Spaces:
Running
on
Zero
Running
on
Zero
File size: 125,031 Bytes
0ae46fb fce8688 0ae46fb 7415155 b720259 0ae46fb d74506f abad335 3d6d107 abad335 e4c0a6a 3d6d107 abad335 3d6d107 abad335 a863763 1034c81 a863763 1034c81 a863763 1034c81 abad335 a863763 e45d3a4 b2ab862 f89165d 0ae46fb d74506f 8d74e9c f0a6b02 f89165d 0ae46fb fce8688 0ae46fb d74506f 0ae46fb d74506f 0ae46fb e45d3a4 d74506f 0ae46fb 27e89e0 0ae46fb f89165d b720259 0ae46fb a863763 6e8bf5a a863763 0e45c9f 40374f9 53093c0 413918e 0e45c9f 40374f9 413918e 0e45c9f 40374f9 0e45c9f 40374f9 0e45c9f a863763 6e8bf5a abad335 6e8bf5a 3d6d107 6e8bf5a 53093c0 3d6d107 abad335 6e8bf5a 53093c0 6e8bf5a abad335 84f64fc 1034c81 7cf238e 377bc0f 3d6d107 7cf238e 6c1b819 3d6d107 1034c81 7cf238e abad335 1034c81 eaec621 1034c81 eaec621 8bafa0f c816ffa 6e8bf5a 3d6d107 6e8bf5a abad335 6e8bf5a b720259 0e45c9f 84f64fc fce8688 c816ffa fce8688 c816ffa b720259 1034c81 c816ffa fce8688 b720259 c816ffa fce8688 b720259 fce8688 eaec621 3d6d107 fce8688 0ae46fb 27e89e0 d74506f f89165d b2ab862 f89165d 1c59c7e b2ab862 1c59c7e f89165d b720259 fce8688 5040e2f fce8688 5040e2f fce8688 5040e2f fce8688 0e45c9f fce8688 5040e2f fce8688 5040e2f f89165d fce8688 f89165d fce8688 5040e2f fce8688 5040e2f fce8688 5040e2f fce8688 5040e2f fce8688 5040e2f fce8688 5040e2f fce8688 5040e2f fce8688 f89165d 5040e2f 6e8bf5a 5040e2f 6e8bf5a 5040e2f 6e8bf5a 5040e2f 3d6d107 5040e2f f89165d 5040e2f 3d6d107 5040e2f b2ab862 5040e2f f89165d 1c59c7e f89165d 812cc3b 84f64fc bb6e7a5 7597299 812cc3b 7597299 f5fd40b 7597299 812cc3b 7597299 812cc3b d74506f 1992c15 fce8688 d74506f fce8688 d74506f fce8688 d74506f fce8688 d74506f 0e45c9f fce8688 d74506f fce8688 d74506f fce8688 d74506f fce8688 d74506f 0e45c9f 84f64fc a863763 c816ffa a863763 b720259 c816ffa 0e45c9f b720259 0e45c9f b720259 0e45c9f b720259 0e45c9f eaec621 0e45c9f c816ffa 0e45c9f c816ffa b720259 a863763 0e45c9f c816ffa 0e45c9f c816ffa 8bafa0f c816ffa 0e45c9f 8bafa0f 7cf238e c816ffa a863763 7cf238e e45d3a4 a863763 e45d3a4 a863763 d74506f 7cf238e d74506f 7cf238e d74506f a863763 1992c15 a863763 1992c15 a863763 1992c15 a863763 1992c15 a863763 1992c15 7cf238e 1992c15 a863763 fce8688 d74506f fce8688 d74506f fce8688 d74506f 0e45c9f fce8688 d74506f fce8688 d74506f fce8688 d74506f fce8688 d74506f 27e89e0 0ae46fb fce8688 7415155 fce8688 7415155 0e45c9f fce8688 7415155 fce8688 8bafa0f fce8688 8bafa0f fce8688 8bafa0f 3d6d107 fce8688 3d6d107 fce8688 8bafa0f 3d6d107 fce8688 3d6d107 fce8688 8bafa0f fce8688 7415155 20851fb 7415155 20851fb 7415155 20851fb 7415155 eb6b193 7415155 eb6b193 7415155 20851fb eb6b193 7415155 927a9b8 ab69c75 927a9b8 edc8faf 927a9b8 ab69c75 927a9b8 ab69c75 edc8faf 927a9b8 ab69c75 edc8faf 927a9b8 edc8faf 927a9b8 ab69c75 927a9b8 edc8faf ab69c75 edc8faf ab69c75 edc8faf ab69c75 edc8faf 927a9b8 edc8faf 927a9b8 ab69c75 927a9b8 ab69c75 927a9b8 edc8faf 927a9b8 edc8faf 927a9b8 edc8faf 927a9b8 edc8faf 927a9b8 ab69c75 edc8faf ab69c75 edc8faf 927a9b8 edc8faf 927a9b8 edc8faf 927a9b8 edc8faf 927a9b8 edc8faf 927a9b8 ab69c75 edc8faf ab69c75 edc8faf 927a9b8 edc8faf 927a9b8 edc8faf ab69c75 fce8688 7415155 fce8688 7415155 0e45c9f fce8688 7415155 fce8688 0e45c9f fce8688 0ae46fb fce8688 0ae46fb fce8688 0ae46fb fce8688 0ae46fb 27e89e0 0ae46fb 27e89e0 b720259 0ae46fb 27e89e0 0ae46fb d74506f cee3586 e4c0a6a 0ae46fb e4c0a6a 0ae46fb d74506f e4c0a6a edc8faf dadfb77 7415155 927a9b8 edc8faf 422306f b720259 422306f 3355e73 5298fbe 3355e73 b720259 d74506f 927a9b8 d74506f b720259 927a9b8 cee3586 927a9b8 ab69c75 927a9b8 ab69c75 927a9b8 d74506f 927a9b8 edc8faf 927a9b8 b720259 927a9b8 b720259 927a9b8 b720259 927a9b8 b720259 927a9b8 7415155 b720259 edc8faf 927a9b8 edc8faf 927a9b8 b720259 edc8faf 927a9b8 edc8faf 927a9b8 7597299 927a9b8 b720259 edc8faf 927a9b8 d74506f 927a9b8 d74506f 927a9b8 27e89e0 927a9b8 d74506f 0ae46fb d74506f 0ae46fb e4c0a6a d74506f b720259 927a9b8 5298fbe d74506f 927a9b8 7415155 927a9b8 7415155 927a9b8 5298fbe 927a9b8 5298fbe 927a9b8 b32ca93 927a9b8 e4c0a6a 927a9b8 b720259 927a9b8 ab69c75 b720259 ab69c75 b720259 ab69c75 927a9b8 ab69c75 b720259 ab69c75 b720259 ab69c75 b720259 ab69c75 b720259 ab69c75 b720259 ab69c75 b720259 ab69c75 b720259 ab69c75 b720259 ab69c75 b720259 ab69c75 5298fbe 927a9b8 b720259 f89165d b720259 1992c15 927a9b8 422306f 927a9b8 f89165d 927a9b8 e4c0a6a d74506f 927a9b8 b720259 927a9b8 0ae46fb f89165d 0ae46fb fce8688 0ae46fb 8d74e9c 0ae46fb e45d3a4 bc332d0 5298fbe 0ae46fb e45d3a4 5298fbe e45d3a4 5298fbe e45d3a4 f89165d e45d3a4 f89165d e45d3a4 f89165d e45d3a4 f89165d e45d3a4 f89165d e45d3a4 f89165d d74506f cee3586 e4c0a6a d74506f 20851fb d74506f 610037b d74506f 8d74e9c d74506f 0ae46fb d74506f 0ae46fb 812cc3b 0ae46fb d74506f 0ae46fb d74506f 0ae46fb 812cc3b 0ae46fb e4c0a6a 0ae46fb d74506f cee3586 e4c0a6a 0ae46fb e4c0a6a 0ae46fb d74506f cee3586 e4c0a6a 0ae46fb e4c0a6a 0ae46fb f89165d 8d74e9c d74506f f89165d 1c59c7e 5040e2f 1c59c7e 5040e2f fce8688 1c59c7e 0ae46fb 84f64fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 |
import gradio as gr
import os
import base64
import logging
import torch
import threading
import time
import json
import concurrent.futures
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
StoppingCriteria,
StoppingCriteriaList,
)
from transformers import logging as hf_logging
import spaces
from llama_index.core import (
StorageContext,
VectorStoreIndex,
load_index_from_storage,
Document as LlamaDocument,
)
from llama_index.core import Settings
from llama_index.core.node_parser import (
HierarchicalNodeParser,
get_leaf_nodes,
get_root_nodes,
)
from llama_index.core.retrievers import AutoMergingRetriever
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from tqdm import tqdm
from langdetect import detect, LangDetectException
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Set logging to INFO level for cleaner output
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Custom logger handler to capture agentic thoughts
class ThoughtCaptureHandler(logging.Handler):
"""Custom handler to capture internal thoughts from MedSwin and supervisor"""
def __init__(self):
super().__init__()
self.thoughts = []
self.lock = threading.Lock()
def emit(self, record):
"""Capture log messages that contain agentic thoughts"""
try:
msg = self.format(record)
# Only capture messages from GEMINI SUPERVISOR or MEDSWIN
if "[GEMINI SUPERVISOR]" in msg or "[MEDSWIN]" in msg or "[MAC]" in msg:
# Remove timestamp and logger name for cleaner display
# Format: "timestamp - logger - level - message"
parts = msg.split(" - ", 3)
if len(parts) >= 4:
clean_msg = parts[-1] # Get the message part
else:
clean_msg = msg
with self.lock:
self.thoughts.append(clean_msg)
except Exception:
pass # Ignore formatting errors
def get_thoughts(self):
"""Get all captured thoughts as a formatted string"""
with self.lock:
return "\n".join(self.thoughts)
def clear(self):
"""Clear captured thoughts"""
with self.lock:
self.thoughts = []
# Set MCP client logging to WARNING to reduce noise
mcp_client_logger = logging.getLogger("mcp.client")
mcp_client_logger.setLevel(logging.WARNING)
hf_logging.set_verbosity_error()
# MCP imports
MCP_CLIENT_INFO = None
try:
from mcp import ClientSession, StdioServerParameters
from mcp import types as mcp_types
from mcp.client.stdio import stdio_client
import asyncio
try:
import nest_asyncio
nest_asyncio.apply() # Allow nested event loops
except ImportError:
pass # nest_asyncio is optional
MCP_AVAILABLE = True
MCP_CLIENT_INFO = mcp_types.Implementation(
name="MedLLM-Agent",
version=os.environ.get("SPACE_VERSION", "local"),
)
except ImportError as e:
logger.warning(f"MCP SDK not available: {e}")
MCP_AVAILABLE = False
# Fallback imports if MCP is not available
from ddgs import DDGS
import requests
from bs4 import BeautifulSoup
try:
from TTS.api import TTS
TTS_AVAILABLE = True
except ImportError:
TTS_AVAILABLE = False
TTS = None
import numpy as np
import soundfile as sf
import tempfile
# Model configurations
MEDSWIN_MODELS = {
"MedSwin SFT": "MedSwin/MedSwin-7B-SFT",
"MedSwin KD": "MedSwin/MedSwin-7B-KD",
"MedSwin TA": "MedSwin/MedSwin-Merged-TA-SFT-0.7"
}
DEFAULT_MEDICAL_MODEL = "MedSwin TA"
EMBEDDING_MODEL = "abhinand/MedEmbed-large-v0.1" # Domain-tuned medical embedding model
TTS_MODEL = "maya-research/maya1"
HF_TOKEN = os.environ.get("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN not found in environment variables")
# Gemini MCP configuration
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
GEMINI_MODEL = os.environ.get("GEMINI_MODEL", "gemini-2.5-flash") # Default for harder tasks
GEMINI_MODEL_LITE = os.environ.get("GEMINI_MODEL_LITE", "gemini-2.5-flash-lite") # For parsing and simple tasks
# Custom UI
TITLE = "<h1><center>🩺 MedLLM Agent - Medical RAG & Web Search System</center></h1>"
DESCRIPTION = """
<center>
<p><strong>Advanced Medical AI Assistant</strong> powered by MedSwin models</p>
<p>📄 <strong>Document RAG:</strong> Answer based on uploaded medical documents</p>
<p>🌐 <strong>Web Search:</strong> Fetch knowledge from reliable online medical resources</p>
<p>🌍 <strong>Multi-language:</strong> Automatic translation for non-English queries</p>
<p>Upload PDF or text files to get started!</p>
</center>
"""
CSS = """
.upload-section {
max-width: 400px;
margin: 0 auto;
padding: 10px;
border: 2px dashed #ccc;
border-radius: 10px;
}
.upload-button {
background: #34c759 !important;
color: white !important;
border-radius: 25px !important;
