import gradio as gr
import os
import base64
import logging
import torch
import threading
import time
import json
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
StoppingCriteria,
StoppingCriteriaList,
)
from transformers import logging as hf_logging
import spaces
from llama_index.core import (
StorageContext,
VectorStoreIndex,
load_index_from_storage,
Document as LlamaDocument,
)
from llama_index.core import Settings
from llama_index.core.node_parser import (
HierarchicalNodeParser,
get_leaf_nodes,
get_root_nodes,
)
from llama_index.core.retrievers import AutoMergingRetriever
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# Import GPU-tagged model functions
from model import (
get_llm_for_rag as get_llm_for_rag_gpu,
get_embedding_model as get_embedding_model_gpu,
generate_with_medswin,
initialize_medical_model,
global_medical_models,
global_medical_tokenizers
)
from tqdm import tqdm
from langdetect import detect, LangDetectException
# MCP imports
try:
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import asyncio
try:
import nest_asyncio
nest_asyncio.apply() # Allow nested event loops
except ImportError:
pass # nest_asyncio is optional
MCP_AVAILABLE = True
except ImportError:
MCP_AVAILABLE = False
# Fallback imports if MCP is not available
from ddgs import DDGS
import requests
from bs4 import BeautifulSoup
try:
from TTS.api import TTS
TTS_AVAILABLE = True
except ImportError:
TTS_AVAILABLE = False
TTS = None
import numpy as np
import soundfile as sf
import tempfile
os.environ["TOKENIZERS_PARALLELISM"] = "false"
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
hf_logging.set_verbosity_error()
# Model configurations
MEDSWIN_MODELS = {
"MedSwin SFT": "MedSwin/MedSwin-7B-SFT",
"MedSwin KD": "MedSwin/MedSwin-7B-KD",
"MedSwin TA": "MedSwin/MedSwin-Merged-TA-SFT-0.7"
}
DEFAULT_MEDICAL_MODEL = "MedSwin TA"
EMBEDDING_MODEL = "abhinand/MedEmbed-large-v0.1" # Domain-tuned medical embedding model
TTS_MODEL = "maya-research/maya1"
HF_TOKEN = os.environ.get("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN not found in environment variables")
# Gemini MCP configuration
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
GEMINI_MODEL = os.environ.get("GEMINI_MODEL", "gemini-2.5-flash") # Default for harder tasks
GEMINI_MODEL_LITE = os.environ.get("GEMINI_MODEL_LITE", "gemini-2.5-flash-lite") # For parsing and simple tasks
# Custom UI
TITLE = "
𩺠MedLLM Agent - Medical RAG & Web Search System
"
DESCRIPTION = """
Advanced Medical AI Assistant powered by MedSwin models
š Document RAG: Answer based on uploaded medical documents
š Web Search: Fetch knowledge from reliable online medical resources
š Multi-language: Automatic translation for non-English queries
Upload PDF or text files to get started!
"""
CSS = """
.upload-section {
max-width: 400px;
margin: 0 auto;
padding: 10px;
border: 2px dashed #ccc;
border-radius: 10px;
}
.upload-button {
background: #34c759 !important;
color: white !important;
border-radius: 25px !important;
}
.chatbot-container {
margin-top: 20px;
}
.status-output {
margin-top: 10px;
font-size: 14px;
}
.processing-info {
margin-top: 5px;
font-size: 12px;
color: #666;
}
.info-container {
margin-top: 10px;
padding: 10px;
border-radius: 5px;
}
.file-list {
margin-top: 0;
max-height: 200px;
overflow-y: auto;
padding: 5px;
border: 1px solid #eee;
border-radius: 5px;
}
.stats-box {
margin-top: 10px;
padding: 10px;
border-radius: 5px;
font-size: 12px;
}
.submit-btn {
background: #1a73e8 !important;
color: white !important;
border-radius: 25px !important;
margin-left: 10px;
padding: 5px 10px;
font-size: 16px;
}
.input-row {
display: flex;
align-items: center;
}
.recording-timer {
font-size: 12px;
color: #666;
text-align: center;
margin-top: 5px;
}
.feature-badge {
display: inline-block;
padding: 3px 8px;
margin: 2px;
border-radius: 12px;
font-size: 11px;
font-weight: bold;
}
.badge-rag {
background: #e3f2fd;
color: #1976d2;
}
.badge-web {
background: #f3e5f5;
color: #7b1fa2;
}
@media (min-width: 768px) {
.main-container {
display: flex;
justify-content: space-between;
gap: 20px;
}
.upload-section {
flex: 1;
max-width: 300px;
}
.chatbot-container {
flex: 2;
margin-top: 0;
}
}
"""
# Global model storage - models are stored in model.py
# Import the global model storage from model.py
global_file_info = {}
global_tts_model = None
# MCP client storage
global_mcp_session = None
global_mcp_stdio_ctx = None # Store stdio context to keep it alive
global_mcp_lock = threading.Lock() # Lock for thread-safe session access
# MCP server configuration via environment variables
# Gemini MCP server: Python-based server (agent.py)
# This works on Hugging Face Spaces without requiring npm/Node.js
# Make sure GEMINI_API_KEY is set in environment variables
#
# Default configuration uses the bundled agent.py script
# To override:
# export MCP_SERVER_COMMAND="python"
# export MCP_SERVER_ARGS="/path/to/agent.py"
script_dir = os.path.dirname(os.path.abspath(__file__))
agent_path = os.path.join(script_dir, "agent.py")
MCP_SERVER_COMMAND = os.environ.get("MCP_SERVER_COMMAND", "python")
MCP_SERVER_ARGS = os.environ.get("MCP_SERVER_ARGS", agent_path).split() if os.environ.get("MCP_SERVER_ARGS") else [agent_path]
async def get_mcp_session():
"""Get or create MCP client session with proper context management"""
global global_mcp_session, global_mcp_stdio_ctx
if not MCP_AVAILABLE:
return None
# Check if session exists and is still valid
if global_mcp_session is not None:
try:
# Test if session is still alive by listing tools
await global_mcp_session.list_tools()
return global_mcp_session
except Exception as e:
logger.debug(f"Existing MCP session invalid, recreating: {e}")
# Clean up old session
try:
if global_mcp_session is not None:
await global_mcp_session.__aexit__(None, None, None)
except:
pass
try:
if global_mcp_stdio_ctx is not None:
await global_mcp_stdio_ctx.__aexit__(None, None, None)
except:
pass
global_mcp_session = None
global_mcp_stdio_ctx = None
# Create new session using correct MCP SDK pattern
try:
# Prepare environment variables for MCP server
mcp_env = os.environ.copy()
if GEMINI_API_KEY:
mcp_env["GEMINI_API_KEY"] = GEMINI_API_KEY
else:
logger.warning("GEMINI_API_KEY not set in environment. Gemini MCP features may not work.")
# Add other Gemini MCP configuration if set
if os.environ.get("GEMINI_MODEL"):
mcp_env["GEMINI_MODEL"] = os.environ.get("GEMINI_MODEL")
if os.environ.get("GEMINI_TIMEOUT"):
mcp_env["GEMINI_TIMEOUT"] = os.environ.get("GEMINI_TIMEOUT")
if os.environ.get("GEMINI_MAX_OUTPUT_TOKENS"):
mcp_env["GEMINI_MAX_OUTPUT_TOKENS"] = os.environ.get("GEMINI_MAX_OUTPUT_TOKENS")
if os.environ.get("GEMINI_TEMPERATURE"):
mcp_env["GEMINI_TEMPERATURE"] = os.environ.get("GEMINI_TEMPERATURE")
logger.info(f"Creating MCP client session with command: {MCP_SERVER_COMMAND} {MCP_SERVER_ARGS}")
server_params = StdioServerParameters(
command=MCP_SERVER_COMMAND,
args=MCP_SERVER_ARGS,
env=mcp_env
)
# Correct MCP SDK usage: stdio_client is an async context manager
# that yields (read, write) streams
stdio_ctx = stdio_client(server_params)
read, write = await stdio_ctx.__aenter__()
# Wait for the server process to fully start
# The server needs time to: start Python, import modules, initialize Gemini client, start MCP server
logger.info("ā³ Waiting for MCP server process to start...")
# Increase wait time and add progressive checks
for wait_attempt in range(5):
await asyncio.sleep(1.0) # Check every second
# Try to peek at the read stream to see if server is responding
# (This is a simple check - the actual initialization will happen below)
try:
# Check if the process is still alive by attempting a small read with timeout
# Note: This is a best-effort check
pass
except:
pass
logger.info("ā³ MCP server startup wait complete, proceeding with initialization...")
