MedLLM-Agent / voice.py
Y Phung Nguyen
Upd maya configs
7009401
"""Audio transcription and text-to-speech functions"""
import os
import asyncio
import tempfile
import soundfile as sf
import torch
import numpy as np
from logger import logger
from client import MCP_AVAILABLE, call_agent, get_mcp_session, get_cached_mcp_tools
import config
from models import TTS_AVAILABLE, SNAC_AVAILABLE, WHISPER_AVAILABLE, initialize_tts_model, initialize_whisper_model
# Maya1 constants (from maya1 docs)
CODE_START_TOKEN_ID = 128257
CODE_END_TOKEN_ID = 128258
CODE_TOKEN_OFFSET = 128266
SNAC_MIN_ID = 128266
SNAC_MAX_ID = 156937
SOH_ID = 128259
EOH_ID = 128260
SOA_ID = 128261
TEXT_EOT_ID = 128009
AUDIO_SAMPLE_RATE = 24000
# Default voice description for Maya1 - female, soft and bright voice
DEFAULT_VOICE_DESCRIPTION = "Realistic female voice in the 20s age with a american accent. High pitch, bright timbre, conversational pacing, warm tone delivery at medium intensity, podcast domain, narrator role, friendly delivery"
# Chunking configuration
MAX_CHUNK_LENGTH = 600 # Maximum characters per chunk for TTS
MIN_CHUNK_LENGTH = 100 # Minimum characters per chunk (to avoid too many tiny chunks)
import spaces
try:
import nest_asyncio
except ImportError:
nest_asyncio = None
async def transcribe_audio_gemini(audio_path: str) -> str:
"""Transcribe audio using Gemini MCP transcribe_audio tool"""
if not MCP_AVAILABLE:
return ""
try:
session = await get_mcp_session()
if session is None:
logger.warning("MCP session not available for transcription")
return ""
tools = await get_cached_mcp_tools()
transcribe_tool = None
for tool in tools:
if tool.name == "transcribe_audio":
transcribe_tool = tool
logger.info(f"Found MCP transcribe_audio tool: {tool.name}")
break
if not transcribe_tool:
logger.warning("transcribe_audio MCP tool not found, falling back to generate_content")
# Fallback to using generate_content
audio_path_abs = os.path.abspath(audio_path)
files = [{"path": audio_path_abs}]
system_prompt = "You are a professional transcription service. Provide accurate, well-formatted transcripts."
user_prompt = "Please transcribe this audio file. Include speaker identification if multiple speakers are present, and format it with proper punctuation and paragraphs, remove mumble, ignore non-verbal noises."
result = await call_agent(
user_prompt=user_prompt,
system_prompt=system_prompt,
files=files,
model=config.GEMINI_MODEL_LITE,
temperature=0.2
)
return result.strip()
# Use the transcribe_audio tool
audio_path_abs = os.path.abspath(audio_path)
result = await session.call_tool(
transcribe_tool.name,
arguments={"audio_path": audio_path_abs}
)
if hasattr(result, 'content') and result.content:
for item in result.content:
if hasattr(item, 'text'):
transcribed_text = item.text.strip()
if transcribed_text:
logger.info(f"✅ Transcribed via MCP transcribe_audio tool: {transcribed_text[:50]}...")
return transcribed_text
logger.warning("MCP transcribe_audio returned empty result")
return ""
except Exception as e:
logger.error(f"Gemini transcription error: {e}")
return ""
@spaces.GPU(max_duration=60)
def transcribe_audio_whisper(audio_path: str) -> str:
"""Transcribe audio using Whisper model from Hugging Face"""
if not WHISPER_AVAILABLE:
logger.warning("[ASR] Whisper not available for transcription")
return ""
try:
logger.info(f"[ASR] Starting Whisper transcription for: {audio_path}")
if config.global_whisper_model is None:
logger.info("[ASR] Whisper model not loaded, initializing now (on-demand)...")
