Spaces:
Running
on
Zero
Running
on
Zero
Y Phung Nguyen
commited on
Commit
·
03d8100
1
Parent(s):
e52570b
Upd model efficiency and GPU task assignment
Browse filesZeroGPU tagging: Each MedSwin task has @spaces.GPU(max_duration=120) decorator
No batching: Tasks execute individually (respects token limits)
Retry logic: Automatic retry with exponential backoff for GPU errors
Sequential delays: Small delays between GPU requests to prevent conflicts
Model status tracking: Real-time status updates
UI protection: Prevents submission while model is loading
Auto-loading: Models load automatically when selected
- config.py +9 -0
- models.py +49 -12
- pipeline.py +6 -0
- supervisor.py +43 -3
- ui.py +97 -2
config.py
CHANGED
|
@@ -131,6 +131,15 @@ CSS = """
|
|
| 131 |
background: #f3e5f5;
|
| 132 |
color: #7b1fa2;
|
| 133 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
@media (min-width: 768px) {
|
| 135 |
.main-container {
|
| 136 |
display: flex;
|
|
|
|
| 131 |
background: #f3e5f5;
|
| 132 |
color: #7b1fa2;
|
| 133 |
}
|
| 134 |
+
.model-status {
|
| 135 |
+
margin-top: 5px;
|
| 136 |
+
padding: 8px;
|
| 137 |
+
border-radius: 5px;
|
| 138 |
+
font-size: 13px;
|
| 139 |
+
font-weight: 500;
|
| 140 |
+
background-color: #f5f5f5;
|
| 141 |
+
border: 1px solid #e0e0e0;
|
| 142 |
+
}
|
| 143 |
@media (min-width: 768px) {
|
| 144 |
.main-container {
|
| 145 |
display: flex;
|
models.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
"""Model initialization and management"""
|
| 2 |
import torch
|
|
|
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
| 5 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
|
@@ -13,23 +14,59 @@ except ImportError:
|
|
| 13 |
TTS_AVAILABLE = False
|
| 14 |
TTS = None
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
def initialize_medical_model(model_name: str):
|
| 18 |
"""Initialize medical model (MedSwin) - download on demand"""
|
| 19 |
if model_name not in config.global_medical_models or config.global_medical_models[model_name] is None:
|
|
|
|
| 20 |
logger.info(f"Initializing medical model: {model_name}...")
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
return config.global_medical_models[model_name], config.global_medical_tokenizers[model_name]
|
| 34 |
|
| 35 |
|
|
|
|
| 1 |
"""Model initialization and management"""
|
| 2 |
import torch
|
| 3 |
+
import threading
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
| 6 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
|
|
|
| 14 |
TTS_AVAILABLE = False
|
| 15 |
TTS = None
|
| 16 |
|
| 17 |
+
# Model loading state tracking
|
| 18 |
+
_model_loading_states = {}
|
| 19 |
+
_model_loading_lock = threading.Lock()
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def set_model_loading_state(model_name: str, state: str):
|
| 23 |
+
"""Set model loading state: 'loading', 'loaded', 'error'"""
|
| 24 |
+
with _model_loading_lock:
|
| 25 |
+
_model_loading_states[model_name] = state
|
| 26 |
+
logger.debug(f"Model {model_name} state set to: {state}")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def get_model_loading_state(model_name: str) -> str:
|
| 30 |
+
"""Get model loading state: 'loading', 'loaded', 'error', or 'unknown'"""
|
| 31 |
+
with _model_loading_lock:
|
| 32 |
+
return _model_loading_states.get(model_name, "unknown")
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def is_model_loaded(model_name: str) -> bool:
|
| 36 |
+
"""Check if model is loaded and ready"""
|
| 37 |
+
with _model_loading_lock:
|
| 38 |
+
return (model_name in config.global_medical_models and
|
| 39 |
+
config.global_medical_models[model_name] is not None and
|
| 40 |
+
_model_loading_states.get(model_name) == "loaded")
|
| 41 |
+
|
| 42 |
|
| 43 |
def initialize_medical_model(model_name: str):
|
| 44 |
"""Initialize medical model (MedSwin) - download on demand"""
|
| 45 |
if model_name not in config.global_medical_models or config.global_medical_models[model_name] is None:
|
| 46 |
+
set_model_loading_state(model_name, "loading")
|
| 47 |
logger.info(f"Initializing medical model: {model_name}...")