# Create ClientSession from the streams
# ClientSession handles initialization automatically when used as context manager
# Use the session as a context manager to ensure proper initialization
logger.info("š Creating MCP client session...")
try:
from mcp.types import ClientInfo
try:
client_info = ClientInfo(
name="medllm-agent",
version="1.0.0"
)
session = ClientSession(read, write, client_info=client_info)
except (TypeError, ValueError):
# Fallback if ClientInfo parameters are incorrect
session = ClientSession(read, write)
except (ImportError, AttributeError):
# Fallback if ClientInfo is not available
session = ClientSession(read, write)
# Initialize the session using context manager pattern
# This properly handles the initialization handshake
logger.info("š Initializing MCP session...")
try:
# Enter the session context - this triggers initialization
await session.__aenter__()
logger.info("ā
MCP session initialized, verifying tools...")
except Exception as e:
logger.error(f"ā MCP session initialization failed: {e}")
import traceback
logger.debug(traceback.format_exc())
# Clean up and return None
try:
await stdio_ctx.__aexit__(None, None, None)
except:
pass
return None
# Wait for the server to be fully ready after initialization
await asyncio.sleep(1.0) # Wait after initialization
# Verify the session works by listing tools with retries
# This confirms the server is ready to handle requests
max_init_retries = 15 # Increased retries
tools_listed = False
tools = None
last_error = None
for init_attempt in range(max_init_retries):
try:
tools = await session.list_tools()
if tools and hasattr(tools, 'tools') and len(tools.tools) > 0:
logger.info(f"ā
MCP server ready with {len(tools.tools)} tools: {[t.name for t in tools.tools]}")
tools_listed = True
break
elif tools and hasattr(tools, 'tools'):
# Empty tools list - might be a server issue
logger.warning(f"MCP server returned empty tools list (attempt {init_attempt + 1}/{max_init_retries})")
if init_attempt < max_init_retries - 1:
await asyncio.sleep(1.5) # Slightly longer wait
continue
else:
# Invalid response format
logger.warning(f"MCP server returned invalid tools response (attempt {init_attempt + 1}/{max_init_retries})")
if init_attempt < max_init_retries - 1:
await asyncio.sleep(1.5)
continue
except Exception as e:
last_error = e
error_str = str(e).lower()
error_msg = str(e)
# Log the actual error for debugging
if init_attempt == 0:
logger.debug(f"First list_tools attempt failed: {error_msg}")
elif init_attempt < 3:
logger.debug(f"list_tools attempt {init_attempt + 1} failed: {error_msg}")
# Handle different error types
if "initialization" in error_str or "before initialization" in error_str or "not initialized" in error_str:
if init_attempt < max_init_retries - 1:
wait_time = 0.5 * (init_attempt + 1) # Progressive wait: 0.5s, 1s, 1.5s...
logger.debug(f"Server still initializing (attempt {init_attempt + 1}/{max_init_retries}), waiting {wait_time}s...")
await asyncio.sleep(wait_time)
continue
elif "invalid request" in error_str or "invalid request parameters" in error_str:
# Invalid request might mean the server isn't ready yet or there's a protocol issue
if init_attempt < max_init_retries - 1:
wait_time = 1.0 * (init_attempt + 1) # Longer wait for invalid request errors
logger.debug(f"Invalid request error (attempt {init_attempt + 1}/{max_init_retries}), waiting {wait_time}s...")
await asyncio.sleep(wait_time)
continue
else:
# Last attempt failed - log detailed error
logger.error(f"ā Invalid request parameters error persists. This may indicate a protocol mismatch.")
import traceback
logger.debug(traceback.format_exc())
elif init_attempt < max_init_retries - 1:
wait_time = 0.5 * (init_attempt + 1)
logger.debug(f"Tool listing attempt {init_attempt + 1}/{max_init_retries} failed: {error_msg}, waiting {wait_time}s...")
await asyncio.sleep(wait_time)
else:
logger.error(f"ā Could not list tools after {max_init_retries} attempts. Last error: {error_msg}")
import traceback
logger.debug(traceback.format_exc())
# Don't continue - if we can't list tools, the session is not usable
try:
await session.__aexit__(None, None, None)
except:
pass
try:
await stdio_ctx.__aexit__(None, None, None)
except:
pass
return None
if not tools_listed:
error_msg = str(last_error) if last_error else "Unknown error"
logger.error(f"MCP server failed to initialize - tools could not be listed. Last error: {error_msg}")
try:
await session.__aexit__(None, None, None)
except:
pass
try:
await stdio_ctx.__aexit__(None, None, None)
except:
pass
return None
# Store both the session and stdio context to keep them alive
global_mcp_session = session
global_mcp_stdio_ctx = stdio_ctx
logger.info("MCP client session created successfully")
return session
except Exception as e:
logger.error(f"Failed to create MCP client session: {e}")
import traceback
logger.debug(traceback.format_exc())
global_mcp_session = None
global_mcp_stdio_ctx = None
return None
async def call_agent(user_prompt: str, system_prompt: str = None, files: list = None, model: str = None, temperature: float = 0.2) -> str:
"""
Call Gemini MCP generate_content tool via MCP protocol.
This function uses the MCP (Model Context Protocol) to call Gemini AI,
NOT direct API calls. It connects to the bundled agent.py MCP server
which provides the generate_content tool.
Used for: translation, summarization, document parsing, transcription, reasoning
"""
if not MCP_AVAILABLE:
logger.warning("MCP not available for Gemini call")
return ""
try:
session = await get_mcp_session()
if session is None:
logger.warning("Failed to get MCP session for Gemini call")
return ""
# Retry listing tools if it fails the first time
# Use more retries and longer waits since MCP server might need time
max_retries = 5
tools = None
for attempt in range(max_retries):
try:
tools = await session.list_tools()
if tools and hasattr(tools, 'tools') and len(tools.tools) > 0:
break
else:
raise ValueError("Empty tools list")
except Exception as e:
if attempt < max_retries - 1:
wait_time = 1.0 * (attempt + 1) # Progressive wait
logger.debug(f"Failed to list tools (attempt {attempt + 1}/{max_retries}), waiting {wait_time}s...")
await asyncio.sleep(wait_time)
else:
logger.error(f"ā Failed to list MCP tools after {max_retries} attempts: {e}")
return ""
if not tools or not hasattr(tools, 'tools'):
logger.error("Invalid tools response from MCP server")
return ""
# Find generate_content tool
generate_tool = None
for tool in tools.tools:
if tool.name == "generate_content" or "generate_content" in tool.name.lower():
generate_tool = tool
logger.info(f"Found Gemini MCP tool: {tool.name}")
break
if not generate_tool:
logger.warning(f"Gemini MCP generate_content tool not found. Available tools: {[t.name for t in tools.tools]}")
return ""
# Prepare arguments
arguments = {
"user_prompt": user_prompt
}
if system_prompt:
arguments["system_prompt"] = system_prompt
if files:
arguments["files"] = files
if model:
arguments["model"] = model
if temperature is not None:
arguments["temperature"] = temperature
logger.info(f"š§ [MCP] Calling Gemini MCP tool '{generate_tool.name}' for: {user_prompt[:100]}...")
logger.info(f"š [MCP] Arguments: model={model}, temperature={temperature}, files={len(files) if files else 0}")
result = await session.call_tool(generate_tool.name, arguments=arguments)
# Parse result
if hasattr(result, 'content') and result.content:
for item in result.content:
if hasattr(item, 'text'):
response_text = item.text.strip()
logger.info(f"ā
[MCP] Gemini MCP returned response ({len(response_text)} chars)")
return response_text
logger.warning("ā ļø [MCP] Gemini MCP returned empty or invalid result")
return ""
except Exception as e:
logger.error(f"Gemini MCP call error: {e}")
import traceback
logger.debug(traceback.format_exc())
return ""
# initialize_medical_model is now imported from model.py
def initialize_tts_model():
"""Initialize TTS model for text-to-speech"""
global global_tts_model
if not TTS_AVAILABLE:
logger.warning("TTS library not installed. TTS features will be disabled.")
return None
if global_tts_model is None:
try:
logger.info("Initializing TTS model for voice generation...")
