File size: 9,816 Bytes
52b4ed7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffcfd50
52b4ed7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af9efda
 
 
 
 
 
 
 
 
 
 
 
 
52b4ed7
 
 
 
af9efda
 
 
 
 
 
 
 
 
 
 
 
 
 
52b4ed7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""Document parsing and indexing functions"""
import os
import base64
import asyncio
import tempfile
import time
import gradio as gr
import spaces
from llama_index.core import (
    StorageContext,
    VectorStoreIndex,
    load_index_from_storage,
    Document as LlamaDocument,
)
from llama_index.core import Settings
from llama_index.core.node_parser import (
    HierarchicalNodeParser,
    get_leaf_nodes,
    get_root_nodes,
)
from llama_index.core.storage.docstore import SimpleDocumentStore
from tqdm import tqdm
from logger import logger
from client import MCP_AVAILABLE, call_agent
import config
from models import get_llm_for_rag, get_or_create_embed_model

try:
    import nest_asyncio
except ImportError:
    nest_asyncio = None


async def parse_document_gemini(file_path: str, file_extension: str) -> str:
    """Parse document using Gemini MCP"""
    if not MCP_AVAILABLE:
        return ""
    
    try:
        with open(file_path, 'rb') as f:
            file_content = base64.b64encode(f.read()).decode('utf-8')
        
        mime_type_map = {
            '.pdf': 'application/pdf',
            '.doc': 'application/msword',
            '.docx': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
            '.txt': 'text/plain',
            '.md': 'text/markdown',
            '.json': 'application/json',
            '.xml': 'application/xml',
            '.csv': 'text/csv'
        }
        mime_type = mime_type_map.get(file_extension, 'application/octet-stream')
        
        files = [{
            "content": file_content,
            "type": mime_type
        }]
        
        system_prompt = "Extract all text content from the document accurately."
        user_prompt = "Extract all text content from this document. Return only the extracted text, preserving structure and formatting where possible."
        
        result = await call_agent(
            user_prompt=user_prompt,
            system_prompt=system_prompt,
            files=files,
            model=config.GEMINI_MODEL_LITE,
            temperature=0.2
        )
        
        return result.strip()
    except Exception as e:
        logger.error(f"Gemini document parsing error: {e}")
        return ""


def extract_text_from_document(file):
    """Extract text from document using Gemini MCP"""
    file_name = file.name
    file_extension = os.path.splitext(file_name)[1].lower()
    
    if file_extension == '.txt':
        # Handle file objects that might not have seek() method
        try:
            if hasattr(file, 'seek'):
                file.seek(0)
            text = file.read().decode('utf-8')
        except (AttributeError, TypeError):
            # If file is a string path or NamedString, read it differently
            if isinstance(file, str):
                with open(file, 'r', encoding='utf-8') as f:
                    text = f.read()
            else:
                # Try to get content directly
                text = str(file) if hasattr(file, '__str__') else file.read() if hasattr(file, 'read') else ""
        return text, len(text.split()), None
    
    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix=file_extension) as tmp_file:
            # Handle file objects that might not have seek() method
            try:
                if hasattr(file, 'seek'):
                    file.seek(0)
                file_content = file.read()
            except (AttributeError, TypeError):
                # If file is a string path, read it directly
                if isinstance(file, str):
                    with open(file, 'rb') as f:
                        file_content = f.read()
                else:
                    # Try to get content directly without seek
                    file_content = file.read() if hasattr(file, 'read') else bytes(file) if hasattr(file, '__bytes__') else b""
            tmp_file.write(file_content)
            tmp_file_path = tmp_file.name
        
        if MCP_AVAILABLE:
            try:
                loop = asyncio.get_event_loop()
                if loop.is_running():
                    if nest_asyncio:
                        text = nest_asyncio.run(parse_document_gemini(tmp_file_path, file_extension))
                    else:
                        logger.error("Error in nested async document parsing: nest_asyncio not available")
                        text = ""
                else:
                    text = loop.run_until_complete(parse_document_gemini(tmp_file_path, file_extension))
                
                try:
                    os.unlink(tmp_file_path)
                except:
                    pass
                
                if text:
                    return text, len(text.split()), None
                else:
                    return None, 0, ValueError(f"Failed to extract text from {file_extension} file using Gemini MCP")
            except Exception as e:
                logger.error(f"Gemini MCP document parsing error: {e}")
                try:
                    os.unlink(tmp_file_path)
                except:
                    pass
                return None, 0, ValueError(f"Error parsing {file_extension} file: {str(e)}")
        else:
            try:
                os.unlink(tmp_file_path)
            except:
                pass
            return None, 0, ValueError(f"Gemini MCP not available. Cannot parse {file_extension} files.")
    except Exception as e:
        logger.error(f"Error processing document: {e}")
        return None, 0, ValueError(f"Error processing {file_extension} file: {str(e)}")


