MedLLM-Agent / pipeline.py
Y Phung Nguyen
Upd concise prompt. Upd TTS loader
b61cc05
"""Main chat pipeline - stream_chat function"""
import os
import json
import time
import logging
import threading
import concurrent.futures
import hashlib
import gradio as gr
import spaces
from llama_index.core import StorageContext, VectorStoreIndex, load_index_from_storage
from llama_index.core import Settings
from llama_index.core.retrievers import AutoMergingRetriever
from logger import logger, ThoughtCaptureHandler
from models import initialize_medical_model, get_or_create_embed_model, is_model_loaded, get_model_loading_state, set_model_loading_state, move_model_to_gpu
from utils import detect_language, translate_text, format_url_as_domain
from search import search_web, summarize_web_content
from reasoning import autonomous_reasoning, create_execution_plan, autonomous_execution_strategy
from supervisor import (
gemini_supervisor_breakdown, gemini_supervisor_search_strategies,
gemini_supervisor_rag_brainstorm, execute_medswin_task,
gemini_supervisor_synthesize, gemini_supervisor_challenge,
gemini_supervisor_enhance_answer, gemini_supervisor_check_clarity,
gemini_clinical_intake_triage, gemini_summarize_clinical_insights,
MAX_SEARCH_STRATEGIES
)
MAX_CLINICAL_QA_ROUNDS = 5
MAX_DURATION = 120
_clinical_intake_sessions = {}
_clinical_intake_lock = threading.Lock()
# Thread pool executor for running Gemini supervisor calls without blocking GPU task
_gemini_executor = concurrent.futures.ThreadPoolExecutor(max_workers=2, thread_name_prefix="gemini-supervisor")
def run_gemini_in_thread(fn, *args, **kwargs):
"""
Run Gemini supervisor function in a separate thread to avoid blocking GPU task.
This ensures Gemini API calls don't consume GPU task time and cause timeouts.
"""
try:
future = _gemini_executor.submit(fn, *args, **kwargs)
# Set a reasonable timeout (30s) to prevent hanging
result = future.result(timeout=30.0)
return result
except concurrent.futures.TimeoutError:
logger.error(f"[GEMINI SUPERVISOR] Function {fn.__name__} timed out after 30s")
# Return fallback based on function
return _supervisor_logics(fn.__name__, args)
except Exception as e:
logger.error(f"[GEMINI SUPERVISOR] Function {fn.__name__} failed with error: {type(e).__name__}: {str(e)}")
# Return fallback based on function
return _supervisor_logics(fn.__name__, args)
def _supervisor_logics(fn_name: str, args: tuple):
"""Get appropriate fallback value based on function name"""
try:
if "breakdown" in fn_name:
return {
"sub_topics": [
{"id": 1, "topic": "Answer", "instruction": args[0] if args else "Address the question", "expected_tokens": 400, "priority": "high", "approach": "direct answer"}
],
"strategy": "Direct answer (fallback)",
"exploration_note": "Gemini supervisor error"
}
elif "search_strategies" in fn_name:
return {
"search_strategies": [
{"id": 1, "strategy": args[0] if args else "", "target_sources": 2, "focus": "main query"}
],
"max_strategies": 1
}
elif "rag_brainstorm" in fn_name:
return {
"contexts": [
{"id": 1, "context": args[1][:500] if len(args) > 1 else "", "focus": "retrieved information", "relevance": "high"}
],
"max_contexts": 1
}
elif "synthesize" in fn_name:
# Return concatenated MedSwin answers as fallback
return "\n\n".join(args[1] if len(args) > 1 and args[1] else [])
elif "challenge" in fn_name:
return {"is_optimal": True, "completeness_score": 7, "accuracy_score": 7, "clarity_score": 7, "missing_aspects": [], "inaccuracies": [], "improvement_suggestions": [], "needs_more_context": False, "enhancement_instructions": ""}
elif "enhance_answer" in fn_name:
return args[1] if len(args) > 1 else ""
elif "check_clarity" in fn_name:
return {"is_unclear": False, "needs_search": False, "search_queries": []}
elif "clinical_intake_triage" in fn_name:
return {
"needs_additional_info": False,
"decision_reason": "Error fallback",
"max_rounds": args[2] if len(args) > 2 else 5,
"questions": [],
"initial_hypotheses": []
}
elif "summarize_clinical_insights" in fn_name:
return {
"patient_profile": "",
"refined_problem_statement": args[0] if args else "",
"key_findings": [],
"handoff_note": "Proceed with regular workflow."