global_tts_model = TTS(model_name=TTS_MODEL, progress_bar=False)
logger.info("TTS model initialized successfully")
except Exception as e:
logger.warning(f"TTS model initialization failed: {e}")
logger.warning("TTS features will be disabled. If pyworld dependency is missing, try: pip install TTS --no-deps && pip install coqui-tts")
global_tts_model = None
return global_tts_model
async def transcribe_audio_gemini(audio_path: str) -> str:
"""Transcribe audio using Gemini MCP"""
if not MCP_AVAILABLE:
return ""
try:
# Ensure we have an absolute path
audio_path_abs = os.path.abspath(audio_path)
# Prepare file object for Gemini MCP using path (as per Gemini MCP documentation)
files = [{
"path": audio_path_abs
}]
# Use exact prompts from Gemini MCP documentation
system_prompt = "You are a professional transcription service. Provide accurate, well-formatted transcripts."
user_prompt = "Please transcribe this audio file. Include speaker identification if multiple speakers are present, and format it with proper punctuation and paragraphs, remove mumble, ignore non-verbal noises."
result = await call_agent(
user_prompt=user_prompt,
system_prompt=system_prompt,
files=files,
model=GEMINI_MODEL_LITE, # Use lite model for transcription
temperature=0.2
)
return result.strip()
except Exception as e:
logger.error(f"Gemini transcription error: {e}")
import traceback
logger.debug(traceback.format_exc())
return ""
def transcribe_audio(audio):
"""Transcribe audio to text using Gemini MCP"""
if audio is None:
return ""
try:
# Handle file path (Gradio Audio component returns file path)
if isinstance(audio, str):
audio_path = audio
elif isinstance(audio, tuple):
# Handle tuple format (sample_rate, audio_data)
sample_rate, audio_data = audio
# Save to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
sf.write(tmp_file.name, audio_data, samplerate=sample_rate)
audio_path = tmp_file.name
else:
audio_path = audio
# Use Gemini MCP for transcription
if MCP_AVAILABLE:
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
transcribed = nest_asyncio.run(transcribe_audio_gemini(audio_path))
if transcribed:
logger.info(f"Transcribed via Gemini MCP: {transcribed[:50]}...")
return transcribed
except Exception as e:
logger.error(f"Error in nested async transcription: {e}")
else:
transcribed = loop.run_until_complete(transcribe_audio_gemini(audio_path))
if transcribed:
logger.info(f"Transcribed via Gemini MCP: {transcribed[:50]}...")
return transcribed
except Exception as e:
logger.error(f"Gemini MCP transcription error: {e}")
logger.warning("Gemini MCP transcription not available")
return ""
except Exception as e:
logger.error(f"Transcription error: {e}")
return ""
async def generate_speech_mcp(text: str) -> str:
"""Generate speech using MCP TTS tool"""
if not MCP_AVAILABLE:
return None
try:
# Get MCP session
session = await get_mcp_session()
if session is None:
return None
# Find TTS tool
tools = await session.list_tools()
tts_tool = None
for tool in tools.tools:
if "tts" in tool.name.lower() or "speech" in tool.name.lower() or "synthesize" in tool.name.lower():
tts_tool = tool
logger.info(f"Found MCP TTS tool: {tool.name}")
break
if tts_tool:
result = await session.call_tool(
tts_tool.name,
arguments={"text": text, "language": "en"}
)
# Parse result - MCP might return audio data or file path
if hasattr(result, 'content') and result.content:
for item in result.content:
if hasattr(item, 'text'):
# If it's a file path
if os.path.exists(item.text):
return item.text
elif hasattr(item, 'data') and item.data:
# If it's binary audio data, save it
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_file.write(item.data)
return tmp_file.name
return None
except Exception as e:
logger.debug(f"MCP TTS error: {e}")
return None
def generate_speech(text: str):
"""Generate speech from text using TTS model (with MCP fallback)"""
if not text or len(text.strip()) == 0:
return None
# Try MCP first if available
if MCP_AVAILABLE:
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
audio_path = nest_asyncio.run(generate_speech_mcp(text))
if audio_path:
logger.info("Generated speech via MCP")
return audio_path
except:
pass
else:
audio_path = loop.run_until_complete(generate_speech_mcp(text))
if audio_path:
logger.info("Generated speech via MCP")
return audio_path
except Exception as e:
logger.debug(f"MCP TTS not available: {e}")
# Fallback to local TTS model
if not TTS_AVAILABLE:
logger.error("TTS library not installed. Please install TTS to use voice generation.")
return None
global global_tts_model
if global_tts_model is None:
initialize_tts_model()
if global_tts_model is None:
logger.error("TTS model not available. Please check dependencies.")
return None
try:
# Generate audio
wav = global_tts_model.tts(text)
# Save to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
sf.write(tmp_file.name, wav, samplerate=22050)
return tmp_file.name
except Exception as e:
logger.error(f"TTS error: {e}")
return None
def format_prompt_manually(messages: list, tokenizer) -> str:
"""Manually format prompt for models without chat template
Following the exact example pattern from MedAlpaca documentation:
- Simple Question/Answer format
- System prompt as instruction context
- Clean formatting without extra special tokens
- Ensure no double special tokens are added
"""
# Combine system and user messages into a single instruction
system_content = ""
user_content = ""
for msg in messages:
role = msg.get("role", "user")
content = msg.get("content", "")
if role == "system":
system_content = content
elif role == "user":
user_content = content
elif role == "assistant":
# Skip assistant messages in history for now (can be added if needed)
pass
# Format for MedAlpaca/LLaMA-based medical models
# Common format: Instruction + Input -> Response
# Following the exact example pattern - keep it simple and clean
# The tokenizer will add BOS token automatically, so we don't add it here
if system_content:
# Clean format: system instruction, then question, then answer prompt
prompt = f"{system_content}\n\nQuestion: {user_content}\n\nAnswer:"
else:
prompt = f"Question: {user_content}\n\nAnswer:"
# Ensure prompt is clean (no extra whitespace or special characters)
prompt = prompt.strip()
return prompt
def detect_language(text: str) -> str:
"""Detect language of input text"""
try:
lang = detect(text)
return lang
except LangDetectException:
return "en" # Default to English if detection fails
def format_url_as_domain(url: str) -> str:
"""Format URL as simple domain name (e.g., www.mayoclinic.org)"""
if not url:
return ""
try:
from urllib.parse import urlparse
parsed = urlparse(url)
domain = parsed.netloc or parsed.path
# Remove www. prefix if present, but keep it for display
if domain.startswith('www.'):
return domain
elif domain:
return domain
return url
except Exception:
# Fallback: try to extract domain manually
if '://' in url:
domain = url.split('://')[1].split('/')[0]
return domain
return url
async def translate_text_gemini(text: str, target_lang: str = "en", source_lang: str = None) -> str:
"""Translate text using Gemini MCP"""
if source_lang:
user_prompt = f"Translate the following {source_lang} text to {target_lang}. Only provide the translation, no explanations:\n\n{text}"
else:
user_prompt = f"Translate the following text to {target_lang}. Only provide the translation, no explanations:\n\n{text}"
# Use concise system prompt
system_prompt = "You are a professional translator. Translate accurately and concisely."
result = await call_agent(
user_prompt=user_prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL_LITE, # Use lite model for translation
temperature=0.2
)
return result.strip()
def translate_text(text: str, target_lang: str = "en", source_lang: str = None) -> str:
"""Translate text using Gemini MCP"""
if not MCP_AVAILABLE:
logger.warning("Gemini MCP not available for translation")
return text # Return original text if translation fails
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
translated = nest_asyncio.run(translate_text_gemini(text, target_lang, source_lang))
if translated:
logger.info(f"Translated via Gemini MCP: {translated[:50]}...")
return translated
except Exception as e:
logger.error(f"Error in nested async translation: {e}")
else:
translated = loop.run_until_complete(translate_text_gemini(text, target_lang, source_lang))
if translated:
logger.info(f"Translated via Gemini MCP: {translated[:50]}...")
return translated
except Exception as e:
logger.error(f"Gemini MCP translation error: {e}")
# Return original text if translation fails
return text
async def search_web_mcp_tool(query: str, max_results: int = 5) -> list:
"""
Search web using MCP web search tool (e.g., DuckDuckGo MCP server).
This function uses MCP tools for web search, NOT direct API calls.
It looks for MCP tools with names containing "search", "duckduckgo", "ddg", or "web".