}
.chatbot-container {
margin-top: 20px;
}
.status-output {
margin-top: 10px;
font-size: 14px;
}
.processing-info {
margin-top: 5px;
font-size: 12px;
color: #666;
}
.info-container {
margin-top: 10px;
padding: 10px;
border-radius: 5px;
}
.file-list {
margin-top: 0;
max-height: 200px;
overflow-y: auto;
padding: 5px;
border: 1px solid #eee;
border-radius: 5px;
}
.stats-box {
margin-top: 10px;
padding: 10px;
border-radius: 5px;
font-size: 12px;
}
.submit-btn {
background: #1a73e8 !important;
color: white !important;
border-radius: 25px !important;
margin-left: 10px;
padding: 5px 10px;
font-size: 16px;
}
.input-row {
display: flex;
align-items: center;
}
.recording-timer {
font-size: 12px;
color: #666;
text-align: center;
margin-top: 5px;
}
.feature-badge {
display: inline-block;
padding: 3px 8px;
margin: 2px;
border-radius: 12px;
font-size: 11px;
font-weight: bold;
}
.badge-rag {
background: #e3f2fd;
color: #1976d2;
}
.badge-web {
background: #f3e5f5;
color: #7b1fa2;
}
@media (min-width: 768px) {
.main-container {
display: flex;
justify-content: space-between;
gap: 20px;
}
.upload-section {
flex: 1;
max-width: 300px;
}
.chatbot-container {
flex: 2;
margin-top: 0;
}
}
"""
# Global model storage
global_medical_models = {}
global_medical_tokenizers = {}
global_file_info = {}
global_tts_model = None
global_embed_model = None
# MCP client storage
global_mcp_session = None
global_mcp_stdio_ctx = None # Store stdio context to keep it alive
global_mcp_lock = threading.Lock() # Lock for thread-safe session access
# MCP server configuration via environment variables
# Gemini MCP server: Python-based server (agent.py)
# This works on Hugging Face Spaces without requiring npm/Node.js
# Make sure GEMINI_API_KEY is set in environment variables
#
# Default configuration uses the bundled agent.py script
# To override:
# export MCP_SERVER_COMMAND="python"
# export MCP_SERVER_ARGS="/path/to/agent.py"
script_dir = os.path.dirname(os.path.abspath(__file__))
agent_path = os.path.join(script_dir, "agent.py")
MCP_SERVER_COMMAND = os.environ.get("MCP_SERVER_COMMAND", "python")
MCP_SERVER_ARGS = os.environ.get("MCP_SERVER_ARGS", agent_path).split() if os.environ.get("MCP_SERVER_ARGS") else [agent_path]
async def get_mcp_session():
"""Get or create MCP client session with proper context management"""
global global_mcp_session, global_mcp_stdio_ctx
if not MCP_AVAILABLE:
logger.warning("MCP not available - SDK not installed")
return None
# Check if session exists and is still valid
if global_mcp_session is not None:
# Trust that existing session is valid - verify only when actually using it
return global_mcp_session
# Create new session using correct MCP SDK pattern
try:
# Prepare environment variables for MCP server
mcp_env = os.environ.copy()
if GEMINI_API_KEY:
mcp_env["GEMINI_API_KEY"] = GEMINI_API_KEY
else:
logger.warning("GEMINI_API_KEY not set in environment. Gemini MCP features may not work.")
# Add other Gemini MCP configuration if set
if os.environ.get("GEMINI_MODEL"):
mcp_env["GEMINI_MODEL"] = os.environ.get("GEMINI_MODEL")
if os.environ.get("GEMINI_TIMEOUT"):
mcp_env["GEMINI_TIMEOUT"] = os.environ.get("GEMINI_TIMEOUT")
if os.environ.get("GEMINI_MAX_OUTPUT_TOKENS"):
mcp_env["GEMINI_MAX_OUTPUT_TOKENS"] = os.environ.get("GEMINI_MAX_OUTPUT_TOKENS")
if os.environ.get("GEMINI_TEMPERATURE"):
mcp_env["GEMINI_TEMPERATURE"] = os.environ.get("GEMINI_TEMPERATURE")
logger.info("Creating MCP client session...")
server_params = StdioServerParameters(
command=MCP_SERVER_COMMAND,
args=MCP_SERVER_ARGS,
env=mcp_env
)
# Correct MCP SDK usage: stdio_client is an async context manager
# that yields (read, write) streams
stdio_ctx = stdio_client(server_params)
read, write = await stdio_ctx.__aenter__()
# Create ClientSession from the streams
session = ClientSession(
read,
write,
client_info=MCP_CLIENT_INFO,
)
# Initialize the session (this sends initialize request and waits for response + initialized notification)
# The __aenter__() method handles the complete initialization handshake:
# 1. Sends initialize request with client info
# 2. Waits for initialize response from server
# 3. Waits for initialized notification from server (this is critical!)
# According to MCP protocol spec, the client MUST wait for the initialized notification
# before sending any other requests (like list_tools)
try:
# The __aenter__() method properly handles the full initialization sequence
# including waiting for the server's initialized notification
# This is a blocking call that completes only after the server sends initialized
await session.__aenter__()
init_result = await session.initialize()
server_info = getattr(init_result, "serverInfo", None)
server_name = getattr(server_info, "name", "unknown")
server_version = getattr(server_info, "version", "unknown")
logger.info(f"✅ MCP session initialized (server={server_name} v{server_version})")
except Exception as e:
error_msg = str(e)
error_type = type(e).__name__
logger.error(f"❌ MCP session initialization failed: {error_type}: {error_msg}")
# Clean up and return None
try:
await session.__aexit__(None, None, None)
except Exception:
pass
try:
await stdio_ctx.__aexit__(None, None, None)
except Exception:
pass
return None
# Store both the session and stdio context to keep them alive
global_mcp_session = session
global_mcp_stdio_ctx = stdio_ctx
logger.info("✅ MCP client session created successfully")
return session
except Exception as e:
error_type = type(e).__name__
error_msg = str(e)
logger.error(f"❌ Failed to create MCP client session: {error_type}: {error_msg}")
global_mcp_session = None
global_mcp_stdio_ctx = None
return None
MCP_TOOLS_CACHE_TTL = int(os.environ.get("MCP_TOOLS_CACHE_TTL", "60"))
global_mcp_tools_cache = {"timestamp": 0.0, "tools": None}
def invalidate_mcp_tools_cache():
"""Invalidate cached MCP tool metadata"""
global global_mcp_tools_cache
global_mcp_tools_cache = {"timestamp": 0.0, "tools": None}
async def get_cached_mcp_tools(force_refresh: bool = False):
"""Return cached MCP tools list to avoid repeated list_tools calls"""
global global_mcp_tools_cache
if not MCP_AVAILABLE:
return []
now = time.time()
if (
not force_refresh
and global_mcp_tools_cache["tools"]
and now - global_mcp_tools_cache["timestamp"] < MCP_TOOLS_CACHE_TTL
):
return global_mcp_tools_cache["tools"]
session = await get_mcp_session()
if session is None:
return []
try:
tools_resp = await session.list_tools()
tools_list = list(getattr(tools_resp, "tools", []) or [])
global_mcp_tools_cache = {"timestamp": now, "tools": tools_list}
return tools_list
except Exception as e:
logger.error(f"Failed to refresh MCP tools: {e}")
invalidate_mcp_tools_cache()
return []
async def call_agent(user_prompt: str, system_prompt: str = None, files: list = None, model: str = None, temperature: float = 0.2) -> str:
"""Call Gemini MCP generate_content tool"""
if not MCP_AVAILABLE:
logger.warning("MCP not available for Gemini call")
return ""
try:
session = await get_mcp_session()
if session is None:
logger.warning("Failed to get MCP session for Gemini call")
return ""
tools = await get_cached_mcp_tools()
if not tools:
tools = await get_cached_mcp_tools(force_refresh=True)
if not tools:
logger.error("Unable to obtain MCP tool catalog for Gemini calls")
return ""
generate_tool = None
for tool in tools:
if tool.name == "generate_content" or "generate_content" in tool.name.lower():
generate_tool = tool
logger.info(f"Found Gemini MCP tool: {tool.name}")
break
if not generate_tool:
logger.warning(f"Gemini MCP generate_content tool not found. Available tools: {[t.name for t in tools]}")
invalidate_mcp_tools_cache()
return ""
# Prepare arguments
arguments = {
"user_prompt": user_prompt
}
if system_prompt:
arguments["system_prompt"] = system_prompt
if files:
arguments["files"] = files
if model:
arguments["model"] = model
if temperature is not None:
arguments["temperature"] = temperature
result = await session.call_tool(generate_tool.name, arguments=arguments)
# Parse result
if hasattr(result, 'content') and result.content:
for item in result.content:
if hasattr(item, 'text'):
response_text = item.text.strip()
return response_text
logger.warning("⚠️ Gemini MCP returned empty or invalid result")
return ""
except Exception as e:
logger.error(f"Gemini MCP call error: {e}")
return ""
def initialize_medical_model(model_name: str):
"""Initialize medical model (MedSwin) - download on demand"""
global global_medical_models, global_medical_tokenizers
if model_name not in global_medical_models or global_medical_models[model_name] is None:
logger.info(f"Initializing medical model: {model_name}...")
model_path = MEDSWIN_MODELS[model_name]
tokenizer = AutoTokenizer.from_pretrained(model_path, token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
trust_remote_code=True,
token=HF_TOKEN,
torch_dtype=torch.float16
)
global_medical_models[model_name] = model
global_medical_tokenizers[model_name] = tokenizer
logger.info(f"Medical model {model_name} initialized successfully")
return global_medical_models[model_name], global_medical_tokenizers[model_name]
def initialize_tts_model():
"""Initialize TTS model for text-to-speech"""
global global_tts_model
if not TTS_AVAILABLE:
logger.warning("TTS library not installed. TTS features will be disabled.")
return None
if global_tts_model is None:
try:
logger.info("Initializing TTS model for voice generation...")
