questions"]) > 1: plan["steps"].append({ "step": 4, "action": "multi_step_reasoning", "description": "Process sub-questions iteratively", "sub_questions": reasoning["sub_questions"] }) # Step 5: Synthesis and answer generation plan["steps"].append({ "step": len(plan["steps"]) + 1, "action": "synthesize_answer", "description": "Generate comprehensive answer from all sources" }) # Step 6: Self-reflection (for complex queries) if reasoning["complexity"] in ["complex", "multi_faceted"]: plan["steps"].append({ "step": len(plan["steps"]) + 1, "action": "self_reflection", "description": "Evaluate answer quality and completeness" }) logger.info(f"Execution plan created: {len(plan['steps'])} steps") return plan def autonomous_execution_strategy(reasoning: dict, plan: dict, use_rag: bool, use_web_search: bool, has_rag_index: bool) -> dict: """ Autonomous execution: Make decisions on information gathering strategy. Only suggests web search override, but respects user's RAG disable setting. """ strategy = { "use_rag": use_rag, # Respect user's RAG setting "use_web_search": use_web_search, "reasoning_override": False, "rationale": "" } # Only suggest web search override (RAG requires documents, so we respect user's choice) if reasoning.get("requires_web_search", False) and not use_web_search: strategy["use_web_search"] = True strategy["reasoning_override"] = True strategy["rationale"] += "Reasoning suggests web search for current information. " # Note: We don't override RAG setting because: # 1. User may have explicitly disabled it # 2. RAG requires documents to be uploaded # 3. We should respect user's explicit choice if strategy["reasoning_override"]: logger.info(f"Autonomous override: {strategy['rationale']}") return strategy async def self_reflection_gemini(answer: str, query: str) -> dict: """Self-reflection using Gemini MCP""" reflection_prompt = f"""Evaluate this medical answer for quality and completeness: Query: "{query}" Answer: "{answer[:1000]}" Evaluate: 1. Completeness: Does it address all aspects of the query? 2. Accuracy: Is the medical information accurate? 3. Clarity: Is it clear and well-structured? 4. Sources: Are sources cited appropriately? 5. Missing Information: What important information might be missing? Respond in JSON: {{ "completeness_score": 0-10, "accuracy_score": 0-10, "clarity_score": 0-10, "overall_score": 0-10, "missing_aspects": ["..."], "improvement_suggestions": ["..."] }}""" # Use concise system prompt system_prompt = "You are a medical answer quality evaluator. Provide honest, constructive feedback." response = await call_agent( user_prompt=reflection_prompt, system_prompt=system_prompt, model=GEMINI_MODEL, # Use full model for reflection temperature=0.3 ) try: json_start = response.find('{') json_end = response.rfind('}') + 1 if json_start >= 0 and json_end > json_start: reflection = json.loads(response[json_start:json_end]) else: reflection = {"overall_score": 7, "improvement_suggestions": []} except: reflection = {"overall_score": 7, "improvement_suggestions": []} logger.info(f"Self-reflection score: {reflection.get('overall_score', 'N/A')}") return reflection def self_reflection(answer: str, query: str, reasoning: dict) -> dict: """ Self-reflection: Evaluate answer quality and completeness. Returns reflection with quality score and improvement suggestions. """ if not MCP_AVAILABLE: logger.warning("Gemini MCP not available for reflection, using fallback") return {"overall_score": 7, "improvement_suggestions": []} try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio return nest_asyncio.run(self_reflection_gemini(answer, query)) except Exception as e: logger.error(f"Error in nested async reflection: {e}") else: return loop.run_until_complete(self_reflection_gemini(answer, query)) except Exception as e: logger.error(f"Gemini MCP reflection error: {e}") return {"overall_score": 7, "improvement_suggestions": []} async def parse_document_gemini(file_path: str, file_extension: str) -> str: """Parse document using Gemini MCP""" if not MCP_AVAILABLE: return "" try: # Read file and encode to base64 with open(file_path, 'rb') as f: file_content = base64.b64encode(f.read()).decode('utf-8') # Determine MIME type from file extension mime_type_map = { '.pdf': 'application/pdf', '.doc': 'application/msword', '.docx': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document', '.txt': 