}
else:
logger.warning(f"[GEMINI SUPERVISOR] Unknown function {fn_name}, returning None")
return None
except Exception as e:
logger.error(f"[GEMINI SUPERVISOR] Error running {fn.__name__} in thread: {e}")
# Return appropriate fallback
if "breakdown" in fn.__name__:
return {
"sub_topics": [
{"id": 1, "topic": "Answer", "instruction": args[0] if args else "Address the question", "expected_tokens": 400, "priority": "high", "approach": "direct answer"}
],
"strategy": "Direct answer (error fallback)",
"exploration_note": "Gemini supervisor error"
}
return None
def _get_clinical_intake_state(session_id: str):
with _clinical_intake_lock:
return _clinical_intake_sessions.get(session_id)
def _set_clinical_intake_state(session_id: str, state: dict):
with _clinical_intake_lock:
_clinical_intake_sessions[session_id] = state
def _clear_clinical_intake_state(session_id: str):
with _clinical_intake_lock:
_clinical_intake_sessions.pop(session_id, None)
def _history_to_text(history: list, limit: int = 6) -> str:
if not history:
return "No prior conversation."
recent = history[-limit:]
lines = []
for turn in recent:
role = turn.get("role", "user")
content = turn.get("content", "")
lines.append(f"{role}: {content}")
return "\n".join(lines)
def _format_intake_question(question: dict, round_idx: int, max_rounds: int, target_lang: str) -> str:
header = f"🩺 Question for clarity {round_idx}/{max_rounds}"
body = question.get("question") or "Could you share a bit more detail so I can give an accurate answer?"
prompt_parts = [
header,
body,
"Please answer in 1-2 sentences so I can continue."
]
prompt_text = "\n\n".join(prompt_parts)
if target_lang and target_lang != "en":
try:
prompt_text = translate_text(prompt_text, target_lang=target_lang, source_lang="en")
except Exception as exc:
logger.warning(f"[INTAKE] Question translation failed: {exc}")
return prompt_text
def _format_qa_transcript(qa_pairs: list) -> str:
if not qa_pairs:
return ""
lines = []
for idx, qa in enumerate(qa_pairs, 1):
question = qa.get("question", "").strip()
answer = qa.get("answer", "").strip()
if question:
lines.append(f"Q{idx}: {question}")
if answer:
lines.append(f"A{idx}: {answer}")
lines.append("")
return "\n".join(lines).strip()
def _format_insights_block(insights: dict) -> str:
if not insights:
return ""
lines = []
profile = insights.get("patient_profile")
if profile:
lines.append(f"- Patient profile: {profile}")
for finding in insights.get("key_findings", []):
title = finding.get("title", "Insight")
detail = finding.get("detail", "")
implication = finding.get("clinical_implication", "")
line = f"- {title}: {detail}"
if implication:
line += f" (Clinical note: {implication})"
lines.append(line)
return "\n".join(lines)
def _build_refined_query(base_query: str, insights: dict, insights_block: str) -> str:
sections = [base_query.strip()] if base_query else []
if insights_block:
sections.append(f"Clinical intake summary:\n{insights_block}")
refined = insights.get("refined_problem_statement")
if refined:
sections.append(f"Refined problem statement:\n{refined}")
handoff = insights.get("handoff_note")
if handoff:
sections.append(f"Handoff note:\n{handoff}")
return "\n\n".join([section for section in sections if section])
def _hash_prompt_text(text: str) -> str:
if not text:
return ""
digest = hashlib.sha1()
digest.update(text.strip().encode("utf-8"))
return digest.hexdigest()
def _extract_pending_intake_prompt(history: list) -> str:
if not history:
return ""
for turn in reversed(history):
if turn.get("role") != "assistant":
continue
content = turn.get("content", "")
if content.startswith("🩺 Question for clarity"):
return content
return ""
def _rehydrate_intake_state(session_id: str, history: list):
state = _get_clinical_intake_state(session_id)
if state or not history:
return state
pending_prompt = _extract_pending_intake_prompt(history)
if not pending_prompt:
return None
prompt_hash = _hash_prompt_text(pending_prompt)
if not prompt_hash:
return None
with _clinical_intake_lock:
for existing_id, existing_state in list(_clinical_intake_sessions.items()):
if existing_state.get("awaiting_answer") and existing_state.get("last_prompt_hash") == prompt_hash:
if existing_id != session_id:
_clinical_intake_sessions.pop(existing_id, None)
_clinical_intake_sessions[session_id] = existing_state
return existing_state
return None
def _get_last_assistant_answer(history: list) -> str:
"""
Extract the last non-empty assistant answer from history.
Skips clinical intake clarification prompts so that follow-up
questions like "clarify your answer" refer to the real medical
answer, not an intake question.