@spaces.GPU(max_duration=120)
def create_or_update_index(files, request: gr.Request):
    """Create or update RAG index from uploaded files"""
    if not files:
        return "Please provide files.", ""
    
    start_time = time.time()
    user_id = request.session_hash
    save_dir = f"./{user_id}_index"
    
    llm = get_llm_for_rag()
    embed_model = get_or_create_embed_model()
    Settings.llm = llm
    Settings.embed_model = embed_model
    file_stats = []
    new_documents = []
    
    for file in tqdm(files, desc="Processing files"):
        file_basename = os.path.basename(file.name)
        text, word_count, error = extract_text_from_document(file)
        if error:
            logger.error(f"Error processing file {file_basename}: {str(error)}")
            file_stats.append({
                "name": file_basename,
                "words": 0,
                "status": f"error: {str(error)}"
            })
            continue
        
        doc = LlamaDocument(
            text=text,
            metadata={
                "file_name": file_basename,
                "word_count": word_count,
                "source": "user_upload"
            }
        )
        new_documents.append(doc)
        
        file_stats.append({
            "name": file_basename,
            "words": word_count,
            "status": "processed"
        })
        
        config.global_file_info[file_basename] = {
            "word_count": word_count,
            "processed_at": time.time()
        }
    
    node_parser = HierarchicalNodeParser.from_defaults(
        chunk_sizes=[2048, 512, 128],
        chunk_overlap=20
    )
    logger.info(f"Parsing {len(new_documents)} documents into hierarchical nodes")
    new_nodes = node_parser.get_nodes_from_documents(new_documents)
    new_leaf_nodes = get_leaf_nodes(new_nodes)
    new_root_nodes = get_root_nodes(new_nodes)
    logger.info(f"Generated {len(new_nodes)} total nodes ({len(new_root_nodes)} root, {len(new_leaf_nodes)} leaf)")
    
    if os.path.exists(save_dir):
        logger.info(f"Loading existing index from {save_dir}")
        storage_context = StorageContext.from_defaults(persist_dir=save_dir)
        index = load_index_from_storage(storage_context, settings=Settings)
        docstore = storage_context.docstore
        
        docstore.add_documents(new_nodes)
        for node in tqdm(new_leaf_nodes, desc="Adding leaf nodes to index"):
            index.insert_nodes([node])
            
        total_docs = len(docstore.docs)
        logger.info(f"Updated index with {len(new_nodes)} new nodes from {len(new_documents)} files")
    else:
        logger.info("Creating new index")
        docstore = SimpleDocumentStore()
        storage_context = StorageContext.from_defaults(docstore=docstore)
        docstore.add_documents(new_nodes)
        
        index = VectorStoreIndex(
            new_leaf_nodes,
            storage_context=storage_context,
            settings=Settings
        )
        total_docs = len(new_documents)
        logger.info(f"Created new index with {len(new_nodes)} nodes from {len(new_documents)} files")
    
    index.storage_context.persist(persist_dir=save_dir)
    
    file_list_html = "<div class='file-list'>"
    for stat in file_stats:
        status_color = "#4CAF50" if stat["status"] == "processed" else "#f44336"
        file_list_html += f"<div><span style='color:{status_color}'>●</span> {stat['name']} - {stat['words']} words</div>"
    file_list_html += "</div>"
    processing_time = time.time() - start_time
    stats_output = f"<div class='stats-box'>"
    stats_output += f"✓ Processed {len(files)} files in {processing_time:.2f} seconds<br>"
    stats_output += f"✓ Created {len(new_nodes)} nodes ({len(new_leaf_nodes)} leaf nodes)<br>"
    stats_output += f"✓ Total documents in index: {total_docs}<br>"
    stats_output += f"✓ Index saved to: {save_dir}<br>"
    stats_output += "</div>"
    output_container = f"<div class='info-container'>"
    output_container += file_list_html
    output_container += stats_output
    output_container += "</div>"
    return f"Successfully indexed {len(files)} files.", output_container