try:
initialize_whisper_model()
if config.global_whisper_model is None:
logger.error("[ASR] Failed to initialize Whisper model - check logs for errors")
return ""
else:
logger.info("[ASR] ✅ Whisper model loaded successfully on-demand!")
except Exception as e:
logger.error(f"[ASR] Error initializing Whisper model: {e}")
import traceback
logger.error(f"[ASR] Initialization traceback: {traceback.format_exc()}")
return ""
if config.global_whisper_model is None:
logger.error("[ASR] Whisper model is still None after initialization attempt")
return ""
# Extract processor and model from stored dict
processor = config.global_whisper_model["processor"]
model = config.global_whisper_model["model"]
logger.info("[ASR] Loading audio file...")
import torch
import numpy as np
# Check if audio file exists
if not os.path.exists(audio_path):
logger.error(f"[ASR] Audio file not found: {audio_path}")
return ""
try:
# Use soundfile to load audio (more reliable, doesn't require torchcodec)
logger.info(f"[ASR] Loading audio with soundfile: {audio_path}")
audio_data, sample_rate = sf.read(audio_path, dtype='float32')
logger.info(f"[ASR] Loaded audio with soundfile: shape={audio_data.shape}, sample_rate={sample_rate}, dtype={audio_data.dtype}")
# Convert to torch tensor and ensure it's 2D (channels, samples)
if len(audio_data.shape) == 1:
# Mono audio - add channel dimension
waveform = torch.from_numpy(audio_data).unsqueeze(0)
else:
# Multi-channel - transpose to (channels, samples)
waveform = torch.from_numpy(audio_data).T
logger.info(f"[ASR] Converted to tensor: shape={waveform.shape}, dtype={waveform.dtype}")
# Ensure audio is mono (single channel)
if waveform.shape[0] > 1:
logger.info(f"[ASR] Converting {waveform.shape[0]}-channel audio to mono")
waveform = torch.mean(waveform, dim=0, keepdim=True)
# Resample to 16kHz if needed (Whisper expects 16kHz)
if sample_rate != 16000:
logger.info(f"[ASR] Resampling from {sample_rate}Hz to 16000Hz")
# Use scipy or librosa for resampling if available, otherwise use simple interpolation
try:
from scipy import signal
# Resample using scipy
num_samples = int(len(waveform[0]) * 16000 / sample_rate)
resampled = signal.resample(waveform[0].numpy(), num_samples)
waveform = torch.from_numpy(resampled).unsqueeze(0)
sample_rate = 16000
logger.info(f"[ASR] Resampled using scipy: new shape={waveform.shape}")
except ImportError:
# Fallback: simple linear interpolation (scipy not available)
logger.info("[ASR] scipy not available, using simple linear interpolation for resampling")
num_samples = int(len(waveform[0]) * 16000 / sample_rate)
waveform_1d = waveform[0].numpy()
indices = np.linspace(0, len(waveform_1d) - 1, num_samples)
resampled = np.interp(indices, np.arange(len(waveform_1d)), waveform_1d)
waveform = torch.from_numpy(resampled).unsqueeze(0)
sample_rate = 16000
logger.info(f"[ASR] Resampled using simple interpolation: new shape={waveform.shape}")
logger.info(f"[ASR] Audio ready: shape={waveform.shape}, sample_rate={sample_rate}")
logger.info("[ASR] Processing audio with Whisper processor...")
# Process audio - convert to numpy and ensure it's the right shape
audio_array = waveform.squeeze().numpy()
logger.info(f"[ASR] Audio array shape: {audio_array.shape}, dtype: {audio_array.dtype}")
# Process audio
inputs = processor(audio_array, sampling_rate=sample_rate, return_tensors="pt")
logger.info(f"[ASR] Processor inputs: {list(inputs.keys())}")
# Move inputs to same device as model
device = next(model.parameters()).device
logger.info(f"[ASR] Model device: {device}")
inputs = {k: v.to(device) for k, v in inputs.items()}
logger.info("[ASR] Running Whisper model.generate()...")