|
| 48 |
+
try:
|
| 49 |
+
model_path = config.MEDSWIN_MODELS[model_name]
|
| 50 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, token=config.HF_TOKEN)
|
| 51 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 52 |
+
model_path,
|
| 53 |
+
device_map="auto",
|
| 54 |
+
trust_remote_code=True,
|
| 55 |
+
token=config.HF_TOKEN,
|
| 56 |
+
torch_dtype=torch.float16
|
| 57 |
+
)
|
| 58 |
+
config.global_medical_models[model_name] = model
|
| 59 |
+
config.global_medical_tokenizers[model_name] = tokenizer
|
| 60 |
+
set_model_loading_state(model_name, "loaded")
|
| 61 |
+
logger.info(f"Medical model {model_name} initialized successfully")
|
| 62 |
+
except Exception as e:
|
| 63 |
+
set_model_loading_state(model_name, "error")
|
| 64 |
+
logger.error(f"Failed to initialize medical model {model_name}: {e}")
|
| 65 |
+
raise
|
| 66 |
+
else:
|
| 67 |
+
# Model already loaded, ensure state is set
|
| 68 |
+
if get_model_loading_state(model_name) != "loaded":
|
| 69 |
+
set_model_loading_state(model_name, "loaded")
|
| 70 |
return config.global_medical_models[model_name], config.global_medical_tokenizers[model_name]
|
| 71 |
|
| 72 |
|
pipeline.py
CHANGED
|
@@ -571,6 +571,12 @@ def stream_chat(
|
|
| 571 |
if len(rag_contexts) > 1 and idx <= len(rag_contexts):
|
| 572 |
task_context = rag_contexts[idx - 1] if idx <= len(rag_contexts) else combined_context
|
| 573 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 574 |
try:
|
| 575 |
task_answer = execute_medswin_task(
|
| 576 |
medical_model_obj=medical_model_obj,
|
|
|
|
| 571 |
if len(rag_contexts) > 1 and idx <= len(rag_contexts):
|
| 572 |
task_context = rag_contexts[idx - 1] if idx <= len(rag_contexts) else combined_context
|
| 573 |
|
| 574 |
+
# Add small delay between GPU requests to prevent ZeroGPU scheduler conflicts
|
| 575 |
+
if idx > 1:
|
| 576 |
+
delay = 0.5 # 500ms delay between sequential GPU requests
|
| 577 |
+
logger.debug(f"[MEDSWIN] Waiting {delay}s before next GPU request to avoid scheduler conflicts...")