"""
if not history:
return ""
for turn in reversed(history):
if turn.get("role") != "assistant":
continue
content = (turn.get("content") or "").strip()
if not content:
continue
# Skip intake prompts that start with the standard header
if content.startswith("🩺 Question for clarity"):
continue
return content
return ""
def _start_clinical_intake_session(session_id: str, plan: dict, base_query: str, original_language: str):
questions = plan.get("questions", []) or []
if not questions:
return None
max_rounds = plan.get("max_rounds") or len(questions)
max_rounds = max(1, min(MAX_CLINICAL_QA_ROUNDS, max_rounds, len(questions)))
state = {
"base_query": base_query,
"original_language": original_language or "en",
"questions": questions,
"max_rounds": max_rounds,
"current_round": 1,
"pending_question_index": 0,
"awaiting_answer": True,
"answers": [],
"decision_reason": plan.get("decision_reason", ""),
"initial_hypotheses": plan.get("initial_hypotheses", []),
"started_at": time.time(),
"last_prompt_hash": ""
}
_set_clinical_intake_state(session_id, state)
first_prompt = _format_intake_question(
questions[0],
round_idx=1,
max_rounds=max_rounds,
target_lang=state["original_language"]
)
state["last_prompt_hash"] = _hash_prompt_text(first_prompt)
_set_clinical_intake_state(session_id, state)
return first_prompt
def _handle_clinical_answer(session_id: str, answer_text: str):
state = _get_clinical_intake_state(session_id)
if not state:
return {"type": "error"}
questions = state.get("questions", [])
idx = state.get("pending_question_index", 0)
if idx >= len(questions):
logger.warning("[INTAKE] Pending question index out of range, ending intake session")
_clear_clinical_intake_state(session_id)
return {"type": "error"}
question_meta = questions[idx] or {}
qa_entry = {
"question": question_meta.get("question", ""),
"focus": question_meta.get("clinical_focus"),
"why_it_matters": question_meta.get("why_it_matters"),
"round": state.get("current_round", len(state.get("answers", [])) + 1),
"answer": answer_text.strip()
}
state["answers"].append(qa_entry)
next_index = idx + 1
reached_round_limit = len(state["answers"]) >= state["max_rounds"]
if reached_round_limit or next_index >= len(questions):
# Run in thread pool to avoid blocking GPU task
insights = run_gemini_in_thread(gemini_summarize_clinical_insights, state["base_query"], state["answers"])
insights_block = _format_insights_block(insights)
refined_query = _build_refined_query(state["base_query"], insights, insights_block)
transcript = _format_qa_transcript(state["answers"])
_clear_clinical_intake_state(session_id)
return {
"type": "insights",
"insights": insights,
"insights_block": insights_block,
"refined_query": refined_query,
"qa_pairs": state["answers"],
"qa_transcript": transcript
}
state["pending_question_index"] = next_index
state["current_round"] = len(state["answers"]) + 1
state["awaiting_answer"] = True
_set_clinical_intake_state(session_id, state)
next_question = questions[next_index]
prompt = _format_intake_question(
next_question,
round_idx=state["current_round"],
max_rounds=state["max_rounds"],
target_lang=state["original_language"]
)
state["last_prompt_hash"] = _hash_prompt_text(prompt)
_set_clinical_intake_state(session_id, state)
return {"type": "question", "prompt": prompt}
@spaces.GPU(max_duration=MAX_DURATION)
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float,
max_new_tokens: int,
top_p: float,
top_k: int,
penalty: float,
retriever_k: int,
merge_threshold: float,
use_rag: bool,
medical_model: str,
use_web_search: bool,
enable_clinical_intake: bool,
disable_agentic_reasoning: bool,
show_thoughts: bool,
request: gr.Request
):
"""Main chat pipeline implementing MAC architecture"""
if not request:
yield history + [{"role": "assistant", "content": "Session initialization failed. Please refresh the page."}], ""
return
# Check if model is loaded before proceeding
# NOTE: We don't load the model here to save time - it should be pre-loaded before stream_chat is called
if not is_model_loaded(medical_model):
loading_state = get_model_loading_state(medical_model)
if loading_state == "loading":
error_msg = f"⏳ {medical_model} is still loading. Please wait until the model status shows 'loaded and ready' before sending messages."
else:
error_msg = f"⚠️ {medical_model} is not loaded. Please wait for the model to finish loading or select a model from the dropdown."