# Generate transcription with proper parameters
# Whisper expects input_features as the main parameter
if "input_features" not in inputs:
logger.error(f"[ASR] Missing input_features in processor output. Keys: {list(inputs.keys())}")
return ""
input_features = inputs["input_features"]
logger.info(f"[ASR] Input features shape: {input_features.shape}, dtype: {input_features.dtype}")
# Convert input features to match model dtype (float16)
model_dtype = next(model.parameters()).dtype
if input_features.dtype != model_dtype:
logger.info(f"[ASR] Converting input features from {input_features.dtype} to {model_dtype} to match model")
input_features = input_features.to(dtype=model_dtype)
logger.info(f"[ASR] Converted input features dtype: {input_features.dtype}")
with torch.no_grad():
try:
# Whisper generate with proper parameters
generated_ids = model.generate(
input_features,
max_length=448, # Whisper default max length
num_beams=5,
language=None, # Auto-detect language
task="transcribe",
return_timestamps=False
)
logger.info(f"[ASR] Generated IDs shape: {generated_ids.shape}, dtype: {generated_ids.dtype}")
logger.info(f"[ASR] Generated IDs sample: {generated_ids[0][:20] if len(generated_ids) > 0 else 'empty'}")
except Exception as gen_error:
logger.error(f"[ASR] Error in model.generate(): {gen_error}")
import traceback
logger.error(f"[ASR] Generate traceback: {traceback.format_exc()}")
# Try simpler generation without optional parameters
logger.info("[ASR] Retrying with minimal parameters...")
try:
# Ensure dtype is correct for retry too
if input_features.dtype != model_dtype:
input_features = input_features.to(dtype=model_dtype)
generated_ids = model.generate(input_features)
logger.info(f"[ASR] Retry successful, generated IDs shape: {generated_ids.shape}")
except Exception as retry_error:
logger.error(f"[ASR] Retry also failed: {retry_error}")
return ""
logger.info("[ASR] Decoding transcription...")
# Decode transcription
transcribed_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
if transcribed_text:
logger.info(f"[ASR] ✅ Transcription successful: {transcribed_text[:100]}...")
logger.info(f"[ASR] Transcription length: {len(transcribed_text)} characters")
else:
logger.warning("[ASR] Whisper returned empty transcription")
logger.warning(f"[ASR] Generated IDs: {generated_ids}")
logger.warning(f"[ASR] Decoded (before strip): {processor.batch_decode(generated_ids, skip_special_tokens=False)[0]}")
return transcribed_text
except Exception as audio_error:
logger.error(f"[ASR] Error processing audio file: {audio_error}")
import traceback
logger.error(f"[ASR] Audio processing traceback: {traceback.format_exc()}")
return ""
except Exception as e:
logger.error(f"[ASR] Whisper transcription error: {e}")
import traceback
logger.error(f"[ASR] Full traceback: {traceback.format_exc()}")
return ""
def transcribe_audio(audio):
"""Transcribe audio to text using Whisper (primary) or Gemini MCP (fallback)"""
if audio is None:
logger.warning("[ASR] No audio provided")
return ""
try:
# Convert audio input to file path
if isinstance(audio, str):
audio_path = audio
elif isinstance(audio, tuple):
sample_rate, audio_data = audio
logger.info(f"[ASR] Processing audio tuple: sample_rate={sample_rate}, data_shape={audio_data.shape if hasattr(audio_data, 'shape') else 'unknown'}")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
sf.write(tmp_file.name, audio_data, samplerate=sample_rate)
audio_path = tmp_file.name
logger.info(f"[ASR] Created temporary audio file: {audio_path}")
else:
audio_path = audio
logger.info(f"[ASR] Attempting transcription with Whisper (primary method)...")
# Try Whisper first (primary method)
if WHISPER_AVAILABLE:
try:
transcribed = transcribe_audio_whisper(audio_path)
if transcribed:
logger.info(f"[ASR] ✅ Successfully transcribed via Whisper: {transcribed[:50]}...")