|
| 578 |
+
time.sleep(delay)
|
| 579 |
+
|
| 580 |
try:
|
| 581 |
task_answer = execute_medswin_task(
|
| 582 |
medical_model_obj=medical_model_obj,
|
supervisor.py
CHANGED
|
@@ -559,8 +559,7 @@ def gemini_supervisor_rag_brainstorm(query: str, retrieved_docs: str, time_elaps
|
|
| 559 |
}
|
| 560 |
|
| 561 |
|
| 562 |
-
|
| 563 |
-
def execute_medswin_task(
|
| 564 |
medical_model_obj,
|
| 565 |
medical_tokenizer,
|
| 566 |
task_instruction: str,
|
|
@@ -572,7 +571,7 @@ def execute_medswin_task(
|
|
| 572 |
top_k: int,
|
| 573 |
penalty: float
|
| 574 |
) -> str:
|
| 575 |
-
"""MedSwin
|
| 576 |
if context:
|
| 577 |
full_prompt = f"{system_prompt_base}\n\nContext:\n{context}\n\nTask: {task_instruction}\n\nAnswer concisely with key bullet points (Markdown format, no tables):"
|
| 578 |
else:
|
|
@@ -622,6 +621,47 @@ def execute_medswin_task(
|
|
| 622 |
return response
|
| 623 |
|
| 624 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 625 |
async def gemini_supervisor_synthesize_async(query: str, medswin_answers: list, rag_contexts: list, search_contexts: list, breakdown: dict) -> str:
|
| 626 |
"""Gemini Supervisor: Synthesize final answer from all MedSwin responses"""
|
| 627 |
context_summary = ""
|
|
|
|
| 559 |
}
|
| 560 |
|
| 561 |
|
| 562 |
+
def _execute_medswin_core(
|
|
|
|
| 563 |
medical_model_obj,
|
| 564 |
medical_tokenizer,
|
| 565 |
task_instruction: str,
|
|
|
|
| 571 |
top_k: int,
|
| 572 |
penalty: float
|
| 573 |
) -> str:
|
| 574 |
+
"""Core MedSwin execution logic (without GPU decorator for retry logic)"""
|
| 575 |
if context:
|
| 576 |
full_prompt = f"{system_prompt_base}\n\nContext:\n{context}\n\nTask: {task_instruction}\n\nAnswer concisely with key bullet points (Markdown format, no tables):"
|
| 577 |
else:
|
|
|
|
| 621 |
return response
|
| 622 |
|
| 623 |
|
| 624 |
+
@spaces.GPU(max_duration=120)
|
| 625 |
+
def execute_medswin_task(
|
| 626 |
+
medical_model_obj,
|
| 627 |
+
medical_tokenizer,
|
| 628 |
+
task_instruction: str,
|
| 629 |
+
context: str,
|
| 630 |
+
system_prompt_base: str,
|
| 631 |
+
temperature: float,
|
| 632 |
+
max_new_tokens: int,
|
| 633 |
+
top_p: float,
|
| 634 |
+
top_k: int,
|
| 635 |
+
penalty: float
|
| 636 |
+
) -> str:
|
| 637 |
+
"""
|
| 638 |
+
MedSwin Specialist: Execute a single task assigned by Gemini Supervisor (with ZeroGPU tag)
|
| 639 |
+
Includes retry logic with exponential backoff to handle GPU task aborted errors
|
| 640 |
+
"""
|
| 641 |
+
import time
|
| 642 |
+
max_retries = 3
|
| 643 |
+
base_delay = 1.0 # Base delay in seconds
|
| 644 |
+
|
| 645 |
+
for attempt in range(max_retries):
|
| 646 |
+
try:
|
| 647 |
+
return _execute_medswin_core(
|
| 648 |
+
medical_model_obj, medical_tokenizer, task_instruction, context,
|
| 649 |
+
system_prompt_base, temperature, max_new_tokens, top_p, top_k, penalty
|
| 650 |
+
)
|
| 651 |
+
except Exception as e:
|
| 652 |
+
error_msg = str(e).lower()
|
| 653 |
+
is_gpu_error = 'gpu task aborted' in error_msg or 'gpu' in error_msg or 'zerogpu' in error_msg
|
| 654 |
+
|
| 655 |
+
if is_gpu_error and attempt < max_retries - 1:
|
| 656 |
+
delay = base_delay * (2 ** attempt) # Exponential backoff: 1s, 2s, 4s
|
| 657 |
+
logger.warning(f"[MEDSWIN] GPU task aborted (attempt {attempt + 1}/{max_retries}), retrying after {delay}s...")