yield history + [{"role": "assistant", "content": error_msg}], ""
return
# ZeroGPU best practice: If model is on CPU, move it to GPU now (we're in a GPU-decorated function)
# This ensures the model is ready for inference without consuming GPU quota during startup
try:
import config
if medical_model in config.global_medical_models:
model = config.global_medical_models[medical_model]
if model is not None:
# Check if model is on CPU (device_map="cpu" or device is CPU)
model_on_cpu = False
if hasattr(model, 'device'):
if str(model.device) == 'cpu':
model_on_cpu = True
elif hasattr(model, 'hf_device_map'):
# Model loaded with device_map - check if it's on CPU
if isinstance(model.hf_device_map, dict):
# If all devices are CPU, move to GPU
if all('cpu' in str(dev).lower() for dev in model.hf_device_map.values()):
model_on_cpu = True
if model_on_cpu:
logger.info(f"[STREAM_CHAT] Model {medical_model} is on CPU, moving to GPU for inference...")
move_model_to_gpu(medical_model)
logger.info(f"[STREAM_CHAT] ✅ Model {medical_model} moved to GPU successfully")
except Exception as e:
logger.warning(f"[STREAM_CHAT] Could not move model to GPU (may already be on GPU): {e}")
# Continue anyway - model might already be on GPU
thought_handler = None
if show_thoughts:
thought_handler = ThoughtCaptureHandler()
thought_handler.setLevel(logging.INFO)
thought_handler.clear()
logger.addHandler(thought_handler)
session_start = time.time()
soft_timeout = 100
hard_timeout = 118
def elapsed():
return time.time() - session_start
user_id = request.session_hash or "anonymous"
index_dir = f"./{user_id}_index"
has_rag_index = os.path.exists(index_dir)
original_lang = detect_language(message)
original_message = message
needs_translation = original_lang != "en"
pipeline_diagnostics = {
"reasoning": None,
"plan": None,
"strategy_decisions": [],
"stage_metrics": {},
"search": {"strategies": [], "total_results": 0},
"clinical_intake": {
"enabled": enable_clinical_intake,
"activated": False,
"rounds": 0,
"reason": "",
"insights": [],
"plan": [],
"qa_pairs": [],
"transcript": "",
"insights_block": ""
}
}
def record_stage(stage_name: str, start_time: float):
pipeline_diagnostics["stage_metrics"][stage_name] = round(time.time() - start_time, 3)
translation_stage_start = time.time()
if needs_translation:
logger.info(f"[GEMINI SUPERVISOR] Detected non-English language: {original_lang}, translating...")
message = translate_text(message, target_lang="en", source_lang=original_lang)
logger.info(f"[GEMINI SUPERVISOR] Translated query: {message[:100]}...")
record_stage("translation", translation_stage_start)
final_use_rag = use_rag and has_rag_index and not disable_agentic_reasoning
final_use_web_search = use_web_search and not disable_agentic_reasoning
# Initialize updated_history early to avoid UnboundLocalError
updated_history = history + [
{"role": "user", "content": original_message},
{"role": "assistant", "content": ""}
]
clinical_intake_context_block = ""
# Clinical intake currently uses Gemini-based supervisors.
# When agentic reasoning is disabled, we also skip all Gemini-driven
# intake planning and summarization so the flow is purely MedSwin.
if disable_agentic_reasoning or not enable_clinical_intake:
_clear_clinical_intake_state(user_id)
else:
intake_state = _rehydrate_intake_state(user_id, history)
if intake_state and intake_state.get("awaiting_answer"):
logger.info("[INTAKE] Awaiting patient response - processing answer")
intake_result = _handle_clinical_answer(user_id, message)
if intake_result.get("type") == "question":
logger.info("[INTAKE] Requesting additional follow-up")
updated_history[-1]["content"] = intake_result["prompt"]
thoughts_text = thought_handler.get_thoughts() if (show_thoughts and thought_handler) else ""
yield updated_history, thoughts_text
if thought_handler:
logger.removeHandler(thought_handler)
return
if intake_result.get("type") == "insights":
pipeline_diagnostics["clinical_intake"]["activated"] = True
pipeline_diagnostics["clinical_intake"]["rounds"] = len(intake_result.get("qa_pairs", []))
pipeline_diagnostics["clinical_intake"]["insights"] = intake_result.get("insights", {}).get("key_findings", [])
pipeline_diagnostics["clinical_intake"]["qa_pairs"] = intake_result.get("qa_pairs", [])
pipeline_diagnostics["clinical_intake"]["transcript"] = intake_result.get("qa_transcript", "")