# Clean up temp file if we created it
if isinstance(audio, tuple) and os.path.exists(audio_path):
try:
os.unlink(audio_path)
except:
pass
return transcribed
else:
logger.warning("[ASR] Whisper transcription returned empty, trying fallback...")
except Exception as e:
logger.error(f"[ASR] Whisper transcription failed: {e}, trying fallback...")
else:
logger.warning("[ASR] Whisper not available, trying Gemini fallback...")
# Fallback to Gemini MCP if Whisper fails or is unavailable
if MCP_AVAILABLE:
try:
logger.info("[ASR] Attempting transcription with Gemini MCP (fallback)...")
loop = asyncio.get_event_loop()
if loop.is_running():
if nest_asyncio:
transcribed = nest_asyncio.run(transcribe_audio_gemini(audio_path))
if transcribed:
logger.info(f"[ASR] Transcribed via Gemini MCP (fallback): {transcribed[:50]}...")
# Clean up temp file if we created it
if isinstance(audio, tuple) and os.path.exists(audio_path):
try:
os.unlink(audio_path)
except:
pass
return transcribed
else:
logger.error("[ASR] nest_asyncio not available for nested async transcription")
else:
transcribed = loop.run_until_complete(transcribe_audio_gemini(audio_path))
if transcribed:
logger.info(f"[ASR] Transcribed via Gemini MCP (fallback): {transcribed[:50]}...")
# Clean up temp file if we created it
if isinstance(audio, tuple) and os.path.exists(audio_path):
try:
os.unlink(audio_path)
except:
pass
return transcribed
except Exception as e:
logger.error(f"[ASR] Gemini MCP transcription error: {e}")
# Clean up temp file if we created it
if isinstance(audio, tuple) and os.path.exists(audio_path):
try:
os.unlink(audio_path)
except:
pass
logger.warning("[ASR] All transcription methods failed")
return ""
except Exception as e:
logger.error(f"[ASR] Transcription error: {e}")
import traceback
logger.debug(f"[ASR] Full traceback: {traceback.format_exc()}")
return ""
async def generate_speech_mcp(text: str) -> str:
"""Generate speech using MCP text_to_speech tool (fallback path)."""
if not MCP_AVAILABLE:
return None
try:
session = await get_mcp_session()
if session is None:
logger.warning("MCP session not available for TTS")
return None
tools = await get_cached_mcp_tools()
tts_tool = None
for tool in tools:
if tool.name == "text_to_speech":
tts_tool = tool
logger.info(f"Found MCP text_to_speech tool: {tool.name}")
break
if not tts_tool:
# Fallback: search for any TTS-related tool
for tool in tools:
tool_name_lower = tool.name.lower()
if "tts" in tool_name_lower or "speech" in tool_name_lower or "synthesize" in tool_name_lower:
tts_tool = tool
logger.info(f"Found MCP TTS tool (fallback): {tool.name}")
break
if tts_tool:
result = await session.call_tool(
tts_tool.name,
arguments={"text": text, "language": "en"}
)
if hasattr(result, 'content') and result.content:
for item in result.content:
if hasattr(item, 'text'):
text_result = item.text
# Check if it's a signal to use local TTS
if text_result == "USE_LOCAL_TTS":
logger.info("MCP TTS tool indicates client-side TTS should be used")
return None # Return None to trigger client-side TTS
elif os.path.exists(text_result):
return text_result
elif hasattr(item, 'data') and item.data:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_file.write(item.data)
return tmp_file.name
return None
except Exception as e:
logger.warning(f"MCP TTS error: {e}")
return None
def _generate_speech_via_mcp(text: str):
"""Helper to generate speech via MCP in a synchronous context."""
if not MCP_AVAILABLE:
return None
try:
loop = asyncio.get_event_loop()
if loop.is_running():
if nest_asyncio:
audio_path = nest_asyncio.run(generate_speech_mcp(text))
else:
logger.error("nest_asyncio not available for nested async TTS via MCP")
return None
else:
audio_path = loop.run_until_complete(generate_speech_mcp(text))
if audio_path:
logger.info("Generated speech via MCP")
return audio_path
except Exception as e:
logger.warning(f"MCP TTS error (sync wrapper): {e}")
return None
def preprocess_text_for_tts(text: str) -> str:
"""Remove titles and introductory paragraphs from text.