'text/plain', '.md': 'text/markdown', '.json': 'application/json', '.xml': 'application/xml', '.csv': 'text/csv' } mime_type = mime_type_map.get(file_extension, 'application/octet-stream') # Prepare file object for Gemini MCP (use content for base64) files = [{ "content": file_content, "type": mime_type }] # Use concise system prompt system_prompt = "Extract all text content from the document accurately." user_prompt = "Extract all text content from this document. Return only the extracted text, preserving structure and formatting where possible." result = await call_agent( user_prompt=user_prompt, system_prompt=system_prompt, files=files, model=GEMINI_MODEL_LITE, # Use lite model for parsing temperature=0.2 ) return result.strip() except Exception as e: logger.error(f"Gemini document parsing error: {e}") import traceback logger.debug(traceback.format_exc()) return "" def extract_text_from_document(file): """Extract text from document using Gemini MCP""" file_name = file.name file_extension = os.path.splitext(file_name)[1].lower() # Handle text files directly if file_extension == '.txt': text = file.read().decode('utf-8') return text, len(text.split()), None # For PDF, Word, and other documents, use Gemini MCP # Save file to temporary location for processing try: with tempfile.NamedTemporaryFile(delete=False, suffix=file_extension) as tmp_file: # Write file content to temp file file.seek(0) # Reset file pointer tmp_file.write(file.read()) tmp_file_path = tmp_file.name # Use Gemini MCP to parse document if MCP_AVAILABLE: try: loop = asyncio.get_event_loop() if loop.is_running(): try: import nest_asyncio text = nest_asyncio.run(parse_document_gemini(tmp_file_path, file_extension)) except Exception as e: logger.error(f"Error in nested async document parsing: {e}") text = "" else: text = loop.run_until_complete(parse_document_gemini(tmp_file_path, file_extension)) # Clean up temp file try: os.unlink(tmp_file_path) except: pass if text: return text, len(text.split()), None else: return None, 0, ValueError(f"Failed to extract text from {file_extension} file using Gemini MCP") except Exception as e: logger.error(f"Gemini MCP document parsing error: {e}") # Clean up temp file try: os.unlink(tmp_file_path) except: pass return None, 0, ValueError(f"Error parsing {file_extension} file: {str(e)}") else: # Clean up temp file try: os.unlink(tmp_file_path) except: pass return None, 0, ValueError(f"Gemini MCP not available. Cannot parse {file_extension} files.") except Exception as e: logger.error(f"Error processing document: {e}") return None, 0, ValueError(f"Error processing {file_extension} file: {str(e)}") def create_or_update_index(files, request: gr.Request): global global_file_info if not files: return "Please provide files.", "" start_time = time.time() user_id = request.session_hash save_dir = f"./{user_id}_index" # Initialize LlamaIndex modules - use GPU functions for model inference only llm = get_llm_for_rag_gpu() embed_model = get_embedding_model_gpu() Settings.llm = llm Settings.embed_model = embed_model file_stats = [] new_documents = [] for file in tqdm(files, desc="Processing files"): file_basename = os.path.basename(file.name) text, word_count, error = extract_text_from_document(file) if error: logger.error(f"Error processing file {file_basename}: {str(error)}") file_stats.append({ "name": file_basename, "words": 0, "status": f"error: {str(error)}" }) continue doc = LlamaDocument( text=text, metadata={ "file_name": file_basename, "word_count": word_count, "source": "user_upload" } ) new_documents.append(doc) file_stats.append({ "name": file_basename, "words": word_count, "status": "processed" }) global_file_info[file_basename] = { "word_count": word_count, "processed_at": time.time() } node_parser = HierarchicalNodeParser.from_defaults( chunk_sizes=[2048, 512, 128], chunk_overlap=20 ) logger.info(f"Parsing {len(new_documents)} documents into hierarchical nodes") new_nodes = node_parser.get_nodes_from_documents(new_documents) new_leaf_nodes = get_leaf_nodes(new_nodes) new_root_nodes = get_root_nodes(new_nodes) logger.info(f"Generated {len(new_nodes)} total nodes ({len(new_root_nodes)} root, {len(new_leaf_nodes)} leaf)") if os.path.exists(save_dir): logger.info(f"Loading existing index from {save_dir}") storage_context = StorageContext.from_defaults(persist_dir=save_dir) index = load_index_from_storage(storage_context, settings=Settings) docstore = storage_context.docstore docstore.add_documents(new_nodes) for node in tqdm(new_leaf_nodes, desc="Adding leaf nodes to index"): index.insert_nodes([node]) total_docs = len(docstore.docs) logger.info(f"Updated index with {len(new_nodes)} new nodes from {len(new_documents)} files") else: logger.info("Creating new index") docstore = SimpleDocumentStore() storage_context = StorageContext.from_defaults(docstore=docstore) docstore.add_documents(new_nodes) index = VectorStoreIndex( new_leaf_nodes, storage_context=storage_context, settings=Settings ) total_docs = len(new_documents) logger.info(f"Created new index with {len(new_nodes)} nodes from {len(new_documents)} files") index.storage_context.persist(persist_dir=save_dir) # custom outputs after processing files file_list_html = "
" for stat in file_stats: status_color = "#4CAF50" if stat["status"] == "processed" else "#f44336" file_list_html += f"
ā— {stat['name']} - {stat['words']} words
" file_list_html += "
" processing_time = time.time() - start_time stats_output = f"
" stats_output += f"āœ“ Processed {len(files)} files in {processing_time:.2f} seconds
" stats_output += f"āœ“ Created {len(new_nodes)} nodes ({len(new_leaf_nodes)} leaf nodes)
" stats_output += f"āœ“ Total documents in index: {total_docs}
" stats_output += f"āœ“ Index saved to: {save_dir}
" stats_output += "
" output_container = f"
" output_container += file_list_html output_container += stats_output output_container += "
" return f"Successfully indexed {len(files)} files.", output_container def stream_chat( message: str, history: list, system_prompt: str, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float, retriever_k: int, merge_threshold: float, use_rag: bool, medical_model: str, use_web_search: bool, disable_agentic_reasoning: bool, request: gr.Request ): if not request: yield history + [{"role": "assistant", "content": "Session initialization failed. Please refresh the page."}] return user_id = request.session_hash index_dir = f"./{user_id}_index" has_rag_index = os.path.exists(index_dir) # If agentic reasoning is disabled, use base MedSwin model only if disable_agentic_reasoning: logger.info("🚫 Agentic reasoning disabled - using base MedSwin model only") # Skip all MCP functionality: reasoning, translation, web search, summarization original_message = message original_lang = "en" # Assume English, no translation needs_translation = False final_use_rag = use_rag and has_rag_index # Still allow RAG if user wants it final_use_web_search = False # Disable web search when agentic reasoning is off reasoning_note = "" # Simple reasoning structure for base model reasoning = { "query_type": "general_info", "complexity": "simple", "information_needs": ["direct_answer"], "requires_rag": final_use_rag, "requires_web_search": False, "sub_questions": [message] } else: # ===== AUTONOMOUS REASONING ===== logger.info("šŸ¤” Starting autonomous reasoning...") reasoning = autonomous_reasoning(message, history) # ===== PLANNING ===== logger.info("šŸ“‹ Creating execution plan...") plan = create_execution_plan(reasoning, message, has_rag_index) # ===== AUTONOMOUS EXECUTION STRATEGY ===== logger.info("šŸŽÆ Determining execution strategy...") execution_strategy = autonomous_execution_strategy(reasoning, plan, use_rag, use_web_search, has_rag_index) # Use autonomous strategy decisions (respect user's RAG setting) final_use_rag = execution_strategy["use_rag"] and has_rag_index # Only use RAG if enabled AND documents exist final_use_web_search = execution_strategy["use_web_search"] # Show reasoning override message if applicable reasoning_note = "" if execution_strategy["reasoning_override"]: reasoning_note = f"\n\nšŸ’” *Autonomous Reasoning: {execution_strategy['rationale']}*" # Detect language and translate if needed (Step 1 of plan) original_lang = detect_language(message) original_message = message needs_translation = original_lang != "en" if needs_translation: logger.info(f"Detected non-English language: {original_lang}, translating to English...") message = translate_text(message, target_lang="en", source_lang=original_lang) logger.info(f"Translated query: {message}") # Initialize medical model medical_model_obj, medical_tokenizer = initialize_medical_model(medical_model) # Adjust