global_tts_model = TTS(model_name=TTS_MODEL, progress_bar=False)
logger.info("TTS model initialized successfully")
except Exception as e:
logger.warning(f"TTS model initialization failed: {e}")
logger.warning("TTS features will be disabled. If pyworld dependency is missing, try: pip install TTS --no-deps && pip install coqui-tts")
global_tts_model = None
return global_tts_model
def get_or_create_embed_model():
"""Reuse embedding model to avoid reloading weights each request"""
global global_embed_model
if global_embed_model is None:
logger.info("Initializing shared embedding model for RAG retrieval...")
global_embed_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL, token=HF_TOKEN)
return global_embed_model
async def transcribe_audio_gemini(audio_path: str) -> str:
"""Transcribe audio using Gemini MCP"""
if not MCP_AVAILABLE:
return ""
try:
# Ensure we have an absolute path
audio_path_abs = os.path.abspath(audio_path)
# Prepare file object for Gemini MCP using path (as per Gemini MCP documentation)
files = [{
"path": audio_path_abs
}]
# Use exact prompts from Gemini MCP documentation
system_prompt = "You are a professional transcription service. Provide accurate, well-formatted transcripts."
user_prompt = "Please transcribe this audio file. Include speaker identification if multiple speakers are present, and format it with proper punctuation and paragraphs, remove mumble, ignore non-verbal noises."
result = await call_agent(
user_prompt=user_prompt,
system_prompt=system_prompt,
files=files,
model=GEMINI_MODEL_LITE, # Use lite model for transcription
temperature=0.2
)
return result.strip()
except Exception as e:
logger.error(f"Gemini transcription error: {e}")
return ""
def transcribe_audio(audio):
"""Transcribe audio to text using Gemini MCP"""
if audio is None:
return ""
try:
# Handle file path (Gradio Audio component returns file path)
if isinstance(audio, str):
audio_path = audio
elif isinstance(audio, tuple):
# Handle tuple format (sample_rate, audio_data)
sample_rate, audio_data = audio
# Save to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
sf.write(tmp_file.name, audio_data, samplerate=sample_rate)
audio_path = tmp_file.name
else:
audio_path = audio
# Use Gemini MCP for transcription
if MCP_AVAILABLE:
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
transcribed = nest_asyncio.run(transcribe_audio_gemini(audio_path))
if transcribed:
logger.info(f"Transcribed via Gemini MCP: {transcribed[:50]}...")
return transcribed
except Exception as e:
logger.error(f"Error in nested async transcription: {e}")
else:
transcribed = loop.run_until_complete(transcribe_audio_gemini(audio_path))
if transcribed:
logger.info(f"Transcribed via Gemini MCP: {transcribed[:50]}...")
return transcribed
except Exception as e:
logger.error(f"Gemini MCP transcription error: {e}")
logger.warning("Gemini MCP transcription not available")
return ""
except Exception as e:
logger.error(f"Transcription error: {e}")
return ""
async def generate_speech_mcp(text: str) -> str:
"""Generate speech using MCP TTS tool"""
if not MCP_AVAILABLE:
return None
try:
# Get MCP session
session = await get_mcp_session()
if session is None:
return None
# Find TTS tool
tools = await session.list_tools()
tts_tool = None
for tool in tools.tools:
if "tts" in tool.name.lower() or "speech" in tool.name.lower() or "synthesize" in tool.name.lower():
tts_tool = tool
logger.info(f"Found MCP TTS tool: {tool.name}")
break
if tts_tool:
result = await session.call_tool(
tts_tool.name,
arguments={"text": text, "language": "en"}
)
# Parse result - MCP might return audio data or file path
if hasattr(result, 'content') and result.content:
for item in result.content:
if hasattr(item, 'text'):
# If it's a file path
if os.path.exists(item.text):
return item.text
elif hasattr(item, 'data') and item.data:
# If it's binary audio data, save it
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_file.write(item.data)
return tmp_file.name
return None
except Exception as e:
logger.warning(f"MCP TTS error: {e}")
return None
def generate_speech(text: str):
"""Generate speech from text using TTS model (with MCP fallback)"""
if not text or len(text.strip()) == 0:
return None
# Try MCP first if available
if MCP_AVAILABLE:
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
audio_path = nest_asyncio.run(generate_speech_mcp(text))
if audio_path:
logger.info("Generated speech via MCP")
return audio_path
except:
pass
else:
audio_path = loop.run_until_complete(generate_speech_mcp(text))
if audio_path:
return audio_path
except Exception as e:
pass # MCP TTS not available, fallback to local
# Fallback to local TTS model
if not TTS_AVAILABLE:
logger.error("TTS library not installed. Please install TTS to use voice generation.")
return None
global global_tts_model
if global_tts_model is None:
initialize_tts_model()
if global_tts_model is None:
logger.error("TTS model not available. Please check dependencies.")
return None
try:
# Generate audio
wav = global_tts_model.tts(text)
# Save to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
sf.write(tmp_file.name, wav, samplerate=22050)
return tmp_file.name
except Exception as e:
logger.error(f"TTS error: {e}")
return None
def format_prompt_manually(messages: list, tokenizer) -> str:
"""Manually format prompt for models without chat template"""
prompt_parts = []
# Combine system and user messages into a single instruction
system_content = ""
user_content = ""
for msg in messages:
role = msg.get("role", "user")
content = msg.get("content", "")
if role == "system":
system_content = content
elif role == "user":
user_content = content
elif role == "assistant":
# Skip assistant messages in history for now (can be added if needed)
pass
# Format for MedAlpaca/LLaMA-based medical models
# Common format: Instruction + Input -> Response
if system_content:
prompt = f"{system_content}\n\nQuestion: {user_content}\n\nAnswer:"
else:
prompt = f"Question: {user_content}\n\nAnswer:"
return prompt
def detect_language(text: str) -> str:
"""Detect language of input text"""
try:
lang = detect(text)
return lang
except LangDetectException:
return "en" # Default to English if detection fails
def format_url_as_domain(url: str) -> str:
"""Format URL as simple domain name (e.g., www.mayoclinic.org)"""
if not url:
return ""
try:
from urllib.parse import urlparse
parsed = urlparse(url)
domain = parsed.netloc or parsed.path
# Remove www. prefix if present, but keep it for display
if domain.startswith('www.'):
return domain
elif domain:
return domain
return url
except Exception:
# Fallback: try to extract domain manually
if '://' in url:
domain = url.split('://')[1].split('/')[0]
return domain
return url
async def translate_text_gemini(text: str, target_lang: str = "en", source_lang: str = None) -> str:
"""Translate text using Gemini MCP"""
if source_lang:
user_prompt = f"Translate the following {source_lang} text to {target_lang}. Only provide the translation, no explanations:\n\n{text}"
else:
user_prompt = f"Translate the following text to {target_lang}. Only provide the translation, no explanations:\n\n{text}"
# Use concise system prompt
system_prompt = "You are a professional translator. Translate accurately and concisely."
result = await call_agent(
user_prompt=user_prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL_LITE, # Use lite model for translation
temperature=0.2
)
return result.strip()
def translate_text(text: str, target_lang: str = "en", source_lang: str = None) -> str:
"""Translate text using Gemini MCP"""
if not MCP_AVAILABLE:
logger.warning("Gemini MCP not available for translation")
return text # Return original text if translation fails
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
translated = nest_asyncio.run(translate_text_gemini(text, target_lang, source_lang))
if translated:
logger.info(f"Translated via Gemini MCP: {translated[:50]}...")
return translated
except Exception as e:
logger.error(f"Error in nested async translation: {e}")
else:
translated = loop.run_until_complete(translate_text_gemini(text, target_lang, source_lang))
if translated:
logger.info(f"Translated via Gemini MCP: {translated[:50]}...")
return translated
except Exception as e:
logger.error(f"Gemini MCP translation error: {e}")
# Return original text if translation fails
return text
async def search_web_mcp_tool(query: str, max_results: int = 5) -> list:
"""Search web using MCP web search tool (e.g., DuckDuckGo MCP server)"""
if not MCP_AVAILABLE:
return []
try:
tools = await get_cached_mcp_tools()
if not tools:
return []
search_tool = None
for tool in tools:
tool_name_lower = tool.name.lower()
if any(keyword in tool_name_lower for keyword in ["search", "duckduckgo", "ddg", "web"]):
search_tool = tool
logger.info(f"Found web search MCP tool: {tool.name}")
break
if not search_tool:
tools = await get_cached_mcp_tools(force_refresh=True)
for tool in tools:
tool_name_lower = tool.name.lower()
if any(keyword in tool_name_lower for keyword in ["search", "duckduckgo", "ddg", "web"]):
search_tool = tool
logger.info(f"Found web search MCP tool after refresh: {tool.name}")
break
if search_tool:
try:
session = await get_mcp_session()
if session is None:
return []
# Call the search tool
result = await session.call_tool(
search_tool.name,
arguments={"query": query, "max_results": max_results}
)
# Parse result
web_content = []
if hasattr(result, 'content') and result.content:
for item in result.content:
if hasattr(item, 'text'):
try:
data = json.loads(item.text)
if isinstance(data, list):
for entry in data[:max_results]:
web_content.append({
'title': entry.get('title', ''),
'url': entry.get('url', entry.get('href', '')),
'content': entry.get('body', entry.get('snippet', entry.get('content', '')))
})
elif isinstance(data, dict):
if 'results' in data:
for entry in data['results'][:max_results]:
web_content.append({
'title': entry.get('title', ''),
'url': entry.get('url', entry.get('href', '')),
'content': entry.get('body', entry.get('snippet', entry.get('content', '')))
})
else:
web_content.append({
'title': data.get('title', ''),
'url': data.get('url', data.get('href', '')),
'content': data.get('body', data.get('snippet', data.get('content', '')))
})
except json.JSONDecodeError:
# If not JSON, treat as plain text
web_content.append({
'title': '',
'url': '',
'content': item.text[:1000]
})
if web_content:
return web_content
except Exception as e:
logger.error(f"Error calling web search MCP tool: {e}")
else:
logger.debug("No MCP web search tool discovered in current catalog")
return []
except Exception as e:
logger.error(f"Web search MCP tool error: {e}")
return []
async def search_web_mcp(query: str, max_results: int = 5) -> list:
"""Search web using MCP tools - tries web search MCP tool first, then falls back to direct search"""
# First try to use a dedicated web search MCP tool (like DuckDuckGo MCP server)
results = await search_web_mcp_tool(query, max_results)
if results:
logger.info(f"✅ Web search via MCP tool: found {len(results)} results")
return results
# If no web search MCP tool available, use direct search (ddgs)
# Note: Gemini MCP doesn't have web search capability, so we use direct API
# The results will then be summarized using Gemini MCP
logger.info("ℹ️ [Direct API] No web search MCP tool found, using direct DuckDuckGo search (results will be summarized with Gemini MCP)")
return search_web_fallback(query, max_results)
def search_web_fallback(query: str, max_results: int = 5) -> list:
"""Fallback web search using DuckDuckGo directly (when MCP is not available)"""
logger.info(f"🔍 [Direct API] Performing web search using DuckDuckGo API for: {query[:100]}...")