"""
if not MCP_AVAILABLE:
return []
try:
session = await get_mcp_session()
if session is None:
return []
# Retry listing tools if it fails the first time
max_retries = 3
tools = None
for attempt in range(max_retries):
try:
tools = await session.list_tools()
break
except Exception as e:
if attempt < max_retries - 1:
await asyncio.sleep(0.5 * (attempt + 1))
else:
logger.error(f"Failed to list MCP tools after {max_retries} attempts: {e}")
return []
if not tools or not hasattr(tools, 'tools'):
return []
# Look for web search tools (DuckDuckGo, search, etc.)
search_tool = None
for tool in tools.tools:
tool_name_lower = tool.name.lower()
if any(keyword in tool_name_lower for keyword in ["search", "duckduckgo", "ddg", "web"]):
search_tool = tool
logger.info(f"Found web search MCP tool: {tool.name}")
break
if search_tool:
try:
logger.info(f"š [MCP] Using web search MCP tool '{search_tool.name}' for: {query[:100]}...")
# Call the search tool
result = await session.call_tool(
search_tool.name,
arguments={"query": query, "max_results": max_results}
)
# Parse result
web_content = []
if hasattr(result, 'content') and result.content:
for item in result.content:
if hasattr(item, 'text'):
try:
data = json.loads(item.text)
if isinstance(data, list):
for entry in data[:max_results]:
web_content.append({
'title': entry.get('title', ''),
'url': entry.get('url', entry.get('href', '')),
'content': entry.get('body', entry.get('snippet', entry.get('content', '')))
})
elif isinstance(data, dict):
if 'results' in data:
for entry in data['results'][:max_results]:
web_content.append({
'title': entry.get('title', ''),
'url': entry.get('url', entry.get('href', '')),
'content': entry.get('body', entry.get('snippet', entry.get('content', '')))
})
else:
web_content.append({
'title': data.get('title', ''),
'url': data.get('url', data.get('href', '')),
'content': data.get('body', data.get('snippet', data.get('content', '')))
})
except json.JSONDecodeError:
# If not JSON, treat as plain text
web_content.append({
'title': '',
'url': '',
'content': item.text[:1000]
})
if web_content:
logger.info(f"ā
[MCP] Web search MCP tool returned {len(web_content)} results")
return web_content
except Exception as e:
logger.error(f"Error calling web search MCP tool: {e}")
return []
except Exception as e:
logger.error(f"Web search MCP tool error: {e}")
return []
async def search_web_mcp(query: str, max_results: int = 5) -> list:
"""Search web using MCP tools - tries web search MCP tool first, then falls back to direct search"""
# First try to use a dedicated web search MCP tool (like DuckDuckGo MCP server)
results = await search_web_mcp_tool(query, max_results)
if results:
logger.info(f"ā
Web search via MCP tool: found {len(results)} results")
return results
# If no web search MCP tool available, use direct search (ddgs)
# Note: Gemini MCP doesn't have web search capability, so we use direct API
# The results will then be summarized using Gemini MCP
logger.info("ā¹ļø [Direct API] No web search MCP tool found, using direct DuckDuckGo search (results will be summarized with Gemini MCP)")
return search_web_fallback(query, max_results)
def search_web_fallback(query: str, max_results: int = 5) -> list:
"""Fallback web search using DuckDuckGo directly (when MCP is not available)"""
logger.info(f"š [Direct API] Performing web search using DuckDuckGo API for: {query[:100]}...")
# Always import here to ensure availability
try:
from ddgs import DDGS
import requests
from bs4 import BeautifulSoup
except ImportError:
logger.error("Fallback dependencies (ddgs, requests, beautifulsoup4) not available")
return []
try:
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=max_results))
web_content = []
for result in results:
try:
url = result.get('href', '')
title = result.get('title', '')
snippet = result.get('body', '')
# Try to fetch full content
try:
response = requests.get(url, timeout=5, headers={'User-Agent': 'Mozilla/5.0'})
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
# Extract main content
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text()
# Clean and limit text
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
if len(text) > 1000:
text = text[:1000] + "..."
web_content.append({
'title': title,
'url': url,
'content': snippet + "\n" + text[:500] if text else snippet
})
else:
web_content.append({
'title': title,
'url': url,
'content': snippet
})
except:
web_content.append({
'title': title,
'url': url,
'content': snippet
})
except Exception as e:
logger.error(f"Error processing search result: {e}")
continue
logger.info(f"ā
[Direct API] Web search completed: {len(web_content)} results")
return web_content
except Exception as e:
logger.error(f"ā [Direct API] Web search error: {e}")
return []
def search_web(query: str, max_results: int = 5) -> list:
"""Search web using MCP tools (synchronous wrapper) - prioritizes MCP over direct ddgs"""
# Always try MCP first if available
if MCP_AVAILABLE:
try:
# Run async MCP search
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
if loop.is_running():
# If loop is already running, use nest_asyncio or create new thread
try:
import nest_asyncio
results = nest_asyncio.run(search_web_mcp(query, max_results))
if results: # Only return if we got results from MCP
return results
except (ImportError, AttributeError):
# Fallback: run in thread
import concurrent.futures
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(asyncio.run, search_web_mcp(query, max_results))
results = future.result(timeout=30)
if results: # Only return if we got results from MCP
return results
else:
results = loop.run_until_complete(search_web_mcp(query, max_results))
if results: # Only return if we got results from MCP
return results
except Exception as e:
logger.error(f"Error running async MCP search: {e}")
# Only use ddgs fallback if MCP is not available or returned no results
logger.info("ā¹ļø [Direct API] Falling back to direct DuckDuckGo search (MCP unavailable or returned no results)")
return search_web_fallback(query, max_results)
async def summarize_web_content_gemini(content_list: list, query: str) -> str:
"""Summarize web search results using Gemini MCP"""
logger.info(f"š [MCP] Summarizing {len(content_list)} web search results using Gemini MCP...")
combined_content = "\n\n".join([f"Source: {item['title']}\n{item['content']}" for item in content_list[:3]])
user_prompt = f"""Summarize the following web search results related to the query: "{query}"
Extract key medical information, facts, and insights. Be concise and focus on reliable information.
Search Results:
{combined_content}
Summary:"""
# Use concise system prompt
system_prompt = "You are a medical information summarizer. Extract and summarize key medical facts accurately."
result = await call_agent(
user_prompt=user_prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL, # Use full model for summarization
temperature=0.5
)
if result:
logger.info(f"ā
[MCP] Web content summarized successfully using Gemini MCP ({len(result)} chars)")
else:
logger.warning("ā ļø [MCP] Gemini MCP summarization returned empty result")
return result.strip()
def summarize_web_content(content_list: list, query: str) -> str:
"""Summarize web search results using Gemini MCP"""
if not MCP_AVAILABLE:
logger.warning("Gemini MCP not available for summarization")
# Fallback: return first result's content
if content_list:
return content_list[0].get('content', '')[:500]
return ""
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
summary = nest_asyncio.run(summarize_web_content_gemini(content_list, query))
if summary:
return summary
except Exception as e:
logger.error(f"Error in nested async summarization: {e}")
else:
summary = loop.run_until_complete(summarize_web_content_gemini(content_list, query))
if summary:
return summary
except Exception as e:
logger.error(f"Gemini MCP summarization error: {e}")
# Fallback: return first result's content
if content_list:
return content_list[0].get('content', '')[:500]
return ""
# get_llm_for_rag is now imported from model.py as get_llm_for_rag_gpu
async def autonomous_reasoning_gemini(query: str) -> dict:
"""Autonomous reasoning using Gemini MCP"""
logger.info(f"š§ [MCP] Analyzing query with Gemini MCP: {query[:100]}...")
reasoning_prompt = f"""Analyze this medical query and provide structured reasoning:
Query: "{query}"
Analyze:
1. Query Type: (diagnosis, treatment, drug_info, symptom_analysis, research, general_info)
2. Complexity: (simple, moderate, complex, multi_faceted)
3. Information Needs: What specific information is required?
4. Requires RAG: (yes/no) - Does this need document context?
5. Requires Web Search: (yes/no) - Does this need current/updated information?
6. Sub-questions: Break down into key sub-questions if complex
Respond in JSON format:
{{
"query_type": "...",
"complexity": "...",
"information_needs": ["..."],
"requires_rag": true/false,
"requires_web_search": true/false,
"sub_questions": ["..."]