Removes:
- Lines that are very short (likely titles)
- Lines that are all caps (likely titles)
- Lines ending with colons (likely section headers)
- Paragraphs starting with common intro phrases like "here's", "this is", etc.
"""
if not text:
return text
lines = text.split('\n')
processed_lines = []
skip_next_paragraph = False
for i, line in enumerate(lines):
line_stripped = line.strip()
# Skip empty lines
if not line_stripped:
processed_lines.append('')
continue
# Skip very short lines (likely titles) - less than 30 chars
if len(line_stripped) < 30:
# Check if it's all caps (likely a title)
if line_stripped.isupper() or (line_stripped.endswith(':') and len(line_stripped) < 50):
logger.debug(f"[TTS] Skipping title: {line_stripped[:50]}")
skip_next_paragraph = True
continue
# Check for introductory phrases at the start of paragraphs
line_lower = line_stripped.lower()
intro_phrases = [
"here's", "here is", "this is", "this was", "let me", "let's",
"i'll", "i will", "i'm going to", "i want to", "i'd like to",
"in this", "in the following", "below is", "below are"
]
# Check if this line starts with an intro phrase
starts_with_intro = any(line_lower.startswith(phrase) for phrase in intro_phrases)
# If it's a short paragraph starting with intro phrase, skip it
if starts_with_intro and len(line_stripped) < 150:
logger.debug(f"[TTS] Skipping intro paragraph: {line_stripped[:80]}...")
skip_next_paragraph = True
continue
# If we're skipping the next paragraph and this is a short one, skip it
if skip_next_paragraph and len(line_stripped) < 200:
logger.debug(f"[TTS] Skipping paragraph after title/intro: {line_stripped[:80]}...")
skip_next_paragraph = False
continue
skip_next_paragraph = False
processed_lines.append(line)
result = '\n'.join(processed_lines)
# Clean up multiple consecutive newlines
import re
result = re.sub(r'\n{3,}', '\n\n', result)
return result.strip()
def chunk_text_for_tts(text: str, max_length: int = MAX_CHUNK_LENGTH, min_length: int = MIN_CHUNK_LENGTH) -> list[str]:
"""Split text into chunks suitable for TTS generation.
Tries to split at sentence boundaries first, then at paragraph boundaries,
and finally at word boundaries if needed.
"""
if len(text) <= max_length:
return [text]
chunks = []
remaining = text
while len(remaining) > max_length:
# Try to find a good split point
chunk = remaining[:max_length]
# First, try to split at sentence boundary (., !, ?)
sentence_end = max(
chunk.rfind('. '),
chunk.rfind('! '),
chunk.rfind('? '),
chunk.rfind('.\n'),
chunk.rfind('!\n'),
chunk.rfind('?\n')
)
if sentence_end > min_length:
chunk = remaining[:sentence_end + 1]
remaining = remaining[sentence_end + 1:].lstrip()
else:
# Try paragraph boundary
para_end = chunk.rfind('\n\n')
if para_end > min_length:
chunk = remaining[:para_end]
remaining = remaining[para_end:].lstrip()
else:
# Try word boundary
word_end = chunk.rfind(' ')
if word_end > min_length:
chunk = remaining[:word_end]
remaining = remaining[word_end:].lstrip()
else:
# Force split at max_length
chunk = remaining[:max_length]
remaining = remaining[max_length:]
if chunk.strip():
chunks.append(chunk.strip())
# Add remaining text
if remaining.strip():
chunks.append(remaining.strip())
return chunks
def build_maya1_prompt(tokenizer, description: str, text: str) -> str:
"""Build formatted prompt for Maya1.