# Always import here to ensure availability
try:
from ddgs import DDGS
import requests
from bs4 import BeautifulSoup
except ImportError:
logger.error("Fallback dependencies (ddgs, requests, beautifulsoup4) not available")
return []
try:
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=max_results))
web_content = []
for result in results:
try:
url = result.get('href', '')
title = result.get('title', '')
snippet = result.get('body', '')
# Try to fetch full content
try:
response = requests.get(url, timeout=5, headers={'User-Agent': 'Mozilla/5.0'})
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
# Extract main content
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text()
# Clean and limit text
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
if len(text) > 1000:
text = text[:1000] + "..."
web_content.append({
'title': title,
'url': url,
'content': snippet + "\n" + text[:500] if text else snippet
})
else:
web_content.append({
'title': title,
'url': url,
'content': snippet
})
except:
web_content.append({
'title': title,
'url': url,
'content': snippet
})
except Exception as e:
logger.error(f"Error processing search result: {e}")
continue
logger.info(f"✅ [Direct API] Web search completed: {len(web_content)} results")
return web_content
except Exception as e:
logger.error(f"❌ [Direct API] Web search error: {e}")
return []
def search_web(query: str, max_results: int = 5) -> list:
"""Search web using MCP tools (synchronous wrapper) - prioritizes MCP over direct ddgs"""
# Always try MCP first if available
if MCP_AVAILABLE:
try:
# Run async MCP search
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
if loop.is_running():
# If loop is already running, use nest_asyncio or create new thread
try:
import nest_asyncio
results = nest_asyncio.run(search_web_mcp(query, max_results))
if results: # Only return if we got results from MCP
return results
except (ImportError, AttributeError):
# Fallback: run in thread
import concurrent.futures
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(asyncio.run, search_web_mcp(query, max_results))
results = future.result(timeout=30)
if results: # Only return if we got results from MCP
return results
else:
results = loop.run_until_complete(search_web_mcp(query, max_results))
if results: # Only return if we got results from MCP
return results
except Exception as e:
logger.error(f"Error running async MCP search: {e}")
# Only use ddgs fallback if MCP is not available or returned no results
logger.info("ℹ️ [Direct API] Falling back to direct DuckDuckGo search (MCP unavailable or returned no results)")
return search_web_fallback(query, max_results)
async def summarize_web_content_gemini(content_list: list, query: str) -> str:
"""Summarize web search results using Gemini MCP"""
combined_content = "\n\n".join([f"Source: {item['title']}\n{item['content']}" for item in content_list[:3]])
user_prompt = f"""Summarize the following web search results related to the query: "{query}"
Extract key medical information, facts, and insights. Be concise and focus on reliable information.
Search Results:
{combined_content}
Summary:"""
# Use concise system prompt
system_prompt = "You are a medical information summarizer. Extract and summarize key medical facts accurately."
result = await call_agent(
user_prompt=user_prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL, # Use full model for summarization
temperature=0.5
)
return result.strip()
def summarize_web_content(content_list: list, query: str) -> str:
"""Summarize web search results using Gemini MCP"""
if not MCP_AVAILABLE:
logger.warning("Gemini MCP not available for summarization")
# Fallback: return first result's content
if content_list:
return content_list[0].get('content', '')[:500]
return ""
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
summary = nest_asyncio.run(summarize_web_content_gemini(content_list, query))
if summary:
return summary
except Exception as e:
logger.error(f"Error in nested async summarization: {e}")
else:
summary = loop.run_until_complete(summarize_web_content_gemini(content_list, query))
if summary:
return summary
except Exception as e:
logger.error(f"Gemini MCP summarization error: {e}")
# Fallback: return first result's content
if content_list:
return content_list[0].get('content', '')[:500]
return ""
def get_llm_for_rag(temperature=0.7, max_new_tokens=256, top_p=0.95, top_k=50):
"""Get LLM for RAG indexing (uses medical model)"""
# Use medical model for RAG indexing instead of translation model
medical_model_obj, medical_tokenizer = initialize_medical_model(DEFAULT_MEDICAL_MODEL)
return HuggingFaceLLM(
context_window=4096,
max_new_tokens=max_new_tokens,
tokenizer=medical_tokenizer,
model=medical_model_obj,
generate_kwargs={
"do_sample": True,
"temperature": temperature,
"top_k": top_k,
"top_p": top_p
}
)
async def autonomous_reasoning_gemini(query: str) -> dict:
"""Autonomous reasoning using Gemini MCP"""
reasoning_prompt = f"""Analyze this medical query and provide structured reasoning:
Query: "{query}"
Analyze:
1. Query Type: (diagnosis, treatment, drug_info, symptom_analysis, research, general_info)
2. Complexity: (simple, moderate, complex, multi_faceted)
3. Information Needs: What specific information is required?
4. Requires RAG: (yes/no) - Does this need document context?
5. Requires Web Search: (yes/no) - Does this need current/updated information?
6. Sub-questions: Break down into key sub-questions if complex
Respond in JSON format:
{{
"query_type": "...",
"complexity": "...",
"information_needs": ["..."],
"requires_rag": true/false,
"requires_web_search": true/false,
"sub_questions": ["..."]
}}"""
# Use concise system prompt
system_prompt = "You are a medical reasoning system. Analyze queries systematically and provide structured JSON responses."
response = await call_agent(
user_prompt=reasoning_prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL, # Use full model for reasoning
temperature=0.3
)
# Parse JSON response (with fallback)
try:
# Extract JSON from response
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
reasoning = json.loads(response[json_start:json_end])
else:
raise ValueError("No JSON found")
except:
# Fallback reasoning
reasoning = {
"query_type": "general_info",
"complexity": "moderate",
"information_needs": ["medical information"],
"requires_rag": True,
"requires_web_search": False,
"sub_questions": [query]
}
logger.info(f"Reasoning analysis: {reasoning}")
return reasoning
def autonomous_reasoning(query: str, history: list) -> dict:
"""
Autonomous reasoning: Analyze query complexity, intent, and information needs.
Returns reasoning analysis with query type, complexity, and required information sources.
Uses Gemini MCP for reasoning.
"""
if not MCP_AVAILABLE:
logger.warning("⚠️ Gemini MCP not available for reasoning, using fallback")
# Fallback reasoning
return {
"query_type": "general_info",
"complexity": "moderate",
"information_needs": ["medical information"],
"requires_rag": True,
"requires_web_search": False,
"sub_questions": [query]
}
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
reasoning = nest_asyncio.run(autonomous_reasoning_gemini(query))
return reasoning
except Exception as e:
logger.error(f"Error in nested async reasoning: {e}")
else:
reasoning = loop.run_until_complete(autonomous_reasoning_gemini(query))
return reasoning
except Exception as e:
logger.error(f"Gemini MCP reasoning error: {e}")
# Fallback reasoning only if all attempts failed
logger.warning("⚠️ Falling back to default reasoning")
return {
"query_type": "general_info",
"complexity": "moderate",
"information_needs": ["medical information"],
"requires_rag": True,
"requires_web_search": False,
"sub_questions": [query]
}
def create_execution_plan(reasoning: dict, query: str, has_rag_index: bool) -> dict:
"""
Planning: Create multi-step execution plan based on reasoning analysis.
Returns execution plan with steps and strategy.
"""
plan = {
"steps": [],
"strategy": "sequential",
"iterations": 1
}
# Determine execution strategy
if reasoning["complexity"] in ["complex", "multi_faceted"]:
plan["strategy"] = "iterative"
plan["iterations"] = 2
# Step 1: Language detection and translation
plan["steps"].append({
"step": 1,
"action": "detect_language",
"description": "Detect query language and translate if needed"
})
# Step 2: RAG retrieval (if needed and available)
if reasoning.get("requires_rag", True) and has_rag_index:
plan["steps"].append({
"step": 2,
"action": "rag_retrieval",
"description": "Retrieve relevant document context",
"parameters": {"top_k": 15, "merge_threshold": 0.5}
})
# Step 3: Web search (if needed)
if reasoning.get("requires_web_search", False):
plan["steps"].append({
"step": 3,
"action": "web_search",
"description": "Search web for current/updated information",
"parameters": {"max_results": 5}
})
# Step 4: Sub-question processing (if complex)
if reasoning.get("sub_questions") and len(reasoning["sub_questions"]) > 1:
plan["steps"].append({
"step": 4,
"action": "multi_step_reasoning",
"description": "Process sub-questions iteratively",
"sub_questions": reasoning["sub_questions"]
})
# Step 5: Synthesis and answer generation
plan["steps"].append({
"step": len(plan["steps"]) + 1,
"action": "synthesize_answer",
"description": "Generate comprehensive answer from all sources"
})
# Step 6: Self-reflection (for complex queries)
if reasoning["complexity"] in ["complex", "multi_faceted"]:
plan["steps"].append({
"step": len(plan["steps"]) + 1,
"action": "self_reflection",
"description": "Evaluate answer quality and completeness"
})
logger.info(f"Execution plan created: {len(plan['steps'])} steps")
return plan
def autonomous_execution_strategy(reasoning: dict, plan: dict, use_rag: bool, use_web_search: bool, has_rag_index: bool) -> dict:
"""
Autonomous execution: Make decisions on information gathering strategy.
Only suggests web search override, but respects user's RAG disable setting.
"""
strategy = {
"use_rag": use_rag, # Respect user's RAG setting
"use_web_search": use_web_search,
"reasoning_override": False,
"rationale": ""
}
# Respect user toggle; just log recommendation if web search is disabled
if reasoning.get("requires_web_search", False) and not use_web_search:
strategy["rationale"] = "Reasoning suggests web search for current information, but the user kept it disabled."
# Note: We don't override RAG setting because:
# 1. User may have explicitly disabled it
# 2. RAG requires documents to be uploaded
# 3. We should respect user's explicit choice
if strategy["rationale"]:
logger.info(f"Autonomous reasoning note: {strategy['rationale']}")
return strategy
async def gemini_supervisor_breakdown_async(query: str, use_rag: bool, use_web_search: bool, time_elapsed: float, max_duration: int = 120) -> dict:
"""
Gemini Supervisor: Break user query into sub-topics (flexible number, explore different approaches)
This is the main supervisor function that orchestrates the MAC architecture.
All internal thoughts are logged, not displayed.
"""
remaining_time = max(15, max_duration - time_elapsed)
mode_description = []
if use_rag:
mode_description.append("RAG mode enabled - will use retrieved documents")
if use_web_search:
mode_description.append("Web search mode enabled - will search online sources")
if not mode_description:
mode_description.append("Direct answer mode - no additional context")
# Calculate reasonable max topics based on time remaining
# Allow more subtasks if we have time, but be flexible
estimated_time_per_task = 8 # seconds per task
max_topics_by_time = max(2, int((remaining_time - 20) / estimated_time_per_task))
max_topics = min(max_topics_by_time, 10) # Cap at 10, but allow more than 4
prompt = f"""You are a supervisor agent coordinating with a MedSwin medical specialist model.
Break the following medical query into focused sub-topics that MedSwin can answer sequentially.
Explore different potential approaches to comprehensively address the topic.
Query: "{query}"
Mode: {', '.join(mode_description)}
Time Remaining: ~{remaining_time:.1f}s
Maximum Topics: {max_topics} (adjust based on complexity - use as many as needed for thorough coverage)
Return ONLY valid JSON (no markdown, no tables, no explanations):
{{
"sub_topics": [
{{
"id": 1,
"topic": "concise topic name",
"instruction": "specific directive for MedSwin to answer this topic",
"expected_tokens": 200,
"priority": "high|medium|low",
"approach": "brief description of approach/angle for this topic"
}},
...