system prompt based on RAG setting and reasoning if final_use_rag: base_system_prompt = system_prompt if system_prompt else "As a medical specialist, provide clinical and concise answers based on the provided medical documents and context." else: base_system_prompt = "As a medical specialist, provide short and concise clinical answers. Be brief and avoid lengthy explanations. Focus on key medical facts only." # Add reasoning context to system prompt for complex queries (only when agentic reasoning is enabled) if not disable_agentic_reasoning and reasoning["complexity"] in ["complex", "multi_faceted"]: base_system_prompt += f"\n\nQuery Analysis: This is a {reasoning['complexity']} {reasoning['query_type']} query. Address all sub-questions: {', '.join(reasoning.get('sub_questions', [])[:3])}" # ===== EXECUTION: RAG Retrieval (Step 2) ===== rag_context = "" source_info = "" if final_use_rag and has_rag_index: # Use GPU function for embedding model embed_model = get_embedding_model_gpu() Settings.embed_model = embed_model storage_context = StorageContext.from_defaults(persist_dir=index_dir) index = load_index_from_storage(storage_context, settings=Settings) base_retriever = index.as_retriever(similarity_top_k=retriever_k) auto_merging_retriever = AutoMergingRetriever( base_retriever, storage_context=storage_context, simple_ratio_thresh=merge_threshold, verbose=True ) logger.info(f"Query: {message}") retrieval_start = time.time() merged_nodes = auto_merging_retriever.retrieve(message) logger.info(f"Retrieved {len(merged_nodes)} merged nodes in {time.time() - retrieval_start:.2f}s") merged_file_sources = {} for node in merged_nodes: if hasattr(node.node, 'metadata') and 'file_name' in node.node.metadata: file_name = node.node.metadata['file_name'] if file_name not in merged_file_sources: merged_file_sources[file_name] = 0 merged_file_sources[file_name] += 1 logger.info(f"Merged retrieval file distribution: {merged_file_sources}") rag_context = "\n\n".join([n.node.text for n in merged_nodes]) if merged_file_sources: source_info = "\n\nRetrieved information from files: " + ", ".join(merged_file_sources.keys()) # ===== EXECUTION: Web Search (Step 3) ===== web_context = "" web_sources = [] web_urls = [] # Store URLs for citations if final_use_web_search: logger.info("🌐 Performing web search (using MCP tools, with Gemini MCP for summarization)...") # search_web() tries MCP web search tool first, then falls back to direct API web_results = search_web(message, max_results=5) if web_results: logger.info(f"šŸ“Š Found {len(web_results)} web search results, now summarizing with Gemini MCP...") # summarize_web_content() uses Gemini MCP via call_agent() web_summary = summarize_web_content(web_results, message) if web_summary and len(web_summary) > 50: # Check if we got a real summary logger.info(f"āœ… [MCP] Gemini MCP summarization successful ({len(web_summary)} chars)") web_context = f"\n\nAdditional Web Sources (summarized with Gemini MCP):\n{web_summary}" else: logger.warning("āš ļø [MCP] Gemini MCP summarization failed or returned empty, using raw results") # Fallback: use first result's content web_context = f"\n\nAdditional Web Sources:\n{web_results[0].get('content', '')[:500]}" web_sources = [r['title'] for r in web_results[:3]] # Extract unique URLs for citations web_urls = [r.get('url', '') for r in web_results if r.get('url')] logger.info(f"āœ… Web search completed: {len(web_results)} results, summarized with Gemini MCP") else: logger.warning("āš ļø Web search returned no results") # Build final context context_parts = [] if rag_context: context_parts.append(f"Document Context:\n{rag_context}") if web_context: context_parts.append(web_context) full_context = "\n\n".join(context_parts) if context_parts else "" # Build system prompt if final_use_rag or final_use_web_search: formatted_system_prompt = f"{base_system_prompt}\n\n{full_context}{source_info}" else: formatted_system_prompt = base_system_prompt # Prepare messages messages = [{"role": "system", "content": formatted_system_prompt}] for entry in history: messages.append(entry) messages.append({"role": "user", "content": message}) # Get EOS token and adjust stopping criteria eos_token_id = medical_tokenizer.eos_token_id if eos_token_id is None: eos_token_id = medical_tokenizer.pad_token_id # Increase max