}}"""
# Use concise system prompt
system_prompt = "You are a medical reasoning system. Analyze queries systematically and provide structured JSON responses."
response = await call_agent(
user_prompt=reasoning_prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL, # Use full model for reasoning
temperature=0.3
)
# Parse JSON response (with fallback)
try:
# Extract JSON from response
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
reasoning = json.loads(response[json_start:json_end])
else:
raise ValueError("No JSON found")
except:
# Fallback reasoning
reasoning = {
"query_type": "general_info",
"complexity": "moderate",
"information_needs": ["medical information"],
"requires_rag": True,
"requires_web_search": False,
"sub_questions": [query]
}
logger.info(f"Reasoning analysis: {reasoning}")
return reasoning
def autonomous_reasoning(query: str, history: list) -> dict:
"""
Autonomous reasoning: Analyze query complexity, intent, and information needs.
Returns reasoning analysis with query type, complexity, and required information sources.
Uses Gemini MCP for reasoning.
"""
if not MCP_AVAILABLE:
logger.warning("ā ļø Gemini MCP not available for reasoning, using fallback")
# Fallback reasoning
return {
"query_type": "general_info",
"complexity": "moderate",
"information_needs": ["medical information"],
"requires_rag": True,
"requires_web_search": False,
"sub_questions": [query]
}
try:
logger.info("š¤ [MCP] Using Gemini MCP for autonomous reasoning...")
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
reasoning = nest_asyncio.run(autonomous_reasoning_gemini(query))
if reasoning and reasoning.get("query_type") != "general_info": # Check if we got real reasoning
logger.info(f"ā
[MCP] Gemini MCP reasoning successful: {reasoning.get('query_type')}, complexity: {reasoning.get('complexity')}")
return reasoning
else:
logger.warning("ā ļø [MCP] Gemini MCP returned fallback reasoning, using it anyway")
return reasoning
except Exception as e:
logger.error(f"ā Error in nested async reasoning: {e}")
import traceback
logger.debug(traceback.format_exc())
else:
reasoning = loop.run_until_complete(autonomous_reasoning_gemini(query))
if reasoning and reasoning.get("query_type") != "general_info":
logger.info(f"ā
[MCP] Gemini MCP reasoning successful: {reasoning.get('query_type')}, complexity: {reasoning.get('complexity')}")
return reasoning
else:
logger.warning("ā ļø [MCP] Gemini MCP returned fallback reasoning, using it anyway")
return reasoning
except Exception as e:
logger.error(f"ā Gemini MCP reasoning error: {e}")
import traceback
logger.debug(traceback.format_exc())
# Fallback reasoning only if all attempts failed
logger.warning("ā ļø Falling back to default reasoning")
return {
"query_type": "general_info",
"complexity": "moderate",
"information_needs": ["medical information"],
"requires_rag": True,
"requires_web_search": False,
"sub_questions": [query]
}
def create_execution_plan(reasoning: dict, query: str, has_rag_index: bool) -> dict:
"""
Planning: Create multi-step execution plan based on reasoning analysis.
Returns execution plan with steps and strategy.
"""
plan = {
"steps": [],
"strategy": "sequential",
"iterations": 1
}
# Determine execution strategy
if reasoning["complexity"] in ["complex", "multi_faceted"]:
plan["strategy"] = "iterative"
plan["iterations"] = 2
# Step 1: Language detection and translation
plan["steps"].append({
"step": 1,
"action": "detect_language",
"description": "Detect query language and translate if needed"
})
# Step 2: RAG retrieval (if needed and available)
if reasoning.get("requires_rag", True) and has_rag_index:
plan["steps"].append({
"step": 2,
"action": "rag_retrieval",
"description": "Retrieve relevant document context",
"parameters": {"top_k": 15, "merge_threshold": 0.5}
})
# Step 3: Web search (if needed)
if reasoning.get("requires_web_search", False):
plan["steps"].append({
"step": 3,
"action": "web_search",
"description": "Search web for current/updated information",
"parameters": {"max_results": 5}
})
# Step 4: Sub-question processing (if complex)
if reasoning.get("sub_questions") and len(reasoning["sub_questions"]) > 1:
plan["steps"].append({
"step": 4,
"action": "multi_step_reasoning",
"description": "Process sub-questions iteratively",
"sub_questions": reasoning["sub_questions"]
})
# Step 5: Synthesis and answer generation
plan["steps"].append({
"step": len(plan["steps"]) + 1,
"action": "synthesize_answer",
"description": "Generate comprehensive answer from all sources"
})
# Step 6: Self-reflection (for complex queries)
if reasoning["complexity"] in ["complex", "multi_faceted"]:
plan["steps"].append({
"step": len(plan["steps"]) + 1,
"action": "self_reflection",
"description": "Evaluate answer quality and completeness"
})
logger.info(f"Execution plan created: {len(plan['steps'])} steps")
return plan
def autonomous_execution_strategy(reasoning: dict, plan: dict, use_rag: bool, use_web_search: bool, has_rag_index: bool) -> dict:
"""
Autonomous execution: Make decisions on information gathering strategy.
Only suggests web search override, but respects user's RAG disable setting.
"""
strategy = {
"use_rag": use_rag, # Respect user's RAG setting
"use_web_search": use_web_search,
"reasoning_override": False,
"rationale": ""
}
# Only suggest web search override (RAG requires documents, so we respect user's choice)
if reasoning.get("requires_web_search", False) and not use_web_search:
strategy["use_web_search"] = True
strategy["reasoning_override"] = True
strategy["rationale"] += "Reasoning suggests web search for current information. "
# Note: We don't override RAG setting because:
# 1. User may have explicitly disabled it
# 2. RAG requires documents to be uploaded
# 3. We should respect user's explicit choice
if strategy["reasoning_override"]:
logger.info(f"Autonomous override: {strategy['rationale']}")
return strategy
async def self_reflection_gemini(answer: str, query: str) -> dict:
"""Self-reflection using Gemini MCP"""
reflection_prompt = f"""Evaluate this medical answer for quality and completeness:
Query: "{query}"
Answer: "{answer[:1000]}"
Evaluate:
1. Completeness: Does it address all aspects of the query?
2. Accuracy: Is the medical information accurate?
3. Clarity: Is it clear and well-structured?
4. Sources: Are sources cited appropriately?
5. Missing Information: What important information might be missing?
Respond in JSON:
{{
"completeness_score": 0-10,
"accuracy_score": 0-10,
"clarity_score": 0-10,
"overall_score": 0-10,
"missing_aspects": ["..."],
"improvement_suggestions": ["..."]
}}"""
# Use concise system prompt
system_prompt = "You are a medical answer quality evaluator. Provide honest, constructive feedback."
response = await call_agent(
user_prompt=reflection_prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL, # Use full model for reflection
temperature=0.3
)
try:
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
reflection = json.loads(response[json_start:json_end])
else:
reflection = {"overall_score": 7, "improvement_suggestions": []}
except:
reflection = {"overall_score": 7, "improvement_suggestions": []}
logger.info(f"Self-reflection score: {reflection.get('overall_score', 'N/A')}")
return reflection
def self_reflection(answer: str, query: str, reasoning: dict) -> dict:
"""
Self-reflection: Evaluate answer quality and completeness.
Returns reflection with quality score and improvement suggestions.
"""
if not MCP_AVAILABLE:
logger.warning("Gemini MCP not available for reflection, using fallback")
return {"overall_score": 7, "improvement_suggestions": []}
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
return nest_asyncio.run(self_reflection_gemini(answer, query))
except Exception as e:
logger.error(f"Error in nested async reflection: {e}")
else:
return loop.run_until_complete(self_reflection_gemini(answer, query))
except Exception as e:
logger.error(f"Gemini MCP reflection error: {e}")
return {"overall_score": 7, "improvement_suggestions": []}
async def parse_document_gemini(file_path: str, file_extension: str) -> str:
"""Parse document using Gemini MCP"""
if not MCP_AVAILABLE:
return ""
try:
# Read file and encode to base64
with open(file_path, 'rb') as f:
file_content = base64.b64encode(f.read()).decode('utf-8')
# Determine MIME type from file extension
mime_type_map = {
'.pdf': 'application/pdf',
'.doc': 'application/msword',
'.docx': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
'.txt': 'text/plain',
'.md': 'text/markdown',
'.json': 'application/json',
'.xml': 'application/xml',
'.csv': 'text/csv'
}
mime_type = mime_type_map.get(file_extension, 'application/octet-stream')
# Prepare file object for Gemini MCP (use content for base64)
files = [{
"content": file_content,
"type": mime_type
}]
# Use concise system prompt
system_prompt = "Extract all text content from the document accurately."
user_prompt = "Extract all text content from this document. Return only the extracted text, preserving structure and formatting where possible."
