Spaces:
Running
on
Zero
Running
on
Zero
Y Phung Nguyen
commited on
Commit
Β·
98c58ec
1
Parent(s):
faa95c5
Upd ASR loader
Browse files
config.py
CHANGED
|
@@ -54,8 +54,8 @@ DESCRIPTION = """
|
|
| 54 |
<p>π <strong>Document RAG:</strong> Answer based on uploaded medical documents</p>
|
| 55 |
<p>π <strong>Web Search:</strong> Fetch knowledge from reliable online medical resources</p>
|
| 56 |
<p>π <strong>Multi-language:</strong> Automatic translation for non-English queries</p>
|
| 57 |
-
<p>Tips
|
| 58 |
-
<p>Note
|
| 59 |
</center>
|
| 60 |
"""
|
| 61 |
CSS = """
|
|
|
|
| 54 |
<p>π <strong>Document RAG:</strong> Answer based on uploaded medical documents</p>
|
| 55 |
<p>π <strong>Web Search:</strong> Fetch knowledge from reliable online medical resources</p>
|
| 56 |
<p>π <strong>Multi-language:</strong> Automatic translation for non-English queries</p>
|
| 57 |
+
<p><strong>Tips:</strong> Customise configurations & system prompt to see the magic!</p>
|
| 58 |
+
<p><strong>Note:</strong> Case GPU aborted or MedSwin not ready, please try another model!</p>
|
| 59 |
</center>
|
| 60 |
"""
|
| 61 |
CSS = """
|
voice.py
CHANGED
|
@@ -92,7 +92,7 @@ def transcribe_audio_whisper(audio_path: str) -> str:
|
|
| 92 |
except Exception as e:
|
| 93 |
logger.error(f"[ASR] Error initializing Whisper model: {e}")
|
| 94 |
import traceback
|
| 95 |
-
logger.
|
| 96 |
return ""
|
| 97 |
|
| 98 |
if config.global_whisper_model is None:
|
|
@@ -106,44 +106,106 @@ def transcribe_audio_whisper(audio_path: str) -> str:
|
|
| 106 |
logger.info("[ASR] Loading audio file...")
|
| 107 |
# Load audio using torchaudio (imported from models)
|
| 108 |
from models import torchaudio
|
|
|
|
| 109 |
if torchaudio is None:
|
| 110 |
logger.error("[ASR] torchaudio not available")
|
| 111 |
return ""
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
waveform = resampler(waveform)
|
| 118 |
-
sample_rate = 16000
|
| 119 |
-
|
| 120 |
-
logger.info("[ASR] Processing audio with Whisper...")
|
| 121 |
-
# Process audio
|
| 122 |
-
inputs = processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt")
|
| 123 |
-
|
| 124 |
-
# Move inputs to same device as model
|
| 125 |
-
device = next(model.parameters()).device
|
| 126 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 127 |
-
|
| 128 |
-
logger.info("[ASR] Running Whisper transcription...")
|
| 129 |
-
# Generate transcription
|
| 130 |
-
with torch.no_grad():
|
| 131 |
-
generated_ids = model.generate(**inputs)
|
| 132 |
-
|
| 133 |
-
# Decode transcription
|
| 134 |
-
transcribed_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 135 |
-
|
| 136 |
-
if transcribed_text:
|
| 137 |
-
logger.info(f"[ASR] β
Transcription successful: {transcribed_text[:100]}...")
|
| 138 |
-
logger.info(f"[ASR] Transcription length: {len(transcribed_text)} characters")
|
| 139 |
-
else:
|
| 140 |
-
logger.warning("[ASR] Whisper returned empty transcription")
|
| 141 |
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
except Exception as e:
|
| 144 |
logger.error(f"[ASR] Whisper transcription error: {e}")
|
| 145 |
import traceback
|
| 146 |
-
logger.
|
| 147 |
return ""
|
| 148 |
|
| 149 |
def transcribe_audio(audio):
|
|
|
|
| 92 |
except Exception as e:
|
| 93 |
logger.error(f"[ASR] Error initializing Whisper model: {e}")
|
| 94 |
import traceback
|
| 95 |
+
logger.error(f"[ASR] Initialization traceback: {traceback.format_exc()}")
|
| 96 |
return ""
|
| 97 |
|
| 98 |
if config.global_whisper_model is None:
|
|
|
|
| 106 |
logger.info("[ASR] Loading audio file...")
|
| 107 |
# Load audio using torchaudio (imported from models)
|
| 108 |
from models import torchaudio
|
| 109 |
+
import torch
|
| 110 |
if torchaudio is None:
|
| 111 |
logger.error("[ASR] torchaudio not available")
|
| 112 |
return ""
|
| 113 |
|
| 114 |
+
# Check if audio file exists
|
| 115 |
+
if not os.path.exists(audio_path):
|
| 116 |
+
logger.error(f"[ASR] Audio file not found: {audio_path}")
|
| 117 |
+
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
+
try:
|
| 120 |
+
waveform, sample_rate = torchaudio.load(audio_path)
|
| 121 |
+
logger.info(f"[ASR] Loaded audio: shape={waveform.shape}, sample_rate={sample_rate}")
|
| 122 |
+
|
| 123 |
+
# Ensure audio is mono (single channel)
|
| 124 |
+
if waveform.shape[0] > 1:
|
| 125 |
+
logger.info(f"[ASR] Converting {waveform.shape[0]}-channel audio to mono")
|
| 126 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
| 127 |
+
|
| 128 |
+
# Resample to 16kHz if needed (Whisper expects 16kHz)
|
| 129 |
+
if sample_rate != 16000:
|
| 130 |
+
logger.info(f"[ASR] Resampling from {sample_rate}Hz to 16000Hz")
|
| 131 |
+
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
|
| 132 |
+
waveform = resampler(waveform)
|
| 133 |
+
sample_rate = 16000
|
| 134 |
+
|
| 135 |
+
logger.info(f"[ASR] Audio ready: shape={waveform.shape}, sample_rate={sample_rate}")
|
| 136 |
+
|
| 137 |
+
logger.info("[ASR] Processing audio with Whisper processor...")