],
"strategy": "brief strategy description explaining the breakdown approach",
"exploration_note": "brief note on different approaches explored"
}}
Guidelines:
- Break down the query into as many subtasks as needed for comprehensive coverage
- Explore different angles/approaches (e.g., clinical, diagnostic, treatment, prevention, research perspectives)
- Each topic should be focused and answerable in ~200 tokens by MedSwin
- Prioritize topics by importance (high priority first)
- Don't limit yourself to 4 topics - use more if the query is complex or multi-faceted"""
system_prompt = "You are a medical query supervisor. Break queries into structured JSON sub-topics, exploring different approaches. Return ONLY valid JSON."
response = await call_agent(
user_prompt=prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL,
temperature=0.3
)
try:
# Extract JSON from response
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
breakdown = json.loads(response[json_start:json_end])
logger.info(f"[GEMINI SUPERVISOR] Query broken into {len(breakdown.get('sub_topics', []))} sub-topics")
logger.debug(f"[GEMINI SUPERVISOR] Breakdown: {json.dumps(breakdown, indent=2)}")
return breakdown
else:
raise ValueError("Supervisor JSON not found")
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Breakdown parsing failed: {exc}")
# Fallback: simple breakdown
breakdown = {
"sub_topics": [
{"id": 1, "topic": "Core Question", "instruction": "Address the main medical question", "expected_tokens": 200, "priority": "high", "approach": "direct answer"},
{"id": 2, "topic": "Clinical Details", "instruction": "Provide key clinical insights", "expected_tokens": 200, "priority": "medium", "approach": "clinical perspective"},
],
"strategy": "Sequential answer with key points",
"exploration_note": "Fallback breakdown - basic coverage"
}
logger.warning(f"[GEMINI SUPERVISOR] Using fallback breakdown")
return breakdown
async def gemini_supervisor_search_strategies_async(query: str, time_elapsed: float) -> dict:
"""
Gemini Supervisor: In search mode, break query into 1-4 searching strategies
Returns JSON with search strategies that will be executed with ddgs
"""
prompt = f"""You are supervising web search for a medical query.
Break this query into 1-4 focused search strategies (each targeting 1-2 sources).
Query: "{query}"
Return ONLY valid JSON:
{{
"search_strategies": [
{{
"id": 1,
"strategy": "search query string",
"target_sources": 1,
"focus": "what to search for"
}},
...
],
"max_strategies": 4
}}
Keep strategies focused and avoid overlap."""
system_prompt = "You are a search strategy supervisor. Create focused search queries. Return ONLY valid JSON."
response = await call_agent(
user_prompt=prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL_LITE, # Use lite model for search planning
temperature=0.2
)
try:
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
strategies = json.loads(response[json_start:json_end])
logger.info(f"[GEMINI SUPERVISOR] Created {len(strategies.get('search_strategies', []))} search strategies")
logger.debug(f"[GEMINI SUPERVISOR] Strategies: {json.dumps(strategies, indent=2)}")
return strategies
else:
raise ValueError("Search strategies JSON not found")
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Search strategies parsing failed: {exc}")
return {
"search_strategies": [
{"id": 1, "strategy": query, "target_sources": 2, "focus": "main query"}
],
"max_strategies": 1
}
async def gemini_supervisor_rag_brainstorm_async(query: str, retrieved_docs: str, time_elapsed: float) -> dict:
"""
Gemini Supervisor: In RAG mode, brainstorm retrieved documents into 1-4 short contexts
These contexts will be passed to MedSwin to support decision-making
"""
# Limit retrieved docs to avoid token overflow
max_doc_length = 3000
if len(retrieved_docs) > max_doc_length:
retrieved_docs = retrieved_docs[:max_doc_length] + "..."
prompt = f"""You are supervising RAG context preparation for a medical query.
Brainstorm the retrieved documents into 1-4 concise, focused contexts that MedSwin can use.
Query: "{query}"
Retrieved Documents:
{retrieved_docs}
Return ONLY valid JSON:
{{
"contexts": [
{{
"id": 1,
"context": "concise summary of relevant information (keep under 500 chars)",
"focus": "what this context covers",
"relevance": "high|medium|low"
}},
...
],
"max_contexts": 4
}}
Keep contexts brief and factual. Avoid redundancy."""
system_prompt = "You are a RAG context supervisor. Summarize documents into concise contexts. Return ONLY valid JSON."
response = await call_agent(
user_prompt=prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL_LITE, # Use lite model for RAG brainstorming
temperature=0.2
)
try:
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
contexts = json.loads(response[json_start:json_end])
logger.info(f"[GEMINI SUPERVISOR] Brainstormed {len(contexts.get('contexts', []))} RAG contexts")
logger.debug(f"[GEMINI SUPERVISOR] Contexts: {json.dumps(contexts, indent=2)}")
return contexts
else:
raise ValueError("RAG contexts JSON not found")
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] RAG brainstorming parsing failed: {exc}")
# Fallback: use retrieved docs as single context
return {
"contexts": [
{"id": 1, "context": retrieved_docs[:500], "focus": "retrieved information", "relevance": "high"}
],
"max_contexts": 1
}
def gemini_supervisor_breakdown(query: str, use_rag: bool, use_web_search: bool, time_elapsed: float, max_duration: int = 120) -> dict:
"""Wrapper to obtain supervisor breakdown synchronously"""
if not MCP_AVAILABLE:
logger.warning("[GEMINI SUPERVISOR] MCP unavailable, using fallback breakdown")
return {
"sub_topics": [
{"id": 1, "topic": "Core Question", "instruction": "Address the main medical question", "expected_tokens": 200, "priority": "high", "approach": "direct answer"},
{"id": 2, "topic": "Clinical Details", "instruction": "Provide key clinical insights", "expected_tokens": 200, "priority": "medium", "approach": "clinical perspective"},
],
"strategy": "Sequential answer with key points",
"exploration_note": "Fallback breakdown - basic coverage"
}
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
return nest_asyncio.run(
gemini_supervisor_breakdown_async(query, use_rag, use_web_search, time_elapsed, max_duration)
)
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Nested breakdown execution failed: {exc}")
raise
return loop.run_until_complete(
gemini_supervisor_breakdown_async(query, use_rag, use_web_search, time_elapsed, max_duration)
)
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Breakdown request failed: {exc}")
return {
"sub_topics": [
{"id": 1, "topic": "Core Question", "instruction": "Address the main medical question", "expected_tokens": 200, "priority": "high", "approach": "direct answer"},
],
"strategy": "Direct answer",
"exploration_note": "Fallback breakdown - single topic"
}
def gemini_supervisor_search_strategies(query: str, time_elapsed: float) -> dict:
"""Wrapper to obtain search strategies synchronously"""
if not MCP_AVAILABLE:
logger.warning("[GEMINI SUPERVISOR] MCP unavailable for search strategies")
return {
"search_strategies": [
{"id": 1, "strategy": query, "target_sources": 2, "focus": "main query"}
],
"max_strategies": 1
}
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
return nest_asyncio.run(gemini_supervisor_search_strategies_async(query, time_elapsed))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Nested search strategies execution failed: {exc}")
return {
"search_strategies": [
{"id": 1, "strategy": query, "target_sources": 2, "focus": "main query"}
],
"max_strategies": 1
}
return loop.run_until_complete(gemini_supervisor_search_strategies_async(query, time_elapsed))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Search strategies request failed: {exc}")
return {
"search_strategies": [
{"id": 1, "strategy": query, "target_sources": 2, "focus": "main query"}
],
"max_strategies": 1
}
def gemini_supervisor_rag_brainstorm(query: str, retrieved_docs: str, time_elapsed: float) -> dict:
"""Wrapper to obtain RAG brainstorm synchronously"""
if not MCP_AVAILABLE:
logger.warning("[GEMINI SUPERVISOR] MCP unavailable for RAG brainstorm")
return {
"contexts": [
{"id": 1, "context": retrieved_docs[:500], "focus": "retrieved information", "relevance": "high"}
],
"max_contexts": 1
}
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
return nest_asyncio.run(gemini_supervisor_rag_brainstorm_async(query, retrieved_docs, time_elapsed))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Nested RAG brainstorm execution failed: {exc}")
return {
"contexts": [
{"id": 1, "context": retrieved_docs[:500], "focus": "retrieved information", "relevance": "high"}
],
"max_contexts": 1
}
return loop.run_until_complete(gemini_supervisor_rag_brainstorm_async(query, retrieved_docs, time_elapsed))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] RAG brainstorm request failed: {exc}")
return {
"contexts": [
{"id": 1, "context": retrieved_docs[:500], "focus": "retrieved information", "relevance": "high"}
],
"max_contexts": 1
}
@spaces.GPU(max_duration=120)
def execute_medswin_task(
medical_model_obj,
medical_tokenizer,
task_instruction: str,
context: str,
system_prompt_base: str,
temperature: float,
max_new_tokens: int,
top_p: float,
top_k: int,
penalty: float
) -> str:
"""
MedSwin Specialist: Execute a single task assigned by Gemini Supervisor
This function is tagged with @spaces.GPU to run on GPU (ZeroGPU equivalent)
All internal thoughts are logged, only final answer is returned
"""
# Build task-specific prompt
if context:
full_prompt = f"{system_prompt_base}\n\nContext:\n{context}\n\nTask: {task_instruction}\n\nAnswer concisely with key bullet points (Markdown format, no tables):"
else:
full_prompt = f"{system_prompt_base}\n\nTask: {task_instruction}\n\nAnswer concisely with key bullet points (Markdown format, no tables):"
messages = [{"role": "system", "content": full_prompt}]
# Format prompt
if hasattr(medical_tokenizer, 'chat_template') and medical_tokenizer.chat_template is not None:
try:
prompt = medical_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
except Exception as e:
logger.warning(f"[MEDSWIN] Chat template failed, using manual formatting: {e}")
prompt = format_prompt_manually(messages, medical_tokenizer)
else:
prompt = format_prompt_manually(messages, medical_tokenizer)
# Tokenize and generate
inputs = medical_tokenizer(prompt, return_tensors="pt").to(medical_model_obj.device)
eos_token_id = medical_tokenizer.eos_token_id or medical_tokenizer.pad_token_id
with torch.no_grad():
outputs = medical_model_obj.generate(
**inputs,
max_new_tokens=min(max_new_tokens, 800), # Limit per task
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=penalty,
do_sample=True,
eos_token_id=eos_token_id,
pad_token_id=medical_tokenizer.pad_token_id or eos_token_id
)
# Decode response
response = medical_tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
# Clean response - remove any table-like formatting, ensure Markdown bullets
response = response.strip()
# Remove table markers if present
if "|" in response and "---" in response:
logger.warning("[MEDSWIN] Detected table format, converting to Markdown bullets")
# Simple conversion: split by lines and convert to bullets
lines = [line.strip() for line in response.split('\n') if line.strip() and not line.strip().startswith('|') and '---' not in line]
response = '\n'.join([f"- {line}" if not line.startswith('-') else line for line in lines])
logger.info(f"[MEDSWIN] Task completed: {len(response)} chars generated")
return response
async def gemini_supervisor_synthesize_async(query: str, medswin_answers: list, rag_contexts: list, search_contexts: list, breakdown: dict) -> str:
"""
Gemini Supervisor: Synthesize final answer from all MedSwin responses with clear context
Provides better context to create a comprehensive, well-structured final answer
"""
# Prepare context summary
context_summary = ""
if rag_contexts:
context_summary += f"Document Context Available: {len(rag_contexts)} context(s) from uploaded documents.\n"
if search_contexts:
context_summary += f"Web Search Context Available: {len(search_contexts)} search result(s).\n"
# Combine all MedSwin answers
all_answers_text = "\n\n---\n\n".join([f"## {i+1}. {ans}" for i, ans in enumerate(medswin_answers)])
prompt = f"""You are a supervisor agent synthesizing a comprehensive medical answer from multiple specialist responses.