pipeline_diagnostics["clinical_intake"]["insights_block"] = intake_result.get("insights_block", "")
base_refined = intake_result.get("refined_query", message)
summary_section = ""
transcript_section = ""
if intake_result.get("insights_block"):
summary_section = f"Clinical intake summary:\n{intake_result['insights_block']}"
if intake_result.get("qa_transcript"):
transcript_section = f"Clinical intake Q&A transcript:\n{intake_result['qa_transcript']}"
sections = [base_refined, summary_section, transcript_section]
message = "\n\n---\n\n".join([section for section in sections if section])
clinical_intake_context_block = "\n\n".join([seg for seg in [summary_section, transcript_section] if seg])
else:
history_context = _history_to_text(history)
# Run in thread pool to avoid blocking GPU task
triage_plan = run_gemini_in_thread(gemini_clinical_intake_triage, message, history_context, MAX_CLINICAL_QA_ROUNDS)
pipeline_diagnostics["clinical_intake"]["reason"] = triage_plan.get("decision_reason", "")
pipeline_diagnostics["clinical_intake"]["plan"] = triage_plan.get("questions", [])
needs_intake = triage_plan.get("needs_additional_info") and triage_plan.get("questions")
if needs_intake:
first_prompt = _start_clinical_intake_session(
user_id,
triage_plan,
message,
original_lang
)
if first_prompt:
pipeline_diagnostics["clinical_intake"]["activated"] = True
updated_history[-1]["content"] = first_prompt
thoughts_text = thought_handler.get_thoughts() if (show_thoughts and thought_handler) else ""
yield updated_history, thoughts_text
if thought_handler:
logger.removeHandler(thought_handler)
return
plan = None
if not disable_agentic_reasoning:
reasoning_stage_start = time.time()
reasoning = autonomous_reasoning(message, history)
record_stage("autonomous_reasoning", reasoning_stage_start)
pipeline_diagnostics["reasoning"] = reasoning
plan = create_execution_plan(reasoning, message, has_rag_index)
pipeline_diagnostics["plan"] = plan
execution_strategy = autonomous_execution_strategy(
reasoning, plan, final_use_rag, final_use_web_search, has_rag_index
)
if final_use_rag and not reasoning.get("requires_rag", True):
final_use_rag = False
pipeline_diagnostics["strategy_decisions"].append("Skipped RAG per autonomous reasoning")
elif not final_use_rag and reasoning.get("requires_rag", True) and not has_rag_index:
pipeline_diagnostics["strategy_decisions"].append("Reasoning wanted RAG but no index available")
if final_use_web_search and not reasoning.get("requires_web_search", False):
final_use_web_search = False
pipeline_diagnostics["strategy_decisions"].append("Skipped web search per autonomous reasoning")
elif not final_use_web_search and reasoning.get("requires_web_search", False):
if not use_web_search:
pipeline_diagnostics["strategy_decisions"].append("User disabled web search despite reasoning request")
else:
pipeline_diagnostics["strategy_decisions"].append("Web search requested by reasoning but disabled by mode")
else:
pipeline_diagnostics["strategy_decisions"].append("Agentic reasoning disabled by user")
# Update thoughts after reasoning stage
thoughts_text = thought_handler.get_thoughts() if (show_thoughts and thought_handler) else ""
yield updated_history, thoughts_text
if disable_agentic_reasoning:
logger.info("[MAC] Agentic reasoning disabled - using MedSwin alone")
breakdown = {
"sub_topics": [
{"id": 1, "topic": "Answer", "instruction": message, "expected_tokens": 400, "priority": "high", "approach": "direct answer"}
],
"strategy": "Direct answer",
"exploration_note": "Direct mode - no breakdown"
}
else:
logger.info("[GEMINI SUPERVISOR] Breaking query into sub-topics...")
# Provide previous assistant answer as context so Gemini can
# interpret follow-up queries like "clarify your answer".
previous_answer = _get_last_assistant_answer(history)
# Run in thread pool to avoid blocking GPU task
breakdown = run_gemini_in_thread(
gemini_supervisor_breakdown,
message,
final_use_rag,
final_use_web_search,
elapsed(),
120,
previous_answer,
)
logger.info(f"[GEMINI SUPERVISOR] Created {len(breakdown.get('sub_topics', []))} sub-topics")
# Update thoughts after breakdown
thoughts_text = thought_handler.get_thoughts() if (show_thoughts and thought_handler) else ""
yield updated_history, thoughts_text
search_contexts = []
web_urls = []
if final_use_web_search:
search_stage_start = time.time()
logger.info("[GEMINI SUPERVISOR] Search mode: Creating search strategies...")