The description is used only for voice characteristics and should not be spoken.
Only the text after the description tag should be synthesized.
"""
soh_token = tokenizer.decode([SOH_ID])
eoh_token = tokenizer.decode([EOH_ID])
soa_token = tokenizer.decode([SOA_ID])
sos_token = tokenizer.decode([CODE_START_TOKEN_ID])
eot_token = tokenizer.decode([TEXT_EOT_ID])
bos_token = tokenizer.bos_token
# Ensure description is only metadata - add newline after description tag
# to clearly separate it from the text to be spoken
formatted_text = f'<description="{description}">\n{text}'
prompt = (
soh_token + bos_token + formatted_text + eot_token +
eoh_token + soa_token + sos_token
)
# Log the prompt structure for debugging (without the actual description text)
logger.debug(f"[TTS] Prompt structure: <description=\"...\">\\n[text to speak] (text length: {len(text)} chars)")
return prompt
def unpack_snac_from_7(snac_tokens: list) -> list:
"""Unpack 7-token SNAC frames to 3 hierarchical levels."""
if snac_tokens and snac_tokens[-1] == CODE_END_TOKEN_ID:
snac_tokens = snac_tokens[:-1]
frames = len(snac_tokens) // 7
snac_tokens = snac_tokens[:frames * 7]
if frames == 0:
return [[], [], []]
l1, l2, l3 = [], [], []
for i in range(frames):
slots = snac_tokens[i*7:(i+1)*7]
l1.append((slots[0] - CODE_TOKEN_OFFSET) % 4096)
l2.extend([
(slots[1] - CODE_TOKEN_OFFSET) % 4096,
(slots[4] - CODE_TOKEN_OFFSET) % 4096,
])
l3.extend([
(slots[2] - CODE_TOKEN_OFFSET) % 4096,
(slots[3] - CODE_TOKEN_OFFSET) % 4096,
(slots[5] - CODE_TOKEN_OFFSET) % 4096,
(slots[6] - CODE_TOKEN_OFFSET) % 4096,
])
return [l1, l2, l3]
def _generate_speech_with_gpu(text: str, description: str = None):
"""Internal GPU-decorated function for TTS generation when TTS is available."""
if config.global_tts_model is None:
logger.info("[TTS] TTS model not loaded, initializing...")
initialize_tts_model()
if config.global_tts_model is None:
logger.error("[TTS] TTS model not available. Please check dependencies.")
return None
# Check if it's the new Maya1 format (dictionary) or old format
if not isinstance(config.global_tts_model, dict):
logger.error("[TTS] TTS model format is incorrect. Expected dictionary with model, tokenizer, snac_model.")
return None
try:
model = config.global_tts_model["model"]
tokenizer = config.global_tts_model["tokenizer"]
snac_model = config.global_tts_model["snac_model"]
# Use default description if not provided
if description is None:
description = DEFAULT_VOICE_DESCRIPTION
logger.info("[TTS] Running Maya1 TTS generation...")
logger.debug(f"[TTS] Voice description (metadata only, not spoken): {description[:80]}...")
logger.debug(f"[TTS] Text to speak: {text[:100]}...")
# Build prompt - description is metadata, only text should be spoken
prompt = build_maya1_prompt(tokenizer, description, text)
# Verify prompt structure - the description should be in the attribute, not in the spoken text
if description.lower() in prompt.lower() and description.lower() not in f'<description="{description.lower()}">':
logger.warning("[TTS] Warning: Description text appears in prompt outside of description attribute")
inputs = tokenizer(prompt, return_tensors="pt")
if torch.cuda.is_available():
inputs = {k: v.to("cuda") for k, v in inputs.items()}
# Generate tokens
with torch.inference_mode():
outputs = model.generate(
**inputs,
max_new_tokens=1500,
min_new_tokens=28,
temperature=0.4,
top_p=0.9,
repetition_penalty=1.1,
do_sample=True,
eos_token_id=CODE_END_TOKEN_ID,
pad_token_id=tokenizer.pad_token_id,
)
# Extract SNAC tokens
generated_ids = outputs[0, inputs['input_ids'].shape[1]:].tolist()
# Find EOS and extract SNAC codes
eos_idx = generated_ids.index(CODE_END_TOKEN_ID) if CODE_END_TOKEN_ID in generated_ids else len(generated_ids)
snac_tokens = [t for t in generated_ids[:eos_idx] if SNAC_MIN_ID <= t <= SNAC_MAX_ID]
if len(snac_tokens) < 7:
logger.error(f"[TTS] Not enough tokens generated ({len(snac_tokens)}). Try different text or increase max_tokens.")