Original Query: "{query}"
Context Available:
{context_summary}
MedSwin Specialist Responses (from {len(medswin_answers)} sub-topics):
{all_answers_text}
Your task:
1. Synthesize all responses into a coherent, comprehensive final answer
2. Integrate information from all sub-topics seamlessly
3. Ensure the answer directly addresses the original query
4. Maintain clinical accuracy and clarity
5. Use clear structure with appropriate headings and bullet points
6. Remove redundancy and contradictions
7. Ensure all important points from MedSwin responses are included
Return the final synthesized answer in Markdown format. Do not add meta-commentary or explanations - just provide the final answer."""
system_prompt = "You are a medical answer synthesis supervisor. Create comprehensive, well-structured final answers from multiple specialist responses."
result = await call_agent(
user_prompt=prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL,
temperature=0.3
)
return result.strip()
async def gemini_supervisor_challenge_async(query: str, current_answer: str, medswin_answers: list, rag_contexts: list, search_contexts: list) -> dict:
"""
Gemini Supervisor: Challenge and evaluate the current answer, suggesting improvements
Returns evaluation with suggestions for enhancement
"""
context_info = ""
if rag_contexts:
context_info += f"Document contexts: {len(rag_contexts)} available.\n"
if search_contexts:
context_info += f"Search contexts: {len(search_contexts)} available.\n"
all_answers_text = "\n\n---\n\n".join([f"## {i+1}. {ans}" for i, ans in enumerate(medswin_answers)])
prompt = f"""You are a supervisor agent evaluating and challenging a medical answer for quality and completeness.
Original Query: "{query}"
Available Context:
{context_info}
MedSwin Specialist Responses:
{all_answers_text}
Current Synthesized Answer:
{current_answer[:2000]}
Evaluate this answer and provide:
1. Completeness: Does it fully address the query? What's missing?
2. Accuracy: Are there any inaccuracies or contradictions?
3. Clarity: Is it well-structured and clear?
4. Context Usage: Are document/search contexts properly utilized?
5. Improvement Suggestions: Specific ways to enhance the answer
Return ONLY valid JSON:
{{
"is_optimal": true/false,
"completeness_score": 0-10,
"accuracy_score": 0-10,
"clarity_score": 0-10,
"missing_aspects": ["..."],
"inaccuracies": ["..."],
"improvement_suggestions": ["..."],
"needs_more_context": true/false,
"enhancement_instructions": "specific instructions for improving the answer"
}}"""
system_prompt = "You are a medical answer quality evaluator. Provide honest, constructive feedback in JSON format. Return ONLY valid JSON."
response = await call_agent(
user_prompt=prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL,
temperature=0.3
)
try:
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
evaluation = json.loads(response[json_start:json_end])
logger.info(f"[GEMINI SUPERVISOR] Challenge evaluation: optimal={evaluation.get('is_optimal', False)}, scores={evaluation.get('completeness_score', 'N/A')}/{evaluation.get('accuracy_score', 'N/A')}/{evaluation.get('clarity_score', 'N/A')}")
return evaluation
else:
raise ValueError("Evaluation JSON not found")
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Challenge evaluation parsing failed: {exc}")
return {
"is_optimal": True,
"completeness_score": 7,
"accuracy_score": 7,
"clarity_score": 7,
"missing_aspects": [],
"inaccuracies": [],
"improvement_suggestions": [],
"needs_more_context": False,
"enhancement_instructions": ""
}
async def gemini_supervisor_enhance_answer_async(query: str, current_answer: str, enhancement_instructions: str, medswin_answers: list, rag_contexts: list, search_contexts: list) -> str:
"""
Gemini Supervisor: Enhance the answer based on challenge feedback
"""
context_info = ""
if rag_contexts:
context_info += f"Document contexts: {len(rag_contexts)} available.\n"
if search_contexts:
context_info += f"Search contexts: {len(search_contexts)} available.\n"
all_answers_text = "\n\n---\n\n".join([f"## {i+1}. {ans}" for i, ans in enumerate(medswin_answers)])
prompt = f"""You are a supervisor agent enhancing a medical answer based on evaluation feedback.
Original Query: "{query}"
Available Context:
{context_info}
MedSwin Specialist Responses:
{all_answers_text}
Current Answer (to enhance):
{current_answer}
Enhancement Instructions:
{enhancement_instructions}
Create an enhanced version of the answer that:
1. Addresses all improvement suggestions
2. Fills in missing aspects
3. Corrects any inaccuracies
4. Improves clarity and structure
5. Better utilizes available context
6. Maintains all valuable information from the current answer
Return the enhanced answer in Markdown format. Do not add meta-commentary."""
system_prompt = "You are a medical answer enhancement supervisor. Improve answers based on evaluation feedback while maintaining accuracy."
result = await call_agent(
user_prompt=prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL,
temperature=0.3
)
return result.strip()
async def gemini_supervisor_check_clarity_async(query: str, answer: str, use_web_search: bool) -> dict:
"""
Gemini Supervisor: Check if answer is unclear or supervisor is unsure (only when search mode enabled)
Returns decision on whether to trigger additional search
"""
if not use_web_search:
# Only check clarity when search mode is enabled
return {"is_unclear": False, "needs_search": False, "search_queries": []}
prompt = f"""You are a supervisor agent evaluating answer clarity and completeness.
Query: "{query}"
Current Answer:
{answer[:1500]}
Evaluate:
1. Is the answer unclear or incomplete?
2. Are there gaps that web search could fill?
3. Is the supervisor (you) unsure about certain aspects?
Return ONLY valid JSON:
{{
"is_unclear": true/false,
"needs_search": true/false,
"uncertainty_areas": ["..."],
"search_queries": ["specific search queries to fill gaps"],
"rationale": "brief explanation"
}}
Only suggest search if the answer is genuinely unclear or has significant gaps that search could address."""
system_prompt = "You are a clarity evaluator. Assess if additional web search is needed. Return ONLY valid JSON."
response = await call_agent(
user_prompt=prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL_LITE,
temperature=0.2
)
try:
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
evaluation = json.loads(response[json_start:json_end])
logger.info(f"[GEMINI SUPERVISOR] Clarity check: unclear={evaluation.get('is_unclear', False)}, needs_search={evaluation.get('needs_search', False)}")
return evaluation
else:
raise ValueError("Clarity check JSON not found")
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Clarity check parsing failed: {exc}")
return {"is_unclear": False, "needs_search": False, "search_queries": []}
def gemini_supervisor_synthesize(query: str, medswin_answers: list, rag_contexts: list, search_contexts: list, breakdown: dict) -> str:
"""Wrapper to synthesize answer synchronously"""
if not MCP_AVAILABLE:
logger.warning("[GEMINI SUPERVISOR] MCP unavailable for synthesis, using simple concatenation")
return "\n\n".join(medswin_answers)
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
return nest_asyncio.run(gemini_supervisor_synthesize_async(query, medswin_answers, rag_contexts, search_contexts, breakdown))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Nested synthesis failed: {exc}")
return "\n\n".join(medswin_answers)
return loop.run_until_complete(gemini_supervisor_synthesize_async(query, medswin_answers, rag_contexts, search_contexts, breakdown))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Synthesis failed: {exc}")
return "\n\n".join(medswin_answers)
def gemini_supervisor_challenge(query: str, current_answer: str, medswin_answers: list, rag_contexts: list, search_contexts: list) -> dict:
"""Wrapper to challenge answer synchronously"""
if not MCP_AVAILABLE:
return {"is_optimal": True, "completeness_score": 7, "accuracy_score": 7, "clarity_score": 7, "missing_aspects": [], "inaccuracies": [], "improvement_suggestions": [], "needs_more_context": False, "enhancement_instructions": ""}
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
return nest_asyncio.run(gemini_supervisor_challenge_async(query, current_answer, medswin_answers, rag_contexts, search_contexts))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Nested challenge failed: {exc}")
return {"is_optimal": True, "completeness_score": 7, "accuracy_score": 7, "clarity_score": 7, "missing_aspects": [], "inaccuracies": [], "improvement_suggestions": [], "needs_more_context": False, "enhancement_instructions": ""}
return loop.run_until_complete(gemini_supervisor_challenge_async(query, current_answer, medswin_answers, rag_contexts, search_contexts))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Challenge failed: {exc}")
return {"is_optimal": True, "completeness_score": 7, "accuracy_score": 7, "clarity_score": 7, "missing_aspects": [], "inaccuracies": [], "improvement_suggestions": [], "needs_more_context": False, "enhancement_instructions": ""}
def gemini_supervisor_enhance_answer(query: str, current_answer: str, enhancement_instructions: str, medswin_answers: list, rag_contexts: list, search_contexts: list) -> str:
"""Wrapper to enhance answer synchronously"""
if not MCP_AVAILABLE:
return current_answer
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
return nest_asyncio.run(gemini_supervisor_enhance_answer_async(query, current_answer, enhancement_instructions, medswin_answers, rag_contexts, search_contexts))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Nested enhancement failed: {exc}")
return current_answer
return loop.run_until_complete(gemini_supervisor_enhance_answer_async(query, current_answer, enhancement_instructions, medswin_answers, rag_contexts, search_contexts))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Enhancement failed: {exc}")
return current_answer
def gemini_supervisor_check_clarity(query: str, answer: str, use_web_search: bool) -> dict:
"""Wrapper to check clarity synchronously"""
if not MCP_AVAILABLE or not use_web_search:
return {"is_unclear": False, "needs_search": False, "search_queries": []}
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
return nest_asyncio.run(gemini_supervisor_check_clarity_async(query, answer, use_web_search))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Nested clarity check failed: {exc}")
return {"is_unclear": False, "needs_search": False, "search_queries": []}
return loop.run_until_complete(gemini_supervisor_check_clarity_async(query, answer, use_web_search))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Clarity check failed: {exc}")
return {"is_unclear": False, "needs_search": False, "search_queries": []}
async def self_reflection_gemini(answer: str, query: str) -> dict:
"""Self-reflection using Gemini MCP"""
reflection_prompt = f"""Evaluate this medical answer for quality and completeness:
Query: "{query}"
Answer: "{answer[:1000]}"
Evaluate:
1. Completeness: Does it address all aspects of the query?
2. Accuracy: Is the medical information accurate?
3. Clarity: Is it clear and well-structured?
4. Sources: Are sources cited appropriately?
5. Missing Information: What important information might be missing?
Respond in JSON:
{{
"completeness_score": 0-10,
"accuracy_score": 0-10,
"clarity_score": 0-10,
"overall_score": 0-10,
"missing_aspects": ["..."],
"improvement_suggestions": ["..."]
}}"""
# Use concise system prompt
system_prompt = "You are a medical answer quality evaluator. Provide honest, constructive feedback."
response = await call_agent(
user_prompt=reflection_prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL, # Use full model for reflection
temperature=0.3
)
try:
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
reflection = json.loads(response[json_start:json_end])
else:
reflection = {"overall_score": 7, "improvement_suggestions": []}
except:
reflection = {"overall_score": 7, "improvement_suggestions": []}
logger.info(f"Self-reflection score: {reflection.get('overall_score', 'N/A')}")
return reflection
def self_reflection(answer: str, query: str, reasoning: dict) -> dict:
"""
Self-reflection: Evaluate answer quality and completeness.
Returns reflection with quality score and improvement suggestions.