# Run in thread pool to avoid blocking GPU task
search_strategies = run_gemini_in_thread(gemini_supervisor_search_strategies, message, elapsed())
all_search_results = []
strategy_jobs = []
for strategy in search_strategies.get("search_strategies", [])[:MAX_SEARCH_STRATEGIES]:
search_query = strategy.get("strategy", message)
target_sources = strategy.get("target_sources", 2)
strategy_jobs.append({
"query": search_query,
"target_sources": target_sources,
"meta": strategy
})
def execute_search(job):
job_start = time.time()
try:
results = search_web(job["query"], max_results=job["target_sources"])
duration = time.time() - job_start
return results, duration, None
except Exception as exc:
return [], time.time() - job_start, exc
def record_search_diag(job, duration, results_count, error=None):
entry = {
"query": job["query"],
"target_sources": job["target_sources"],
"duration": round(duration, 3),
"results": results_count
}
if error:
entry["error"] = str(error)
pipeline_diagnostics["search"]["strategies"].append(entry)
if strategy_jobs:
max_workers = min(len(strategy_jobs), 4)
if len(strategy_jobs) > 1:
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
future_map = {executor.submit(execute_search, job): job for job in strategy_jobs}
for future in concurrent.futures.as_completed(future_map):
job = future_map[future]
try:
results, duration, error = future.result()
except Exception as exc:
results, duration, error = [], 0.0, exc
record_search_diag(job, duration, len(results), error)
if not error and results:
all_search_results.extend(results)
web_urls.extend([r.get('url', '') for r in results if r.get('url')])
else:
job = strategy_jobs[0]
results, duration, error = execute_search(job)
record_search_diag(job, duration, len(results), error)
if not error and results:
all_search_results.extend(results)
web_urls.extend([r.get('url', '') for r in results if r.get('url')])
else:
pipeline_diagnostics["strategy_decisions"].append("No viable web search strategies returned")
pipeline_diagnostics["search"]["total_results"] = len(all_search_results)
if all_search_results:
logger.info(f"[GEMINI SUPERVISOR] Summarizing {len(all_search_results)} search results...")
search_summary = summarize_web_content(all_search_results, message)
if search_summary:
search_contexts.append(search_summary)
logger.info(f"[GEMINI SUPERVISOR] Search summary created: {len(search_summary)} chars")
record_stage("web_search", search_stage_start)
rag_contexts = []
if final_use_rag and has_rag_index:
rag_stage_start = time.time()
if elapsed() >= soft_timeout - 10:
logger.warning("[GEMINI SUPERVISOR] Skipping RAG due to time pressure")
final_use_rag = False
else:
logger.info("[GEMINI SUPERVISOR] RAG mode: Retrieving documents...")
embed_model = get_or_create_embed_model()
Settings.embed_model = embed_model
storage_context = StorageContext.from_defaults(persist_dir=index_dir)
index = load_index_from_storage(storage_context, settings=Settings)
base_retriever = index.as_retriever(similarity_top_k=retriever_k)
auto_merging_retriever = AutoMergingRetriever(
base_retriever,
storage_context=storage_context,
simple_ratio_thresh=merge_threshold,
verbose=False
)
merged_nodes = auto_merging_retriever.retrieve(message)
retrieved_docs = "\n\n".join([n.node.text for n in merged_nodes])
logger.info(f"[GEMINI SUPERVISOR] Retrieved {len(merged_nodes)} document nodes")
logger.info("[GEMINI SUPERVISOR] Brainstorming RAG contexts...")
# Run in thread pool to avoid blocking GPU task
rag_brainstorm = run_gemini_in_thread(gemini_supervisor_rag_brainstorm, message, retrieved_docs, elapsed())
rag_contexts = [ctx.get("context", "") for ctx in rag_brainstorm.get("contexts", [])]
logger.info(f"[GEMINI SUPERVISOR] Created {len(rag_contexts)} RAG contexts")
record_stage("rag_retrieval", rag_stage_start)
medical_model_obj, medical_tokenizer = initialize_medical_model(medical_model)
base_system_prompt = system_prompt if system_prompt else "As a medical specialist, provide clinical and concise answers. Use Markdown format with bullet points. Do not use tables. Provide answers directly without conversational prefixes like 'Here is...', 'This is...'. Start with the actual content immediately."
context_sections = []
if clinical_intake_context_block:
context_sections.append("Clinical Intake Context:\n" + clinical_intake_context_block)
if rag_contexts:
context_sections.append("Document Context:\n" + "\n\n".join(rag_contexts[:4]))
if search_contexts:
context_sections.append("Web Search Context:\n" + "\n\n".join(search_contexts))
combined_context = "\n\n".join(context_sections)
logger.info(f"[MEDSWIN] Executing {len(breakdown.get('sub_topics', []))} tasks sequentially...")