return None
# Unpack and decode
levels = unpack_snac_from_7(snac_tokens)
frames = len(levels[0])
device = "cuda" if torch.cuda.is_available() else "cpu"
codes_tensor = [torch.tensor(level, dtype=torch.long, device=device).unsqueeze(0) for level in levels]
with torch.inference_mode():
z_q = snac_model.quantizer.from_codes(codes_tensor)
audio = snac_model.decoder(z_q)[0, 0].cpu().numpy()
# Trim warmup
if len(audio) > 2048:
audio = audio[2048:]
# Convert to WAV and save to temporary file
audio_int16 = (audio * 32767).astype(np.int16)
# Create temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
tmp_path = tmp_file.name
# Save audio
sf.write(tmp_path, audio_int16, AUDIO_SAMPLE_RATE)
duration = len(audio) / AUDIO_SAMPLE_RATE
logger.info(f"[TTS] ✅ Speech generated successfully: {tmp_path} ({duration:.2f}s)")
return tmp_path
except Exception as e:
logger.error(f"[TTS] TTS error (local maya1): {e}")
import traceback
logger.debug(f"[TTS] Full traceback: {traceback.format_exc()}")
return None
@spaces.GPU(max_duration=120)
def _generate_speech_gpu_wrapper(text: str):
"""GPU wrapper for TTS generation - only called when TTS is available."""
return _generate_speech_with_gpu(text)
def concatenate_audio_files(audio_files: list[str], output_path: str) -> str:
"""Concatenate multiple audio files into one.
Args:
audio_files: List of paths to audio files to concatenate
output_path: Path to save the concatenated audio
Returns:
Path to the concatenated audio file
"""
if not audio_files:
return None
if len(audio_files) == 1:
# Just return the single file
return audio_files[0]
try:
# Load all audio files
audio_data_list = []
sample_rate = None
for audio_file in audio_files:
if not os.path.exists(audio_file):
logger.warning(f"[TTS] Audio file not found: {audio_file}, skipping...")
continue
data, sr = sf.read(audio_file, dtype='float32')
if sample_rate is None:
sample_rate = sr
elif sample_rate != sr:
logger.warning(f"[TTS] Sample rate mismatch: {sr} vs {sample_rate}, resampling...")
# Resample to match first file
try:
from scipy import signal
num_samples = int(len(data) * sample_rate / sr)
data = signal.resample(data, num_samples)
except ImportError:
# Fallback: simple linear interpolation if scipy not available
logger.warning("[TTS] scipy not available, using simple interpolation for resampling")
num_samples = int(len(data) * sample_rate / sr)
indices = np.linspace(0, len(data) - 1, num_samples)
data = np.interp(indices, np.arange(len(data)), data)
audio_data_list.append(data)
if not audio_data_list:
logger.error("[TTS] No valid audio files to concatenate")
return None
# Concatenate all audio
concatenated = np.concatenate(audio_data_list)
# Save concatenated audio
sf.write(output_path, concatenated, sample_rate)
logger.info(f"[TTS] Concatenated {len(audio_data_list)} audio chunks into {output_path}")
# Clean up individual chunk files
for audio_file in audio_files:
try:
if os.path.exists(audio_file) and audio_file != output_path:
os.unlink(audio_file)
except Exception as e:
logger.debug(f"[TTS] Could not delete temp file {audio_file}: {e}")
return output_path
except Exception as e:
logger.error(f"[TTS] Error concatenating audio files: {e}")
import traceback
logger.debug(f"[TTS] Concatenation traceback: {traceback.format_exc()}")
return None
def generate_speech(text: str):
"""Generate speech from text using local maya1 TTS model (with MCP fallback).