|
| 658 |
+
time.sleep(delay)
|
| 659 |
+
continue
|
| 660 |
+
else:
|
| 661 |
+
logger.error(f"[MEDSWIN] Task failed after {attempt + 1} attempts: {e}")
|
| 662 |
+
raise
|
| 663 |
+
|
| 664 |
+
|
| 665 |
async def gemini_supervisor_synthesize_async(query: str, medswin_answers: list, rag_contexts: list, search_contexts: list, breakdown: dict) -> str:
|
| 666 |
"""Gemini Supervisor: Synthesize final answer from all MedSwin responses"""
|
| 667 |
context_summary = ""
|
ui.py
CHANGED
|
@@ -5,6 +5,7 @@ from config import TITLE, DESCRIPTION, CSS, MEDSWIN_MODELS, DEFAULT_MEDICAL_MODE
|
|
| 5 |
from indexing import create_or_update_index
|
| 6 |
from pipeline import stream_chat
|
| 7 |
from voice import transcribe_audio, generate_speech
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
def create_demo():
|
|
@@ -176,6 +177,13 @@ def create_demo():
|
|
| 176 |
label="Medical Model",
|
| 177 |
info="MedSwin TA (default), others download on first use"
|
| 178 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
system_prompt = gr.Textbox(
|
| 181 |
value="As a medical specialist, provide detailed and accurate answers based on the provided medical documents and context. Ensure all information is clinically accurate and cite sources when available.",
|
|
@@ -250,8 +258,95 @@ def create_demo():
|
|
| 250 |
outputs=[agentic_thoughts_box, show_thoughts_state]
|
| 251 |
)
|
| 252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
submit_button.click(
|
| 254 |
-
fn=
|
| 255 |
inputs=[
|
| 256 |
message_input,
|
| 257 |
chatbot,
|
|
@@ -274,7 +369,7 @@ def create_demo():
|
|
| 274 |
)
|
| 275 |
|
| 276 |
message_input.submit(
|
| 277 |
-
fn=
|
| 278 |
inputs=[
|
| 279 |
message_input,
|
| 280 |
chatbot,
|
|
|
|
| 5 |
from indexing import create_or_update_index
|
| 6 |
from pipeline import stream_chat
|
| 7 |
from voice import transcribe_audio, generate_speech
|
| 8 |
+
from models import initialize_medical_model, is_model_loaded, get_model_loading_state, set_model_loading_state
|
| 9 |
|
| 10 |
|
| 11 |
def create_demo():
|
|
|
|
| 177 |
label="Medical Model",
|
| 178 |
info="MedSwin TA (default), others download on first use"
|
| 179 |
)
|
| 180 |
+
model_status = gr.Textbox(
|
| 181 |
+
value="Checking model status...",
|
| 182 |
+
label="Model Status",
|
| 183 |
+
interactive=False,
|
| 184 |
+
visible=True,
|
| 185 |
+
elem_classes="model-status"
|
| 186 |
+
)
|
| 187 |
|
| 188 |
system_prompt = gr.Textbox(
|
| 189 |
value="As a medical specialist, provide detailed and accurate answers based on the provided medical documents and context. Ensure all information is clinically accurate and cite sources when available.",
|
|
|
|
| 258 |
outputs=[agentic_thoughts_box, show_thoughts_state]
|
| 259 |
)
|
| 260 |
|
| 261 |
+
def load_model_and_update_status(model_name):
|
| 262 |
+
"""Load model and update status, return status text and whether model is ready"""
|
| 263 |
+
try:
|
| 264 |
+
if is_model_loaded(model_name):
|
| 265 |
+
return "✅ The model has been loaded successfully", True
|
| 266 |
+
|
| 267 |
+
state = get_model_loading_state(model_name)
|
| 268 |
+
if state == "loading":
|
| 269 |
+
return "⏳ The model is being loaded, please wait...", False
|
| 270 |
+
elif state == "error":
|
| 271 |
+
return "❌ Error loading model. Please try again.", False
|
| 272 |
+
|
| 273 |
+
# Start loading
|
| 274 |
+
set_model_loading_state(model_name, "loading")
|
| 275 |
+
try:
|
| 276 |
+
initialize_medical_model(model_name)
|
| 277 |
+