result = await call_agent(
user_prompt=user_prompt,
system_prompt=system_prompt,
files=files,
model=GEMINI_MODEL_LITE, # Use lite model for parsing
temperature=0.2
)
return result.strip()
except Exception as e:
logger.error(f"Gemini document parsing error: {e}")
import traceback
logger.debug(traceback.format_exc())
return ""
def extract_text_from_document(file):
"""Extract text from document using Gemini MCP"""
file_name = file.name
file_extension = os.path.splitext(file_name)[1].lower()
# Handle text files directly
if file_extension == '.txt':
text = file.read().decode('utf-8')
return text, len(text.split()), None
# For PDF, Word, and other documents, use Gemini MCP
# Save file to temporary location for processing
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=file_extension) as tmp_file:
# Write file content to temp file
file.seek(0) # Reset file pointer
tmp_file.write(file.read())
tmp_file_path = tmp_file.name
# Use Gemini MCP to parse document
if MCP_AVAILABLE:
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
text = nest_asyncio.run(parse_document_gemini(tmp_file_path, file_extension))
except Exception as e:
logger.error(f"Error in nested async document parsing: {e}")
text = ""
else:
text = loop.run_until_complete(parse_document_gemini(tmp_file_path, file_extension))
# Clean up temp file
try:
os.unlink(tmp_file_path)
except:
pass
if text:
return text, len(text.split()), None
else:
return None, 0, ValueError(f"Failed to extract text from {file_extension} file using Gemini MCP")
except Exception as e:
logger.error(f"Gemini MCP document parsing error: {e}")
# Clean up temp file
try:
os.unlink(tmp_file_path)
except:
pass
return None, 0, ValueError(f"Error parsing {file_extension} file: {str(e)}")
else:
# Clean up temp file
try:
os.unlink(tmp_file_path)
except:
pass
return None, 0, ValueError(f"Gemini MCP not available. Cannot parse {file_extension} files.")
except Exception as e:
logger.error(f"Error processing document: {e}")
return None, 0, ValueError(f"Error processing {file_extension} file: {str(e)}")
def create_or_update_index(files, request: gr.Request):
global global_file_info
if not files:
return "Please provide files.", ""
start_time = time.time()
user_id = request.session_hash
save_dir = f"./{user_id}_index"
# Initialize LlamaIndex modules - use GPU functions for model inference only
llm = get_llm_for_rag_gpu()
embed_model = get_embedding_model_gpu()
Settings.llm = llm
Settings.embed_model = embed_model
file_stats = []
new_documents = []
for file in tqdm(files, desc="Processing files"):
file_basename = os.path.basename(file.name)
text, word_count, error = extract_text_from_document(file)
if error:
logger.error(f"Error processing file {file_basename}: {str(error)}")
file_stats.append({
"name": file_basename,
"words": 0,
"status": f"error: {str(error)}"
})
continue
doc = LlamaDocument(
text=text,
metadata={
"file_name": file_basename,
"word_count": word_count,
"source": "user_upload"
}
)
new_documents.append(doc)
file_stats.append({
"name": file_basename,
"words": word_count,
"status": "processed"
})
global_file_info[file_basename] = {
"word_count": word_count,
"processed_at": time.time()
}
node_parser = HierarchicalNodeParser.from_defaults(
chunk_sizes=[2048, 512, 128],
chunk_overlap=20
)
logger.info(f"Parsing {len(new_documents)} documents into hierarchical nodes")
new_nodes = node_parser.get_nodes_from_documents(new_documents)
new_leaf_nodes = get_leaf_nodes(new_nodes)
new_root_nodes = get_root_nodes(new_nodes)
logger.info(f"Generated {len(new_nodes)} total nodes ({len(new_root_nodes)} root, {len(new_leaf_nodes)} leaf)")
if os.path.exists(save_dir):
logger.info(f"Loading existing index from {save_dir}")
storage_context = StorageContext.from_defaults(persist_dir=save_dir)
index = load_index_from_storage(storage_context, settings=Settings)
docstore = storage_context.docstore
docstore.add_documents(new_nodes)
for node in tqdm(new_leaf_nodes, desc="Adding leaf nodes to index"):
index.insert_nodes([node])
total_docs = len(docstore.docs)
logger.info(f"Updated index with {len(new_nodes)} new nodes from {len(new_documents)} files")
else:
logger.info("Creating new index")
docstore = SimpleDocumentStore()
storage_context = StorageContext.from_defaults(docstore=docstore)
docstore.add_documents(new_nodes)
index = VectorStoreIndex(
new_leaf_nodes,
storage_context=storage_context,
settings=Settings
)
total_docs = len(new_documents)
logger.info(f"Created new index with {len(new_nodes)} nodes from {len(new_documents)} files")
index.storage_context.persist(persist_dir=save_dir)
# custom outputs after processing files
file_list_html = ""
for stat in file_stats:
status_color = "#4CAF50" if stat["status"] == "processed" else "#f44336"
file_list_html += f"
ā {stat['name']} - {stat['words']} words
"
file_list_html += "
"
processing_time = time.time() - start_time
stats_output = f""
stats_output += f"ā Processed {len(files)} files in {processing_time:.2f} seconds
"
stats_output += f"ā Created {len(new_nodes)} nodes ({len(new_leaf_nodes)} leaf nodes)
"
stats_output += f"ā Total documents in index: {total_docs}
"
stats_output += f"ā Index saved to: {save_dir}
"
stats_output += "
"
output_container = f""
output_container += file_list_html
output_container += stats_output
output_container += "
"
return f"Successfully indexed {len(files)} files.", output_container
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float,
max_new_tokens: int,
top_p: float,
top_k: int,
penalty: float,
retriever_k: int,
merge_threshold: float,
use_rag: bool,
medical_model: str,
use_web_search: bool,
disable_agentic_reasoning: bool,
request: gr.Request
):
if not request:
yield history + [{"role": "assistant", "content": "Session initialization failed. Please refresh the page."}]
return
user_id = request.session_hash
index_dir = f"./{user_id}_index"
has_rag_index = os.path.exists(index_dir)
# If agentic reasoning is disabled, use base MedSwin model only
if disable_agentic_reasoning:
logger.info("š« Agentic reasoning disabled - using base MedSwin model only")
# Skip all MCP functionality: reasoning, translation, web search, summarization
original_message = message
original_lang = "en" # Assume English, no translation
needs_translation = False
final_use_rag = use_rag and has_rag_index # Still allow RAG if user wants it
final_use_web_search = False # Disable web search when agentic reasoning is off
reasoning_note = ""
# Simple reasoning structure for base model
reasoning = {
"query_type": "general_info",
"complexity": "simple",
"information_needs": ["direct_answer"],
"requires_rag": final_use_rag,
"requires_web_search": False,
"sub_questions": [message]
}
else:
# ===== AUTONOMOUS REASONING =====
logger.info("š¤ Starting autonomous reasoning...")
reasoning = autonomous_reasoning(message, history)
# ===== PLANNING =====
logger.info("š Creating execution plan...")
plan = create_execution_plan(reasoning, message, has_rag_index)
# ===== AUTONOMOUS EXECUTION STRATEGY =====
logger.info("šÆ Determining execution strategy...")
execution_strategy = autonomous_execution_strategy(reasoning, plan, use_rag, use_web_search, has_rag_index)
# Use autonomous strategy decisions (respect user's RAG setting)
final_use_rag = execution_strategy["use_rag"] and has_rag_index # Only use RAG if enabled AND documents exist
final_use_web_search = execution_strategy["use_web_search"]
# Show reasoning override message if applicable
reasoning_note = ""
if execution_strategy["reasoning_override"]:
reasoning_note = f"\n\nš” *Autonomous Reasoning: {execution_strategy['rationale']}*"
# Detect language and translate if needed (Step 1 of plan)
original_lang = detect_language(message)
original_message = message
needs_translation = original_lang != "en"
if needs_translation:
logger.info(f"Detected non-English language: {original_lang}, translating to English...")
message = translate_text(message, target_lang="en", source_lang=original_lang)
logger.info(f"Translated query: {message}")
# Initialize medical model
medical_model_obj, medical_tokenizer = initialize_medical_model(medical_model)
# Adjust system prompt based on RAG setting and reasoning
if final_use_rag:
base_system_prompt = system_prompt if system_prompt else "As a medical specialist, provide clinical and concise answers based on the provided medical documents and context."
else:
base_system_prompt = "As a medical specialist, provide short and concise clinical answers. Be brief and avoid lengthy explanations. Focus on key medical facts only."