"""
if not MCP_AVAILABLE:
logger.warning("Gemini MCP not available for reflection, using fallback")
return {"overall_score": 7, "improvement_suggestions": []}
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
return nest_asyncio.run(self_reflection_gemini(answer, query))
except Exception as e:
logger.error(f"Error in nested async reflection: {e}")
else:
return loop.run_until_complete(self_reflection_gemini(answer, query))
except Exception as e:
logger.error(f"Gemini MCP reflection error: {e}")
return {"overall_score": 7, "improvement_suggestions": []}
async def parse_document_gemini(file_path: str, file_extension: str) -> str:
"""Parse document using Gemini MCP"""
if not MCP_AVAILABLE:
return ""
try:
# Read file and encode to base64
with open(file_path, 'rb') as f:
file_content = base64.b64encode(f.read()).decode('utf-8')
# Determine MIME type from file extension
mime_type_map = {
'.pdf': 'application/pdf',
'.doc': 'application/msword',
'.docx': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
'.txt': 'text/plain',
'.md': 'text/markdown',
'.json': 'application/json',
'.xml': 'application/xml',
'.csv': 'text/csv'
}
mime_type = mime_type_map.get(file_extension, 'application/octet-stream')
# Prepare file object for Gemini MCP (use content for base64)
files = [{
"content": file_content,
"type": mime_type
}]
# Use concise system prompt
system_prompt = "Extract all text content from the document accurately."
user_prompt = "Extract all text content from this document. Return only the extracted text, preserving structure and formatting where possible."
result = await call_agent(
user_prompt=user_prompt,
system_prompt=system_prompt,
files=files,
model=GEMINI_MODEL_LITE, # Use lite model for parsing
temperature=0.2
)
return result.strip()
except Exception as e:
logger.error(f"Gemini document parsing error: {e}")
return ""
def extract_text_from_document(file):
"""Extract text from document using Gemini MCP"""
file_name = file.name
file_extension = os.path.splitext(file_name)[1].lower()
# Handle text files directly
if file_extension == '.txt':
text = file.read().decode('utf-8')
return text, len(text.split()), None
# For PDF, Word, and other documents, use Gemini MCP
# Save file to temporary location for processing
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=file_extension) as tmp_file:
# Write file content to temp file
file.seek(0) # Reset file pointer
tmp_file.write(file.read())
tmp_file_path = tmp_file.name
# Use Gemini MCP to parse document
if MCP_AVAILABLE:
try:
loop = asyncio.get_event_loop()
if loop.is_running():
try:
import nest_asyncio
text = nest_asyncio.run(parse_document_gemini(tmp_file_path, file_extension))
except Exception as e:
logger.error(f"Error in nested async document parsing: {e}")
text = ""
else:
text = loop.run_until_complete(parse_document_gemini(tmp_file_path, file_extension))
# Clean up temp file
try:
os.unlink(tmp_file_path)
except:
pass
if text:
return text, len(text.split()), None
else:
return None, 0, ValueError(f"Failed to extract text from {file_extension} file using Gemini MCP")
except Exception as e:
logger.error(f"Gemini MCP document parsing error: {e}")
# Clean up temp file
try:
os.unlink(tmp_file_path)
except:
pass
return None, 0, ValueError(f"Error parsing {file_extension} file: {str(e)}")
else:
# Clean up temp file
try:
os.unlink(tmp_file_path)
except:
pass
return None, 0, ValueError(f"Gemini MCP not available. Cannot parse {file_extension} files.")
except Exception as e:
logger.error(f"Error processing document: {e}")
return None, 0, ValueError(f"Error processing {file_extension} file: {str(e)}")
@spaces.GPU(max_duration=120)
def create_or_update_index(files, request: gr.Request):
global global_file_info
if not files:
return "Please provide files.", ""
start_time = time.time()
user_id = request.session_hash
save_dir = f"./{user_id}_index"
# Initialize LlamaIndex modules
llm = get_llm_for_rag()
embed_model = get_or_create_embed_model()
Settings.llm = llm
Settings.embed_model = embed_model
file_stats = []
new_documents = []
for file in tqdm(files, desc="Processing files"):
file_basename = os.path.basename(file.name)
text, word_count, error = extract_text_from_document(file)
if error:
logger.error(f"Error processing file {file_basename}: {str(error)}")
file_stats.append({
"name": file_basename,
"words": 0,
"status": f"error: {str(error)}"
})
continue
doc = LlamaDocument(
text=text,
metadata={
"file_name": file_basename,
"word_count": word_count,
"source": "user_upload"
}
)
new_documents.append(doc)
file_stats.append({
"name": file_basename,
"words": word_count,
"status": "processed"
})
global_file_info[file_basename] = {
"word_count": word_count,
"processed_at": time.time()
}
node_parser = HierarchicalNodeParser.from_defaults(
chunk_sizes=[2048, 512, 128],
chunk_overlap=20
)
logger.info(f"Parsing {len(new_documents)} documents into hierarchical nodes")
new_nodes = node_parser.get_nodes_from_documents(new_documents)
new_leaf_nodes = get_leaf_nodes(new_nodes)
new_root_nodes = get_root_nodes(new_nodes)
logger.info(f"Generated {len(new_nodes)} total nodes ({len(new_root_nodes)} root, {len(new_leaf_nodes)} leaf)")
if os.path.exists(save_dir):
logger.info(f"Loading existing index from {save_dir}")
storage_context = StorageContext.from_defaults(persist_dir=save_dir)
index = load_index_from_storage(storage_context, settings=Settings)
docstore = storage_context.docstore
docstore.add_documents(new_nodes)
for node in tqdm(new_leaf_nodes, desc="Adding leaf nodes to index"):
index.insert_nodes([node])
total_docs = len(docstore.docs)
logger.info(f"Updated index with {len(new_nodes)} new nodes from {len(new_documents)} files")
else:
logger.info("Creating new index")
docstore = SimpleDocumentStore()
storage_context = StorageContext.from_defaults(docstore=docstore)
docstore.add_documents(new_nodes)
index = VectorStoreIndex(
new_leaf_nodes,
storage_context=storage_context,
settings=Settings
)
total_docs = len(new_documents)
logger.info(f"Created new index with {len(new_nodes)} nodes from {len(new_documents)} files")
index.storage_context.persist(persist_dir=save_dir)
# custom outputs after processing files
file_list_html = "<div class='file-list'>"
for stat in file_stats:
status_color = "#4CAF50" if stat["status"] == "processed" else "#f44336"
file_list_html += f"<div><span style='color:{status_color}'>●</span> {stat['name']} - {stat['words']} words</div>"
file_list_html += "</div>"
processing_time = time.time() - start_time
stats_output = f"<div class='stats-box'>"
stats_output += f"✓ Processed {len(files)} files in {processing_time:.2f} seconds<br>"
stats_output += f"✓ Created {len(new_nodes)} nodes ({len(new_leaf_nodes)} leaf nodes)<br>"
stats_output += f"✓ Total documents in index: {total_docs}<br>"
stats_output += f"✓ Index saved to: {save_dir}<br>"
stats_output += "</div>"
output_container = f"<div class='info-container'>"
output_container += file_list_html
output_container += stats_output
output_container += "</div>"
return f"Successfully indexed {len(files)} files.", output_container
@spaces.GPU(max_duration=120)
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float,
max_new_tokens: int,
top_p: float,
top_k: int,
penalty: float,
retriever_k: int,
merge_threshold: float,
use_rag: bool,
medical_model: str,
use_web_search: bool,
disable_agentic_reasoning: bool,
show_thoughts: bool,
request: gr.Request
):
if not request:
yield history + [{"role": "assistant", "content": "Session initialization failed. Please refresh the page."}], ""
return
# Set up thought capture handler if show_thoughts is enabled
thought_handler = None
if show_thoughts:
thought_handler = ThoughtCaptureHandler()
thought_handler.setLevel(logging.INFO)
thought_handler.clear() # Start fresh
logger.addHandler(thought_handler)
session_start = time.time()
soft_timeout = 100
hard_timeout = 118 # stop slightly before HF max duration (120s)
def elapsed():
return time.time() - session_start
user_id = request.session_hash
index_dir = f"./{user_id}_index"
has_rag_index = os.path.exists(index_dir)
# ===== MAC ARCHITECTURE: GEMINI SUPERVISOR + MEDSWIN SPECIALIST =====
# All internal thoughts are logged, only final answer is displayed
original_lang = detect_language(message)
original_message = message
needs_translation = original_lang != "en"
pipeline_diagnostics = {
"reasoning": None,
"plan": None,
"strategy_decisions": [],
"stage_metrics": {},
"search": {"strategies": [], "total_results": 0}
}
def record_stage(stage_name: str, start_time: float):
pipeline_diagnostics["stage_metrics"][stage_name] = round(time.time() - start_time, 3)
translation_stage_start = time.time()
if needs_translation:
logger.info(f"[GEMINI SUPERVISOR] Detected non-English language: {original_lang}, translating...")
message = translate_text(message, target_lang="en", source_lang=original_lang)
logger.info(f"[GEMINI SUPERVISOR] Translated query: {message[:100]}...")
record_stage("translation", translation_stage_start)
# Determine final modes (respect user settings and availability)
final_use_rag = use_rag and has_rag_index and not disable_agentic_reasoning
final_use_web_search = use_web_search and not disable_agentic_reasoning
plan = None
if not disable_agentic_reasoning:
reasoning_stage_start = time.time()
reasoning = autonomous_reasoning(message, history)
record_stage("autonomous_reasoning", reasoning_stage_start)
pipeline_diagnostics["reasoning"] = reasoning
plan = create_execution_plan(reasoning, message, has_rag_index)
pipeline_diagnostics["plan"] = plan
execution_strategy = autonomous_execution_strategy(
reasoning, plan, final_use_rag, final_use_web_search, has_rag_index
)
if final_use_rag and not reasoning.get("requires_rag", True):
final_use_rag = False
pipeline_diagnostics["strategy_decisions"].append("Skipped RAG per autonomous reasoning")
elif not final_use_rag and reasoning.get("requires_rag", True) and not has_rag_index:
pipeline_diagnostics["strategy_decisions"].append("Reasoning wanted RAG but no index available")
if final_use_web_search and not reasoning.get("requires_web_search", False):
final_use_web_search = False
pipeline_diagnostics["strategy_decisions"].append("Skipped web search per autonomous reasoning")
elif not final_use_web_search and reasoning.get("requires_web_search", False):
if not use_web_search:
pipeline_diagnostics["strategy_decisions"].append("User disabled web search despite reasoning request")
else:
pipeline_diagnostics["strategy_decisions"].append("Web search requested by reasoning but disabled by mode")
else:
pipeline_diagnostics["strategy_decisions"].append("Agentic reasoning disabled by user")
# ===== STEP 1: GEMINI SUPERVISOR - Break query into sub-topics =====
if disable_agentic_reasoning:
logger.info("[MAC] Agentic reasoning disabled - using MedSwin alone")
# Simple breakdown for direct mode
breakdown = {
"sub_topics": [
{"id": 1, "topic": "Answer", "instruction": message, "expected_tokens": 400, "priority": "high", "approach": "direct answer"}
],
"strategy": "Direct answer",
"exploration_note": "Direct mode - no breakdown"
}
else:
logger.info("[GEMINI SUPERVISOR] Breaking query into sub-topics...")
breakdown = gemini_supervisor_breakdown(message, final_use_rag, final_use_web_search, elapsed(), max_duration=120)
logger.info(f"[GEMINI SUPERVISOR] Created {len(breakdown.get('sub_topics', []))} sub-topics")
# ===== STEP 2: GEMINI SUPERVISOR - Handle Search Mode =====
search_contexts = []
web_urls = []
if final_use_web_search:
search_stage_start = time.time()
logger.info("[GEMINI SUPERVISOR] Search mode: Creating search strategies...")