return "✅ The model has been loaded successfully", True
|
| 278 |
+
except Exception as e:
|
| 279 |
+
set_model_loading_state(model_name, "error")
|
| 280 |
+
return f"❌ Error loading model: {str(e)[:100]}", False
|
| 281 |
+
except Exception as e:
|
| 282 |
+
return f"❌ Error: {str(e)[:100]}", False
|
| 283 |
+
|
| 284 |
+
def check_model_status(model_name):
|
| 285 |
+
"""Check current model status without loading"""
|
| 286 |
+
if is_model_loaded(model_name):
|
| 287 |
+
return "✅ The model has been loaded successfully", True
|
| 288 |
+
state = get_model_loading_state(model_name)
|
| 289 |
+
if state == "loading":
|
| 290 |
+
return "⏳ The model is being loaded, please wait...", False
|
| 291 |
+
elif state == "error":
|
| 292 |
+
return "❌ Error loading model. Please try again.", False
|
| 293 |
+
else:
|
| 294 |
+
return "⚠️ Model not loaded. Click to load or it will load on first use.", False
|
| 295 |
+
|
| 296 |
+
# Initialize status on load
|
| 297 |
+
def init_model_status():
|
| 298 |
+
status_text, is_ready = check_model_status(DEFAULT_MEDICAL_MODEL)
|
| 299 |
+
return status_text
|
| 300 |
+
|
| 301 |
+
# Handle model selection change
|
| 302 |
+
def on_model_change(model_name):
|
| 303 |
+
status_text, is_ready = load_model_and_update_status(model_name)
|
| 304 |
+
submit_enabled = is_ready
|
| 305 |
+
return (
|
| 306 |
+
status_text,
|
| 307 |
+
gr.update(interactive=submit_enabled),
|
| 308 |
+
gr.update(interactive=submit_enabled)
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
medical_model.change(
|
| 312 |
+
fn=on_model_change,
|
| 313 |
+
inputs=[medical_model],
|
| 314 |
+
outputs=[model_status, submit_button, message_input]
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
# Initialize status
|
| 318 |
+
demo.load(
|
| 319 |
+
fn=init_model_status,
|
| 320 |
+
outputs=[model_status]
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
# Wrap stream_chat to check model status before execution
|
| 324 |
+
def stream_chat_with_model_check(
|
| 325 |
+
message, history, system_prompt, temperature, max_new_tokens,
|
| 326 |
+
top_p, top_k, penalty, retriever_k, merge_threshold,
|
| 327 |
+
use_rag, medical_model_name, use_web_search,
|
| 328 |
+
enable_clinical_intake, disable_agentic_reasoning, show_thoughts, request: gr.Request
|
| 329 |
+
):
|
| 330 |
+
# Check if model is loaded
|
| 331 |
+
if not is_model_loaded(medical_model_name):
|
| 332 |
+
# Try to load it
|
| 333 |
+
status_text, is_ready = load_model_and_update_status(medical_model_name)
|
| 334 |
+
if not is_ready:
|
| 335 |
+
error_msg = "⚠️ Model is not ready. Please wait for the model to finish loading before sending messages."
|
| 336 |
+
yield history + [{"role": "assistant", "content": error_msg}], ""
|
| 337 |
+
return
|
| 338 |
+
|
| 339 |
+
# Model is ready, proceed with chat
|
| 340 |
+
for result in stream_chat(
|
| 341 |
+
message, history, system_prompt, temperature, max_new_tokens,
|
| 342 |
+
top_p, top_k, penalty, retriever_k, merge_threshold,
|
| 343 |
+
use_rag, medical_model_name, use_web_search,
|
| 344 |
+
enable_clinical_intake, disable_agentic_reasoning, show_thoughts, request
|
| 345 |
+
):
|
| 346 |
+
yield result
|
| 347 |
+
|
| 348 |
submit_button.click(
|
| 349 |
+
fn=stream_chat_with_model_check,
|
| 350 |
inputs=[
|
| 351 |
message_input,
|
| 352 |
chatbot,
|
|
|
|
| 369 |
)
|
| 370 |
|
| 371 |
message_input.submit(
|
| 372 |
+
fn=stream_chat_with_model_check,
|
| 373 |
inputs=[
|
| 374 |
message_input,
|
| 375 |
chatbot,
|