|
| 138 |
+
# Process audio - convert to numpy and ensure it's the right shape
|
| 139 |
+
audio_array = waveform.squeeze().numpy()
|
| 140 |
+
logger.info(f"[ASR] Audio array shape: {audio_array.shape}, dtype: {audio_array.dtype}")
|
| 141 |
+
|
| 142 |
+
# Process audio
|
| 143 |
+
inputs = processor(audio_array, sampling_rate=sample_rate, return_tensors="pt")
|
| 144 |
+
logger.info(f"[ASR] Processor inputs: {list(inputs.keys())}")
|
| 145 |
+
|
| 146 |
+
# Move inputs to same device as model
|
| 147 |
+
device = next(model.parameters()).device
|
| 148 |
+
logger.info(f"[ASR] Model device: {device}")
|
| 149 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 150 |
+
|
| 151 |
+
logger.info("[ASR] Running Whisper model.generate()...")
|
| 152 |
+
# Generate transcription with proper parameters
|
| 153 |
+
# Whisper expects input_features as the main parameter
|
| 154 |
+
if "input_features" not in inputs:
|
| 155 |
+
logger.error(f"[ASR] Missing input_features in processor output. Keys: {list(inputs.keys())}")
|
| 156 |
+
return ""
|
| 157 |
+
|
| 158 |
+
input_features = inputs["input_features"]
|
| 159 |
+
logger.info(f"[ASR] Input features shape: {input_features.shape}, dtype: {input_features.dtype}")
|
| 160 |
+
|
| 161 |
+
with torch.no_grad():
|
| 162 |
+
try:
|
| 163 |
+
# Whisper generate with proper parameters
|
| 164 |
+
generated_ids = model.generate(
|
| 165 |
+
input_features,
|
| 166 |
+
max_length=448, # Whisper default max length
|
| 167 |
+
num_beams=5,
|
| 168 |
+
language=None, # Auto-detect language
|
| 169 |
+
task="transcribe",
|
| 170 |
+
return_timestamps=False
|
| 171 |
+
)
|
| 172 |
+
logger.info(f"[ASR] Generated IDs shape: {generated_ids.shape}, dtype: {generated_ids.dtype}")
|
| 173 |
+
logger.info(f"[ASR] Generated IDs sample: {generated_ids[0][:20] if len(generated_ids) > 0 else 'empty'}")
|
| 174 |
+
except Exception as gen_error:
|
| 175 |
+
logger.error(f"[ASR] Error in model.generate(): {gen_error}")
|
| 176 |
+
import traceback
|
| 177 |
+
logger.error(f"[ASR] Generate traceback: {traceback.format_exc()}")
|
| 178 |
+
# Try simpler generation without optional parameters
|
| 179 |
+
logger.info("[ASR] Retrying with minimal parameters...")
|
| 180 |
+
try:
|
| 181 |
+
generated_ids = model.generate(input_features)
|
| 182 |
+
logger.info(f"[ASR] Retry successful, generated IDs shape: {generated_ids.shape}")
|
| 183 |
+
except Exception as retry_error:
|
| 184 |
+
logger.error(f"[ASR] Retry also failed: {retry_error}")
|
| 185 |
+
return ""
|
| 186 |
+
|
| 187 |
+
logger.info("[ASR] Decoding transcription...")
|
| 188 |
+
# Decode transcription
|
| 189 |
+
transcribed_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 190 |
+
|
| 191 |
+
if transcribed_text:
|
| 192 |
+
logger.info(f"[ASR] β
Transcription successful: {transcribed_text[:100]}...")
|
| 193 |
+
logger.info(f"[ASR] Transcription length: {len(transcribed_text)} characters")
|
| 194 |
+
else:
|
| 195 |
+
logger.warning("[ASR] Whisper returned empty transcription")
|
| 196 |
+
logger.warning(f"[ASR] Generated IDs: {generated_ids}")
|
| 197 |
+
logger.warning(f"[ASR] Decoded (before strip): {processor.batch_decode(generated_ids, skip_special_tokens=False)[0]}")
|
| 198 |
+
|
| 199 |
+
return transcribed_text
|
| 200 |
+
except Exception as audio_error:
|
| 201 |
+
logger.error(f"[ASR] Error processing audio file: {audio_error}")
|
| 202 |
+
import traceback
|
| 203 |
+
logger.error(f"[ASR] Audio processing traceback: {traceback.format_exc()}")
|
| 204 |
+
return ""
|
| 205 |
except Exception as e:
|
| 206 |
logger.error(f"[ASR] Whisper transcription error: {e}")
|
| 207 |
import traceback
|
| 208 |
+
logger.error(f"[ASR] Full traceback: {traceback.format_exc()}")
|
| 209 |
return ""
|
| 210 |
|
| 211 |
def transcribe_audio(audio):
|