tokens for medical models (prevent early stopping) max_new_tokens = int(max_new_tokens) if isinstance(max_new_tokens, (int, float)) else 2048 max_new_tokens = max(max_new_tokens, 1024) # Minimum 1024 tokens for medical answers # Format prompt - MedAlpaca/MedSwin models typically don't have chat templates # Use manual formatting for consistent behavior # Following the example: check if tokenizer has chat template, otherwise format manually if hasattr(medical_tokenizer, 'chat_template') and medical_tokenizer.chat_template is not None: try: prompt = medical_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) except Exception as e: logger.warning(f"Chat template failed, using manual formatting: {e}") # Fallback to manual formatting prompt = format_prompt_manually(messages, medical_tokenizer) else: # Manual formatting for models without chat template prompt = format_prompt_manually(messages, medical_tokenizer) # Calculate prompt length for stopping criteria # Tokenize to get length - use EXACT same tokenization as model.py # This ensures consistency and prevents tokenization mismatches inputs = medical_tokenizer( prompt, return_tensors="pt", add_special_tokens=True, # Match model.py tokenization padding=False, truncation=False ) prompt_length = inputs['input_ids'].shape[1] logger.debug(f"Prompt length: {prompt_length} tokens") stop_event = threading.Event() class StopOnEvent(StoppingCriteria): def __init__(self, stop_event): super().__init__() self.stop_event = stop_event def __call__(self, input_ids, scores, **kwargs): return self.stop_event.is_set() # Custom stopping criteria that doesn't stop on EOS too early # This prevents premature stopping which can cause corrupted outputs # Following the example: use min_new_tokens=100 to ensure proper generation class MedicalStoppingCriteria(StoppingCriteria): def __init__(self, eos_token_id, prompt_length, min_new_tokens=100): super().__init__() self.eos_token_id = eos_token_id self.prompt_length = prompt_length self.min_new_tokens = min_new_tokens def __call__(self, input_ids, scores, **kwargs): current_length = input_ids.shape[1] new_tokens = current_length - self.prompt_length last_token = input_ids[0, -1].item() # Don't stop on EOS if we haven't generated enough new tokens # This prevents early stopping that can cause corrupted outputs # Following example: require at least min_new_tokens before allowing EOS if new_tokens < self.min_new_tokens: return False # Allow EOS after minimum new tokens have been generated return last_token == self.eos_token_id stopping_criteria = StoppingCriteriaList([ StopOnEvent(stop_event), MedicalStoppingCriteria(eos_token_id, prompt_length, min_new_tokens=100) ]) # Create streamer with correct settings for LLaMA-based models # skip_special_tokens=True ensures clean text output without special token artifacts streamer = TextIteratorStreamer( medical_tokenizer, skip_prompt=True, skip_special_tokens=True, # Skip special tokens in output for clean text timeout=None # Don't timeout on long generations ) temperature = float(temperature) if isinstance(temperature, (int, float)) else 0.7 top_p = float(top_p) if isinstance(top_p, (int, float)) else 0.95 top_k = int(top_k) if isinstance(top_k, (int, float)) else 50 penalty = float(penalty) if isinstance(penalty, (int, float)) else 1.2 # Call GPU function for model inference only thread = threading.Thread( target=generate_with_medswin, kwargs={ "medical_model_obj": medical_model_obj, "medical_tokenizer": medical_tokenizer, "prompt": prompt, "max_new_tokens": max_new_tokens, "temperature": temperature, "top_p": top_p, "top_k": top_k, "penalty": penalty, "eos_token_id": eos_token_id, "pad_token_id": medical_tokenizer.pad_token_id or eos_token_id, "stop_event": stop_event, "streamer": streamer, "stopping_criteria": stopping_criteria } ) thread.start() updated_history = history + [ {"role": "user", "content": original_message}, {"role": "assistant", "content": ""} ] yield updated_history partial_response = "" try: for new_text in streamer: partial_response += new_text updated_history[-1]["content"] = partial_response yield updated_history # ===== SELF-REFLECTION (Step 6) ===== # Skip self-reflection when agentic reasoning is disabled if not disable_agentic_reasoning and reasoning["complexity"] in ["complex", "multi_faceted"]: logger.info("šŸ” Performing self-reflection