# Add reasoning context to system prompt for complex queries (only when agentic reasoning is enabled)
if not disable_agentic_reasoning and reasoning["complexity"] in ["complex", "multi_faceted"]:
base_system_prompt += f"\n\nQuery Analysis: This is a {reasoning['complexity']} {reasoning['query_type']} query. Address all sub-questions: {', '.join(reasoning.get('sub_questions', [])[:3])}"
# ===== EXECUTION: RAG Retrieval (Step 2) =====
rag_context = ""
source_info = ""
if final_use_rag and has_rag_index:
# Use GPU function for embedding model
embed_model = get_embedding_model_gpu()
Settings.embed_model = embed_model
storage_context = StorageContext.from_defaults(persist_dir=index_dir)
index = load_index_from_storage(storage_context, settings=Settings)
base_retriever = index.as_retriever(similarity_top_k=retriever_k)
auto_merging_retriever = AutoMergingRetriever(
base_retriever,
storage_context=storage_context,
simple_ratio_thresh=merge_threshold,
verbose=True
)
logger.info(f"Query: {message}")
retrieval_start = time.time()
merged_nodes = auto_merging_retriever.retrieve(message)
logger.info(f"Retrieved {len(merged_nodes)} merged nodes in {time.time() - retrieval_start:.2f}s")
merged_file_sources = {}
for node in merged_nodes:
if hasattr(node.node, 'metadata') and 'file_name' in node.node.metadata:
file_name = node.node.metadata['file_name']
if file_name not in merged_file_sources:
merged_file_sources[file_name] = 0
merged_file_sources[file_name] += 1
logger.info(f"Merged retrieval file distribution: {merged_file_sources}")
rag_context = "\n\n".join([n.node.text for n in merged_nodes])
if merged_file_sources:
source_info = "\n\nRetrieved information from files: " + ", ".join(merged_file_sources.keys())
# ===== EXECUTION: Web Search (Step 3) =====
web_context = ""
web_sources = []
web_urls = [] # Store URLs for citations
if final_use_web_search:
logger.info("š Performing web search (using MCP tools, with Gemini MCP for summarization)...")
# search_web() tries MCP web search tool first, then falls back to direct API
web_results = search_web(message, max_results=5)
if web_results:
logger.info(f"š Found {len(web_results)} web search results, now summarizing with Gemini MCP...")
# summarize_web_content() uses Gemini MCP via call_agent()
web_summary = summarize_web_content(web_results, message)
if web_summary and len(web_summary) > 50: # Check if we got a real summary
logger.info(f"ā
[MCP] Gemini MCP summarization successful ({len(web_summary)} chars)")
web_context = f"\n\nAdditional Web Sources (summarized with Gemini MCP):\n{web_summary}"
else:
logger.warning("ā ļø [MCP] Gemini MCP summarization failed or returned empty, using raw results")
# Fallback: use first result's content
web_context = f"\n\nAdditional Web Sources:\n{web_results[0].get('content', '')[:500]}"
web_sources = [r['title'] for r in web_results[:3]]
# Extract unique URLs for citations
web_urls = [r.get('url', '') for r in web_results if r.get('url')]
logger.info(f"ā
Web search completed: {len(web_results)} results, summarized with Gemini MCP")
else:
logger.warning("ā ļø Web search returned no results")
# Build final context
context_parts = []
if rag_context:
context_parts.append(f"Document Context:\n{rag_context}")
if web_context:
context_parts.append(web_context)
full_context = "\n\n".join(context_parts) if context_parts else ""
# Build system prompt
if final_use_rag or final_use_web_search:
formatted_system_prompt = f"{base_system_prompt}\n\n{full_context}{source_info}"
else:
formatted_system_prompt = base_system_prompt
# Prepare messages
messages = [{"role": "system", "content": formatted_system_prompt}]
for entry in history:
messages.append(entry)
messages.append({"role": "user", "content": message})
# Get EOS token and adjust stopping criteria
eos_token_id = medical_tokenizer.eos_token_id
if eos_token_id is None:
eos_token_id = medical_tokenizer.pad_token_id
# Increase max tokens for medical models (prevent early stopping)
max_new_tokens = int(max_new_tokens) if isinstance(max_new_tokens, (int, float)) else 2048
max_new_tokens = max(max_new_tokens, 1024) # Minimum 1024 tokens for medical answers
# Format prompt - MedAlpaca/MedSwin models typically don't have chat templates
# Use manual formatting for consistent behavior
# Following the example: check if tokenizer has chat template, otherwise format manually
if hasattr(medical_tokenizer, 'chat_template') and medical_tokenizer.chat_template is not None:
try:
prompt = medical_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
except Exception as e:
logger.warning(f"Chat template failed, using manual formatting: {e}")
# Fallback to manual formatting
prompt = format_prompt_manually(messages, medical_tokenizer)
else:
# Manual formatting for models without chat template
prompt = format_prompt_manually(messages, medical_tokenizer)
# Calculate prompt length for stopping criteria
# Tokenize to get length - use EXACT same tokenization as model.py
# This ensures consistency and prevents tokenization mismatches
inputs = medical_tokenizer(
prompt,
return_tensors="pt",
add_special_tokens=True, # Match model.py tokenization
padding=False,
truncation=False
)
prompt_length = inputs['input_ids'].shape[1]
logger.debug(f"Prompt length: {prompt_length} tokens")
stop_event = threading.Event()
class StopOnEvent(StoppingCriteria):
def __init__(self, stop_event):
super().__init__()
self.stop_event = stop_event
def __call__(self, input_ids, scores, **kwargs):
return self.stop_event.is_set()
# Custom stopping criteria that doesn't stop on EOS too early
# This prevents premature stopping which can cause corrupted outputs
# Following the example: use min_new_tokens=100 to ensure proper generation
class MedicalStoppingCriteria(StoppingCriteria):
def __init__(self, eos_token_id, prompt_length, min_new_tokens=100):
super().__init__()
self.eos_token_id = eos_token_id
self.prompt_length = prompt_length
self.min_new_tokens = min_new_tokens
def __call__(self, input_ids, scores, **kwargs):
current_length = input_ids.shape[1]
new_tokens = current_length - self.prompt_length
last_token = input_ids[0, -1].item()
# Don't stop on EOS if we haven't generated enough new tokens
# This prevents early stopping that can cause corrupted outputs
# Following example: require at least min_new_tokens before allowing EOS
if new_tokens < self.min_new_tokens:
return False
# Allow EOS after minimum new tokens have been generated
return last_token == self.eos_token_id
stopping_criteria = StoppingCriteriaList([
StopOnEvent(stop_event),
MedicalStoppingCriteria(eos_token_id, prompt_length, min_new_tokens=100)
])
# Create streamer with correct settings for LLaMA-based models
# skip_special_tokens=True ensures clean text output without special token artifacts
streamer = TextIteratorStreamer(
medical_tokenizer,
skip_prompt=True,
skip_special_tokens=True, # Skip special tokens in output for clean text
timeout=None # Don't timeout on long generations
)
temperature = float(temperature) if isinstance(temperature, (int, float)) else 0.7
top_p = float(top_p) if isinstance(top_p, (int, float)) else 0.95
top_k = int(top_k) if isinstance(top_k, (int, float)) else 50
penalty = float(penalty) if isinstance(penalty, (int, float)) else 1.2
# Call GPU function for model inference only
thread = threading.Thread(
target=generate_with_medswin,
kwargs={
"medical_model_obj": medical_model_obj,
"medical_tokenizer": medical_tokenizer,
"prompt": prompt,
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"penalty": penalty,
"eos_token_id": eos_token_id,
"pad_token_id": medical_tokenizer.pad_token_id or eos_token_id,
"stop_event": stop_event,
"streamer": streamer,
"stopping_criteria": stopping_criteria
}
)
thread.start()
updated_history = history + [
{"role": "user", "content": original_message},
{"role": "assistant", "content": ""}
]
yield updated_history
partial_response = ""
try:
for new_text in streamer:
partial_response += new_text
updated_history[-1]["content"] = partial_response
yield updated_history
# ===== SELF-REFLECTION (Step 6) =====
# Skip self-reflection when agentic reasoning is disabled
if not disable_agentic_reasoning and reasoning["complexity"] in ["complex", "multi_faceted"]:
logger.info("š Performing self-reflection on answer quality...")