medswin_answers = []
# Update thoughts before starting MedSwin tasks
thoughts_text = thought_handler.get_thoughts() if (show_thoughts and thought_handler) else ""
yield updated_history, thoughts_text
medswin_stage_start = time.time()
for idx, sub_topic in enumerate(breakdown.get("sub_topics", []), 1):
if elapsed() >= hard_timeout - 5:
logger.warning(f"[MEDSWIN] Time limit approaching, stopping at task {idx}")
break
task_instruction = sub_topic.get("instruction", "")
topic_name = sub_topic.get("topic", f"Topic {idx}")
priority = sub_topic.get("priority", "medium")
logger.info(f"[MEDSWIN] Executing task {idx}/{len(breakdown.get('sub_topics', []))}: {topic_name} (priority: {priority})")
task_context = combined_context
if len(rag_contexts) > 1 and idx <= len(rag_contexts):
task_context = rag_contexts[idx - 1] if idx <= len(rag_contexts) else combined_context
# Add small delay between GPU requests to prevent ZeroGPU scheduler conflicts
if idx > 1:
delay = 0.5 # 500ms delay between sequential GPU requests
logger.debug(f"[MEDSWIN] Waiting {delay}s before next GPU request to avoid scheduler conflicts...")
time.sleep(delay)
try:
task_answer = execute_medswin_task(
medical_model_obj=medical_model_obj,
medical_tokenizer=medical_tokenizer,
task_instruction=task_instruction,
context=task_context if task_context else "",
system_prompt_base=base_system_prompt,
temperature=temperature,
max_new_tokens=min(max_new_tokens, 800),
top_p=top_p,
top_k=top_k,
penalty=penalty
)
formatted_answer = f"## {topic_name}\n\n{task_answer}"
medswin_answers.append(formatted_answer)
logger.info(f"[MEDSWIN] Task {idx} completed: {len(task_answer)} chars")
partial_final = "\n\n".join(medswin_answers)
updated_history[-1]["content"] = partial_final
thoughts_text = thought_handler.get_thoughts() if (show_thoughts and thought_handler) else ""
yield updated_history, thoughts_text
except Exception as e:
logger.error(f"[MEDSWIN] Task {idx} failed: {e}")
continue
record_stage("medswin_tasks", medswin_stage_start)
# If agentic reasoning is disabled, we skip all Gemini-based synthesis,
# challenge, and enhancement loops. The final answer is just the
# concatenation of MedSwin task outputs.
if disable_agentic_reasoning:
logger.info("[MAC] Agentic reasoning disabled - skipping Gemini synthesis and challenge")
if medswin_answers:
final_answer = "\n\n".join(medswin_answers)
else:
final_answer = "I apologize, but I was unable to generate a response."
else:
logger.info("[GEMINI SUPERVISOR] Synthesizing final answer from all MedSwin responses...")
raw_medswin_answers = [ans.split('\n\n', 1)[1] if '\n\n' in ans else ans for ans in medswin_answers]
synthesis_stage_start = time.time()
# Run in thread pool to avoid blocking GPU task
final_answer = run_gemini_in_thread(
gemini_supervisor_synthesize, message, raw_medswin_answers, rag_contexts, search_contexts, breakdown
)
record_stage("synthesis", synthesis_stage_start)
if not final_answer or len(final_answer.strip()) < 50:
logger.warning("[GEMINI SUPERVISOR] Synthesis failed or too short, using concatenation")
final_answer = "\n\n".join(medswin_answers) if medswin_answers else "I apologize, but I was unable to generate a response."
if "|" in final_answer and "---" in final_answer:
logger.warning("[MEDSWIN] Final answer contains tables, converting to bullets")
lines = final_answer.split('\n')
cleaned_lines = []
for line in lines:
if '|' in line and '---' not in line:
cells = [cell.strip() for cell in line.split('|') if cell.strip()]
if cells:
cleaned_lines.append(f"- {' / '.join(cells)}")
elif '---' not in line:
cleaned_lines.append(line)
final_answer = '\n'.join(cleaned_lines)
max_challenge_iterations = 2
challenge_iteration = 0
challenge_stage_start = time.time()
while challenge_iteration < max_challenge_iterations and elapsed() < soft_timeout - 15:
challenge_iteration += 1
logger.info(f"[GEMINI SUPERVISOR] Challenge iteration {challenge_iteration}/{max_challenge_iterations}...")
# Run in thread pool to avoid blocking GPU task
evaluation = run_gemini_in_thread(
gemini_supervisor_challenge, message, final_answer, raw_medswin_answers, rag_contexts, search_contexts
)
if evaluation.get("is_optimal", False):
logger.info(f"[GEMINI SUPERVISOR] Answer confirmed optimal after {challenge_iteration} iteration(s)")
break
enhancement_instructions = evaluation.get("enhancement_instructions", "")
if not enhancement_instructions:
logger.info("[GEMINI SUPERVISOR] No enhancement instructions, considering answer optimal")
break
logger.info(f"[GEMINI SUPERVISOR] Enhancing answer based on feedback...")