on answer quality...") reflection = self_reflection(partial_response, message, reasoning) # Add reflection note if score is low or improvements suggested if reflection.get("overall_score", 10) < 7 or reflection.get("improvement_suggestions"): reflection_note = f"\n\n---\n**Self-Reflection** (Score: {reflection.get('overall_score', 'N/A')}/10)" if reflection.get("improvement_suggestions"): reflection_note += f"\nšŸ’” Suggestions: {', '.join(reflection['improvement_suggestions'][:2])}" partial_response += reflection_note updated_history[-1]["content"] = partial_response # Add reasoning note if autonomous override occurred if reasoning_note: partial_response = reasoning_note + "\n\n" + partial_response updated_history[-1]["content"] = partial_response # Translate back if needed (only when agentic reasoning is enabled) if not disable_agentic_reasoning and needs_translation and partial_response: logger.info(f"Translating response back to {original_lang}...") translated_response = translate_text(partial_response, target_lang=original_lang, source_lang="en") partial_response = translated_response # Add citations if web sources were used citations_text = "" if web_urls: # Get unique domains unique_urls = list(dict.fromkeys(web_urls)) # Preserve order, remove duplicates citation_links = [] for url in unique_urls[:5]: # Limit to 5 citations domain = format_url_as_domain(url) if domain: # Create markdown link: [domain](url) citation_links.append(f"[{domain}]({url})") if citation_links: citations_text = "\n\n**Sources:** " + ", ".join(citation_links) # Add speaker icon and citations to assistant message speaker_icon = ' šŸ”Š' partial_response_with_speaker = partial_response + citations_text + speaker_icon updated_history[-1]["content"] = partial_response_with_speaker yield updated_history except GeneratorExit: stop_event.set() thread.join() raise def generate_speech_for_message(text: str): """Generate speech for a message and return audio file""" audio_path = generate_speech(text) if audio_path: return audio_path return None def create_demo(): with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo: gr.HTML(TITLE) gr.HTML(DESCRIPTION) with gr.Row(elem_classes="main-container"): with gr.Column(elem_classes="upload-section"): file_upload = gr.File( file_count="multiple", label="Drag and Drop Files Here", file_types=[".pdf", ".txt", ".doc", ".docx", ".md", ".json", ".xml", ".csv"], elem_id="file-upload" ) upload_button = gr.Button("Upload & Index", elem_classes="upload-button") status_output = gr.Textbox( label="Status", placeholder="Upload files to start...", interactive=False ) file_info_output = gr.HTML( label="File Information", elem_classes="processing-info" ) upload_button.click( fn=create_or_update_index, inputs=[file_upload], outputs=[status_output, file_info_output] ) with gr.Column(elem_classes="chatbot-container"): chatbot = gr.Chatbot( height=500, placeholder="Chat with MedSwin... Type your question below.", show_label=False, type="messages" ) with gr.Row(elem_classes="input-row"): message_input = gr.Textbox( placeholder="Type your medical question here...", show_label=False, container=False, lines=1, scale=10 ) mic_button = gr.Audio( sources=["microphone"], type="filepath", label="", show_label=False, container=False, scale=1 ) submit_button = gr.Button("āž¤", elem_classes="submit-btn", scale=1) # Timer display for recording (shown below input row) recording_timer = gr.Textbox( value="", label="", show_label=False, interactive=False, visible=False, container=False, elem_classes="recording-timer" ) # Handle microphone transcription import time recording_start_time = [None] def handle_recording_start(): """Called when recording starts""" recording_start_time[0] = time.time() return gr.update(visible=True, value="Recording... 