reflection = self_reflection(partial_response, message, reasoning)
# Add reflection note if score is low or improvements suggested
if reflection.get("overall_score", 10) < 7 or reflection.get("improvement_suggestions"):
reflection_note = f"\n\n---\n**Self-Reflection** (Score: {reflection.get('overall_score', 'N/A')}/10)"
if reflection.get("improvement_suggestions"):
reflection_note += f"\nš” Suggestions: {', '.join(reflection['improvement_suggestions'][:2])}"
partial_response += reflection_note
updated_history[-1]["content"] = partial_response
# Add reasoning note if autonomous override occurred
if reasoning_note:
partial_response = reasoning_note + "\n\n" + partial_response
updated_history[-1]["content"] = partial_response
# Translate back if needed (only when agentic reasoning is enabled)
if not disable_agentic_reasoning and needs_translation and partial_response:
logger.info(f"Translating response back to {original_lang}...")
translated_response = translate_text(partial_response, target_lang=original_lang, source_lang="en")
partial_response = translated_response
# Add citations if web sources were used
citations_text = ""
if web_urls:
# Get unique domains
unique_urls = list(dict.fromkeys(web_urls)) # Preserve order, remove duplicates
citation_links = []
for url in unique_urls[:5]: # Limit to 5 citations
domain = format_url_as_domain(url)
if domain:
# Create markdown link: [domain](url)
citation_links.append(f"[{domain}]({url})")
if citation_links:
citations_text = "\n\n**Sources:** " + ", ".join(citation_links)
# Add speaker icon and citations to assistant message
speaker_icon = ' š'
partial_response_with_speaker = partial_response + citations_text + speaker_icon
updated_history[-1]["content"] = partial_response_with_speaker
yield updated_history
except GeneratorExit:
stop_event.set()
thread.join()
raise
def generate_speech_for_message(text: str):
"""Generate speech for a message and return audio file"""
audio_path = generate_speech(text)
if audio_path:
return audio_path
return None
def create_demo():
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
with gr.Row(elem_classes="main-container"):
with gr.Column(elem_classes="upload-section"):
file_upload = gr.File(
file_count="multiple",
label="Drag and Drop Files Here",
file_types=[".pdf", ".txt", ".doc", ".docx", ".md", ".json", ".xml", ".csv"],
elem_id="file-upload"
)
upload_button = gr.Button("Upload & Index", elem_classes="upload-button")
status_output = gr.Textbox(
label="Status",
placeholder="Upload files to start...",
interactive=False
)
file_info_output = gr.HTML(
label="File Information",
elem_classes="processing-info"
)
upload_button.click(
fn=create_or_update_index,
inputs=[file_upload],
outputs=[status_output, file_info_output]
)
with gr.Column(elem_classes="chatbot-container"):
chatbot = gr.Chatbot(
height=500,
placeholder="Chat with MedSwin... Type your question below.",
show_label=False,
type="messages"
)
with gr.Row(elem_classes="input-row"):
message_input = gr.Textbox(
placeholder="Type your medical question here...",
show_label=False,
container=False,
lines=1,
scale=10
)
mic_button = gr.Audio(
sources=["microphone"],
type="filepath",
label="",
show_label=False,
container=False,
scale=1
)
submit_button = gr.Button("ā¤", elem_classes="submit-btn", scale=1)
# Timer display for recording (shown below input row)
recording_timer = gr.Textbox(
value="",
label="",
show_label=False,
interactive=False,
visible=False,
container=False,
elem_classes="recording-timer"
)
# Handle microphone transcription
import time
recording_start_time = [None]
def handle_recording_start():
"""Called when recording starts"""
recording_start_time[0] = time.time()
return gr.update(visible=True, value="Recording... 0s")
def handle_recording_stop(audio):
"""Called when recording stops"""
recording_start_time[0] = None
if audio is None:
return gr.update(visible=False, value=""), ""
transcribed = transcribe_audio(audio)
return gr.update(visible=False, value=""), transcribed
# Use JavaScript for timer updates (simpler than Gradio Timer)
mic_button.start_recording(
fn=handle_recording_start,
outputs=[recording_timer]
)
mic_button.stop_recording(
fn=handle_recording_stop,
inputs=[mic_button],
outputs=[recording_timer, message_input]
)
# TTS component for generating speech from messages
with gr.Row(visible=False) as tts_row:
tts_text = gr.Textbox(visible=False)
tts_audio = gr.Audio(label="Generated Speech", visible=False)
# Function to generate speech when speaker icon is clicked
def generate_speech_from_chat(history):
"""Extract last assistant message and generate speech"""
if not history or len(history) == 0:
return None
last_msg = history[-1]
if last_msg.get("role") == "assistant":
text = last_msg.get("content", "").replace(" š", "").strip()
if text:
audio_path = generate_speech(text)
return audio_path
return None
# Add TTS button that appears when assistant responds
tts_button = gr.Button("š Play Response", visible=False, size="sm")
# Update TTS button visibility and generate speech
def update_tts_button(history):
if history and len(history) > 0 and history[-1].get("role") == "assistant":
return gr.update(visible=True)
return gr.update(visible=False)
chatbot.change(
fn=update_tts_button,
inputs=[chatbot],
outputs=[tts_button]
)
tts_button.click(
fn=generate_speech_from_chat,
inputs=[chatbot],
outputs=[tts_audio]
)
with gr.Accordion("āļø Advanced Settings", open=False):
with gr.Row():
disable_agentic_reasoning = gr.Checkbox(
value=False,
label="Disable Agentic Reasoning",
info="Use base MedSwin model only, no MCP tools (Gemini, web search, reasoning)"
)
with gr.Row():
use_rag = gr.Checkbox(
value=False,
label="Enable Document RAG",
info="Answer based on uploaded documents (requires document upload)"
)
use_web_search = gr.Checkbox(
value=False,
label="Enable Web Search (MCP)",
info="Fetch knowledge from online medical resources"
)
medical_model = gr.Radio(
choices=list(MEDSWIN_MODELS.keys()),
value=DEFAULT_MEDICAL_MODEL,
label="Medical Model",
info="MedSwin TA (default), others download on first use"
)
system_prompt = gr.Textbox(
value="As a medical specialist, provide detailed and accurate answers based on the provided medical documents and context. Ensure all information is clinically accurate and cite sources when available.",
label="System Prompt",
lines=3
)
with gr.Tab("Generation Parameters"):
temperature = gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.2,
label="Temperature"
)
max_new_tokens = gr.Slider(
minimum=512,
maximum=4096,
step=128,
value=2048,
label="Max New Tokens",
info="Increased for medical models to prevent early stopping"
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.7,
label="Top P"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Top K"
)
penalty = gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition Penalty"
)
with gr.Tab("Retrieval Parameters"):
retriever_k = gr.Slider(
minimum=5,
maximum=30,
step=1,
value=15,
label="Initial Retrieval Size (Top K)"
)
merge_threshold = gr.Slider(
minimum=0.1,
maximum=0.9,
step=0.1,
value=0.5,
label="Merge Threshold (lower = more merging)"
)
submit_button.click(
fn=stream_chat,
inputs=[
message_input,
chatbot,
system_prompt,
temperature,
max_new_tokens,
top_p,
top_k,
penalty,
retriever_k,
merge_threshold,
use_rag,
medical_model,
use_web_search,
disable_agentic_reasoning
],
outputs=chatbot
)
message_input.submit(
fn=stream_chat,
inputs=[
message_input,
chatbot,
system_prompt,
temperature,
max_new_tokens,
top_p,
top_k,
penalty,
retriever_k,
merge_threshold,
use_rag,
medical_model,
use_web_search,
disable_agentic_reasoning
],
outputs=chatbot
)
return demo
if __name__ == "__main__":
# Preload models on startup
logger.info("Preloading models on startup...")
logger.info("Initializing default medical model (MedSwin TA)...")
initialize_medical_model(DEFAULT_MEDICAL_MODEL)
logger.info("Preloading TTS model...")
try:
initialize_tts_model()
if global_tts_model is not None:
logger.info("TTS model preloaded successfully!")
else:
logger.warning("TTS model not available - will use MCP or disable voice generation")
except Exception as e:
logger.warning(f"TTS model preloading failed: {e}")
logger.warning("Text-to-speech will use MCP or be disabled")
# Check Gemini MCP availability
if MCP_AVAILABLE:
logger.info("Gemini MCP is available for translation, summarization, document parsing, and transcription")
else:
logger.warning("Gemini MCP not available - translation, summarization, document parsing, and transcription features will be limited")
logger.info("Model preloading complete!")
demo = create_demo()
demo.launch()