The primary path uses the local TTS model (maya-research/maya1). MCP-based
TTS is only used as a last-resort fallback if the local model is unavailable
or fails.
This function checks TTS availability before attempting GPU allocation.
For long texts, it automatically chunks the text and concatenates the audio.
"""
if not text or len(text.strip()) == 0:
logger.warning("[TTS] Empty text provided")
return None
# Preprocess text: remove titles and intro paragraphs
processed_text = preprocess_text_for_tts(text)
if not processed_text or len(processed_text.strip()) == 0:
logger.warning("[TTS] Text is empty after preprocessing")
return None
logger.info(f"[TTS] Generating speech for text (original: {len(text)} chars, processed: {len(processed_text)} chars)")
# Check TTS availability first - avoid GPU allocation if not available
# Use SNAC_AVAILABLE for Maya1, but keep TTS_AVAILABLE check for backward compatibility
if not SNAC_AVAILABLE:
logger.warning("[TTS] SNAC library not installed (required for Maya1). Trying MCP fallback...")
# Try MCP-based TTS if available (doesn't require GPU)
audio_path = _generate_speech_via_mcp(processed_text)
if audio_path:
logger.info(f"[TTS] ✅ Generated via MCP fallback: {audio_path}")
return audio_path
else:
logger.error("[TTS] ❌ SNAC library not installed and MCP fallback failed. Please install: pip install snac")
return None
# Chunk text if it's too long
chunks = chunk_text_for_tts(processed_text)
logger.info(f"[TTS] Split text into {len(chunks)} chunk(s)")
if len(chunks) == 1:
# Single chunk - process normally
try:
audio_path = _generate_speech_gpu_wrapper(chunks[0])
if audio_path:
return audio_path
else:
# GPU generation failed, try MCP fallback
logger.warning("[TTS] Local TTS generation failed, trying MCP fallback...")
return _generate_speech_via_mcp(processed_text)
except Exception as e:
logger.error(f"[TTS] GPU TTS generation error: {e}")
import traceback
logger.debug(f"[TTS] Full traceback: {traceback.format_exc()}")
# Try MCP fallback on error
logger.info("[TTS] Attempting MCP fallback after error...")
return _generate_speech_via_mcp(processed_text)
else:
# Multiple chunks - process each and concatenate
logger.info(f"[TTS] Processing {len(chunks)} chunks...")
audio_files = []
for i, chunk in enumerate(chunks):
logger.info(f"[TTS] Processing chunk {i+1}/{len(chunks)} ({len(chunk)} chars)...")
try:
chunk_audio = _generate_speech_gpu_wrapper(chunk)
if chunk_audio and os.path.exists(chunk_audio):
audio_files.append(chunk_audio)
logger.info(f"[TTS] ✅ Chunk {i+1}/{len(chunks)} generated successfully")
else:
logger.warning(f"[TTS] ⚠️ Chunk {i+1}/{len(chunks)} generation failed, skipping...")
except Exception as e:
logger.error(f"[TTS] Error generating chunk {i+1}/{len(chunks)}: {e}")
# Continue with other chunks
if not audio_files:
logger.error("[TTS] ❌ All chunks failed to generate. Trying MCP fallback...")
return _generate_speech_via_mcp(processed_text)
# Concatenate all audio chunks
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
output_path = tmp_file.name
final_audio = concatenate_audio_files(audio_files, output_path)
if final_audio:
logger.info(f"[TTS] ✅ Successfully generated and concatenated {len(audio_files)} chunks")
return final_audio
else:
logger.error("[TTS] ❌ Failed to concatenate audio chunks. Trying MCP fallback...")
return _generate_speech_via_mcp(processed_text)