0s") def handle_recording_stop(audio): """Called when recording stops""" recording_start_time[0] = None if audio is None: return gr.update(visible=False, value=""), "" transcribed = transcribe_audio(audio) return gr.update(visible=False, value=""), transcribed # Use JavaScript for timer updates (simpler than Gradio Timer) mic_button.start_recording( fn=handle_recording_start, outputs=[recording_timer] ) mic_button.stop_recording( fn=handle_recording_stop, inputs=[mic_button], outputs=[recording_timer, message_input] ) # TTS component for generating speech from messages with gr.Row(visible=False) as tts_row: tts_text = gr.Textbox(visible=False) tts_audio = gr.Audio(label="Generated Speech", visible=False) # Function to generate speech when speaker icon is clicked def generate_speech_from_chat(history): """Extract last assistant message and generate speech""" if not history or len(history) == 0: return None last_msg = history[-1] if last_msg.get("role") == "assistant": text = last_msg.get("content", "").replace(" šŸ”Š", "").strip() if text: audio_path = generate_speech(text) return audio_path return None # Add TTS button that appears when assistant responds tts_button = gr.Button("šŸ”Š Play Response", visible=False, size="sm") # Update TTS button visibility and generate speech def update_tts_button(history): if history and len(history) > 0 and history[-1].get("role") == "assistant": return gr.update(visible=True) return gr.update(visible=False) chatbot.change( fn=update_tts_button, inputs=[chatbot], outputs=[tts_button] ) tts_button.click( fn=generate_speech_from_chat, inputs=[chatbot], outputs=[tts_audio] ) with gr.Accordion("āš™ļø Advanced Settings", open=False): with gr.Row(): disable_agentic_reasoning = gr.Checkbox( value=False, label="Disable Agentic Reasoning", info="Use base MedSwin model only, no MCP tools (Gemini, web search, reasoning)" ) with gr.Row(): use_rag = gr.Checkbox( value=False, label="Enable Document RAG", info="Answer based on uploaded documents (requires document upload)" ) use_web_search = gr.Checkbox( value=False, label="Enable Web Search (MCP)", info="Fetch knowledge from online medical resources" ) medical_model = gr.Radio( choices=list(MEDSWIN_MODELS.keys()), value=DEFAULT_MEDICAL_MODEL, label="Medical Model", info="MedSwin TA (default), others download on first use" ) system_prompt = gr.Textbox( value="As a medical specialist, provide detailed and accurate answers based on the provided medical documents and context. Ensure all information is clinically accurate and cite sources when available.", label="System Prompt", lines=3 ) with gr.Tab("Generation Parameters"): temperature = gr.Slider( minimum=0, maximum=1, step=0.1, value=0.2, label="Temperature" ) max_new_tokens = gr.Slider( minimum=512, maximum=4096, step=128, value=2048, label="Max New Tokens", info="Increased for medical models to prevent early stopping" ) top_p = gr.Slider( minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Top P" ) top_k = gr.Slider( minimum=1, maximum=100, step=1, value=50, label="Top K" ) penalty = gr.Slider( minimum=0.0, maximum=2.0, step=0.1, value=1.2, label="Repetition Penalty" ) with gr.Tab("Retrieval Parameters"): retriever_k = gr.Slider( minimum=5, maximum=30, step=1, value=15, label="Initial Retrieval Size (Top K)" ) merge_threshold = gr.Slider( minimum=0.1, maximum=0.9, step=0.1, value=0.5, label="Merge Threshold (lower = more merging)" ) submit_button.click( fn=stream_chat, inputs=[ message_input, chatbot, system_prompt, temperature, max_new_tokens, top_p, top_k, penalty, retriever_k, merge_threshold, use_rag, medical_model, use_web_search, disable_agentic_reasoning ], outputs=chatbot ) message_input.submit( fn=stream_chat, inputs=[ message_input, chatbot, system_prompt, temperature, max_new_tokens, top_p, top_k, penalty, retriever_k, merge_threshold, use_rag, medical_model, use_web_search, disable_agentic_reasoning ], outputs=chatbot ) return demo if __name__ == "__main__": # Preload models on startup logger.info("Preloading models on startup...") logger.info("Initializing default medical model (MedSwin TA)...") initialize_medical_model(DEFAULT_MEDICAL_MODEL) logger.info("Preloading TTS model...") try: initialize_tts_model() if global_tts_model is not None: logger.info("TTS model preloaded successfully!") else: logger.warning("TTS model not available - will use MCP or disable voice generation") except Exception as e: logger.warning(f"TTS model preloading failed: {e}") logger.warning("Text-to-speech will use MCP or be disabled") # Check Gemini MCP availability if MCP_AVAILABLE: logger.info("Gemini MCP is available for translation, summarization, document parsing, and transcription") else: logger.warning("Gemini MCP not available - translation, summarization, document parsing, and transcription features will be limited") logger.info("Model preloading complete!") demo = create_demo() demo.launch()