# Run in thread pool to avoid blocking GPU task
enhanced_answer = run_gemini_in_thread(
gemini_supervisor_enhance_answer, message, final_answer, enhancement_instructions, raw_medswin_answers, rag_contexts, search_contexts
)
if enhanced_answer and len(enhanced_answer.strip()) > len(final_answer.strip()) * 0.8:
final_answer = enhanced_answer
logger.info(f"[GEMINI SUPERVISOR] Answer enhanced (new length: {len(final_answer)} chars)")
else:
logger.info("[GEMINI SUPERVISOR] Enhancement did not improve answer significantly, stopping")
break
record_stage("challenge_loop", challenge_stage_start)
if final_use_web_search and elapsed() < soft_timeout - 10:
logger.info("[GEMINI SUPERVISOR] Checking if additional search is needed...")
clarity_stage_start = time.time()
# Run in thread pool to avoid blocking GPU task
clarity_check = run_gemini_in_thread(gemini_supervisor_check_clarity, message, final_answer, final_use_web_search)
record_stage("clarity_check", clarity_stage_start)
if clarity_check.get("needs_search", False) and clarity_check.get("search_queries"):
logger.info(f"[GEMINI SUPERVISOR] Triggering additional search: {clarity_check.get('search_queries', [])}")
additional_search_results = []
followup_stage_start = time.time()
for search_query in clarity_check.get("search_queries", [])[:3]:
if elapsed() >= soft_timeout - 5:
break
extra_start = time.time()
results = search_web(search_query, max_results=2)
extra_duration = time.time() - extra_start
pipeline_diagnostics["search"]["strategies"].append({
"query": search_query,
"target_sources": 2,
"duration": round(extra_duration, 3),
"results": len(results),
"type": "followup"
})
additional_search_results.extend(results)
web_urls.extend([r.get('url', '') for r in results if r.get('url')])
if additional_search_results:
pipeline_diagnostics["search"]["total_results"] += len(additional_search_results)
logger.info(f"[GEMINI SUPERVISOR] Summarizing {len(additional_search_results)} additional search results...")
additional_summary = summarize_web_content(additional_search_results, message)
if additional_summary:
search_contexts.append(additional_summary)
logger.info("[GEMINI SUPERVISOR] Enhancing answer with additional search context...")
# Run in thread pool to avoid blocking GPU task
enhanced_with_search = run_gemini_in_thread(
gemini_supervisor_enhance_answer, message, final_answer,
f"Incorporate the following additional information from web search: {additional_summary}",
raw_medswin_answers, rag_contexts, search_contexts
)
if enhanced_with_search and len(enhanced_with_search.strip()) > 50:
final_answer = enhanced_with_search
logger.info("[GEMINI SUPERVISOR] Answer enhanced with additional search context")
record_stage("followup_search", followup_stage_start)
# Update thoughts after followup search
thoughts_text = thought_handler.get_thoughts() if (show_thoughts and thought_handler) else ""
yield updated_history, thoughts_text
citations_text = ""
if needs_translation and final_answer:
logger.info(f"[GEMINI SUPERVISOR] Translating response back to {original_lang}...")
final_answer = translate_text(final_answer, target_lang=original_lang, source_lang="en")
if web_urls:
unique_urls = list(dict.fromkeys(web_urls))
citation_links = []
for url in unique_urls[:5]:
domain = format_url_as_domain(url)
if domain:
citation_links.append(f"[{domain}]({url})")
if citation_links:
citations_text = "\n\n**Sources:** " + ", ".join(citation_links)
speaker_icon = ' 🔊'
final_answer_with_metadata = final_answer + citations_text + speaker_icon
updated_history[-1]["content"] = final_answer_with_metadata
thoughts_text = thought_handler.get_thoughts() if (show_thoughts and thought_handler) else ""
# Always yield thoughts_text, even if empty, to ensure UI updates
yield updated_history, thoughts_text
if thought_handler:
logger.removeHandler(thought_handler)
diag_summary = {
"stage_metrics": pipeline_diagnostics["stage_metrics"],
"decisions": pipeline_diagnostics["strategy_decisions"],
"search": pipeline_diagnostics["search"],
}
try:
logger.info(f"[MAC] Diagnostics summary: {json.dumps(diag_summary)[:1200]}")
except Exception:
logger.info(f"[MAC] Diagnostics summary (non-serializable)")
logger.info(f"[MAC] Final answer generated: {len(final_answer)} chars, {len(breakdown.get('sub_topics', []))} tasks completed")