search_strategies = gemini_supervisor_search_strategies(message, elapsed())
# Execute searches for each strategy
all_search_results = []
strategy_jobs = []
for strategy in search_strategies.get("search_strategies", [])[:4]: # Max 4 strategies
search_query = strategy.get("strategy", message)
target_sources = strategy.get("target_sources", 2)
strategy_jobs.append({
"query": search_query,
"target_sources": target_sources,
"meta": strategy
})
def execute_search(job):
job_start = time.time()
try:
results = search_web(job["query"], max_results=job["target_sources"])
duration = time.time() - job_start
return results, duration, None
except Exception as exc:
return [], time.time() - job_start, exc
def record_search_diag(job, duration, results_count, error=None):
entry = {
"query": job["query"],
"target_sources": job["target_sources"],
"duration": round(duration, 3),
"results": results_count
}
if error:
entry["error"] = str(error)
pipeline_diagnostics["search"]["strategies"].append(entry)
if strategy_jobs:
max_workers = min(len(strategy_jobs), 4)
if len(strategy_jobs) > 1:
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
future_map = {executor.submit(execute_search, job): job for job in strategy_jobs}
for future in concurrent.futures.as_completed(future_map):
job = future_map[future]
try:
results, duration, error = future.result()
except Exception as exc:
results, duration, error = [], 0.0, exc
record_search_diag(job, duration, len(results), error)
if not error and results:
all_search_results.extend(results)
web_urls.extend([r.get('url', '') for r in results if r.get('url')])
else:
job = strategy_jobs[0]
results, duration, error = execute_search(job)
record_search_diag(job, duration, len(results), error)
if not error and results:
all_search_results.extend(results)
web_urls.extend([r.get('url', '') for r in results if r.get('url')])
else:
pipeline_diagnostics["strategy_decisions"].append("No viable web search strategies returned")
pipeline_diagnostics["search"]["total_results"] = len(all_search_results)
# Summarize search results with Gemini
if all_search_results:
logger.info(f"[GEMINI SUPERVISOR] Summarizing {len(all_search_results)} search results...")
search_summary = summarize_web_content(all_search_results, message)
if search_summary:
search_contexts.append(search_summary)
logger.info(f"[GEMINI SUPERVISOR] Search summary created: {len(search_summary)} chars")
record_stage("web_search", search_stage_start)
# ===== STEP 3: GEMINI SUPERVISOR - Handle RAG Mode =====
rag_contexts = []
if final_use_rag and has_rag_index:
rag_stage_start = time.time()
if elapsed() >= soft_timeout - 10:
logger.warning("[GEMINI SUPERVISOR] Skipping RAG due to time pressure")
final_use_rag = False
else:
logger.info("[GEMINI SUPERVISOR] RAG mode: Retrieving documents...")
embed_model = get_or_create_embed_model()
Settings.embed_model = embed_model
storage_context = StorageContext.from_defaults(persist_dir=index_dir)
index = load_index_from_storage(storage_context, settings=Settings)
base_retriever = index.as_retriever(similarity_top_k=retriever_k)
auto_merging_retriever = AutoMergingRetriever(
base_retriever,
storage_context=storage_context,
simple_ratio_thresh=merge_threshold,
verbose=False # Reduce logging noise
)
merged_nodes = auto_merging_retriever.retrieve(message)
retrieved_docs = "\n\n".join([n.node.text for n in merged_nodes])
logger.info(f"[GEMINI SUPERVISOR] Retrieved {len(merged_nodes)} document nodes")
# Brainstorm retrieved docs into contexts
logger.info("[GEMINI SUPERVISOR] Brainstorming RAG contexts...")
rag_brainstorm = gemini_supervisor_rag_brainstorm(message, retrieved_docs, elapsed())
rag_contexts = [ctx.get("context", "") for ctx in rag_brainstorm.get("contexts", [])]
logger.info(f"[GEMINI SUPERVISOR] Created {len(rag_contexts)} RAG contexts")
record_stage("rag_retrieval", rag_stage_start)
# ===== STEP 4: MEDSWIN SPECIALIST - Execute tasks sequentially =====
# Initialize medical model
medical_model_obj, medical_tokenizer = initialize_medical_model(medical_model)
# Base system prompt for MedSwin (clean, no internal thoughts)
base_system_prompt = system_prompt if system_prompt else "As a medical specialist, provide clinical and concise answers. Use Markdown format with bullet points. Do not use tables."
# Prepare context for MedSwin (combine RAG and search contexts)
combined_context = ""
if rag_contexts:
combined_context += "Document Context:\n" + "\n\n".join(rag_contexts[:4]) # Max 4 contexts
if search_contexts:
if combined_context:
combined_context += "\n\n"
combined_context += "Web Search Context:\n" + "\n\n".join(search_contexts)
# Execute MedSwin tasks for each sub-topic
logger.info(f"[MEDSWIN] Executing {len(breakdown.get('sub_topics', []))} tasks sequentially...")
medswin_answers = []
updated_history = history + [
{"role": "user", "content": original_message},
{"role": "assistant", "content": ""}
]
thoughts_text = thought_handler.get_thoughts() if thought_handler else ""
yield updated_history, thoughts_text
medswin_stage_start = time.time()
for idx, sub_topic in enumerate(breakdown.get("sub_topics", []), 1):
if elapsed() >= hard_timeout - 5:
logger.warning(f"[MEDSWIN] Time limit approaching, stopping at task {idx}")
break
task_instruction = sub_topic.get("instruction", "")
topic_name = sub_topic.get("topic", f"Topic {idx}")
priority = sub_topic.get("priority", "medium")
logger.info(f"[MEDSWIN] Executing task {idx}/{len(breakdown.get('sub_topics', []))}: {topic_name} (priority: {priority})")
# Select relevant context for this task (if multiple contexts available)
task_context = combined_context
if len(rag_contexts) > 1 and idx <= len(rag_contexts):
# Use corresponding RAG context if available
task_context = rag_contexts[idx - 1] if idx <= len(rag_contexts) else combined_context
# Execute MedSwin task (with GPU tag)
try:
task_answer = execute_medswin_task(
medical_model_obj=medical_model_obj,
medical_tokenizer=medical_tokenizer,
task_instruction=task_instruction,
context=task_context if task_context else "",
system_prompt_base=base_system_prompt,
temperature=temperature,
max_new_tokens=min(max_new_tokens, 800), # Limit per task
top_p=top_p,
top_k=top_k,
penalty=penalty
)
# Format task answer with topic header
formatted_answer = f"## {topic_name}\n\n{task_answer}"
medswin_answers.append(formatted_answer)
logger.info(f"[MEDSWIN] Task {idx} completed: {len(task_answer)} chars")
# Stream partial answer as we complete each task
partial_final = "\n\n".join(medswin_answers)
updated_history[-1]["content"] = partial_final
thoughts_text = thought_handler.get_thoughts() if thought_handler else ""
yield updated_history, thoughts_text
except Exception as e:
logger.error(f"[MEDSWIN] Task {idx} failed: {e}")
# Continue with next task
continue
record_stage("medswin_tasks", medswin_stage_start)
# ===== STEP 5: GEMINI SUPERVISOR - Synthesize final answer with clear context =====
logger.info("[GEMINI SUPERVISOR] Synthesizing final answer from all MedSwin responses...")
raw_medswin_answers = [ans.split('\n\n', 1)[1] if '\n\n' in ans else ans for ans in medswin_answers] # Remove headers for synthesis
synthesis_stage_start = time.time()
final_answer = gemini_supervisor_synthesize(message, raw_medswin_answers, rag_contexts, search_contexts, breakdown)
record_stage("synthesis", synthesis_stage_start)
if not final_answer or len(final_answer.strip()) < 50:
# Fallback to simple concatenation if synthesis fails
logger.warning("[GEMINI SUPERVISOR] Synthesis failed or too short, using concatenation")
final_answer = "\n\n".join(medswin_answers) if medswin_answers else "I apologize, but I was unable to generate a response."
# Clean final answer - ensure no tables, only Markdown bullets
if "|" in final_answer and "---" in final_answer:
logger.warning("[MEDSWIN] Final answer contains tables, converting to bullets")
lines = final_answer.split('\n')
cleaned_lines = []
for line in lines:
if '|' in line and '---' not in line:
# Convert table row to bullet points
cells = [cell.strip() for cell in line.split('|') if cell.strip()]
if cells:
cleaned_lines.append(f"- {' / '.join(cells)}")
elif '---' not in line:
cleaned_lines.append(line)
final_answer = '\n'.join(cleaned_lines)
# ===== STEP 6: GEMINI SUPERVISOR - Challenge and enhance answer iteratively =====
max_challenge_iterations = 2 # Limit iterations to avoid timeout
challenge_iteration = 0
challenge_stage_start = time.time()
while challenge_iteration < max_challenge_iterations and elapsed() < soft_timeout - 15:
challenge_iteration += 1
logger.info(f"[GEMINI SUPERVISOR] Challenge iteration {challenge_iteration}/{max_challenge_iterations}...")
evaluation = gemini_supervisor_challenge(message, final_answer, raw_medswin_answers, rag_contexts, search_contexts)
if evaluation.get("is_optimal", False):
logger.info(f"[GEMINI SUPERVISOR] Answer confirmed optimal after {challenge_iteration} iteration(s)")
break
enhancement_instructions = evaluation.get("enhancement_instructions", "")
if not enhancement_instructions:
logger.info("[GEMINI SUPERVISOR] No enhancement instructions, considering answer optimal")
break
logger.info(f"[GEMINI SUPERVISOR] Enhancing answer based on feedback...")
enhanced_answer = gemini_supervisor_enhance_answer(
message, final_answer, enhancement_instructions, raw_medswin_answers, rag_contexts, search_contexts
)
if enhanced_answer and len(enhanced_answer.strip()) > len(final_answer.strip()) * 0.8: # Ensure enhancement is substantial
final_answer = enhanced_answer
logger.info(f"[GEMINI SUPERVISOR] Answer enhanced (new length: {len(final_answer)} chars)")
else:
logger.info("[GEMINI SUPERVISOR] Enhancement did not improve answer significantly, stopping")
break
record_stage("challenge_loop", challenge_stage_start)
# ===== STEP 7: Conditional search trigger (only when search mode enabled) =====
if final_use_web_search and elapsed() < soft_timeout - 10:
logger.info("[GEMINI SUPERVISOR] Checking if additional search is needed...")
clarity_stage_start = time.time()
clarity_check = gemini_supervisor_check_clarity(message, final_answer, final_use_web_search)
record_stage("clarity_check", clarity_stage_start)
if clarity_check.get("needs_search", False) and clarity_check.get("search_queries"):
logger.info(f"[GEMINI SUPERVISOR] Triggering additional search: {clarity_check.get('search_queries', [])}")
additional_search_results = []
followup_stage_start = time.time()
for search_query in clarity_check.get("search_queries", [])[:3]: # Limit to 3 additional searches
if elapsed() >= soft_timeout - 5:
break
extra_start = time.time()
results = search_web(search_query, max_results=2)
extra_duration = time.time() - extra_start
pipeline_diagnostics["search"]["strategies"].append({
"query": search_query,
"target_sources": 2,
"duration": round(extra_duration, 3),
"results": len(results),
"type": "followup"
})
additional_search_results.extend(results)
web_urls.extend([r.get('url', '') for r in results if r.get('url')])
if additional_search_results:
pipeline_diagnostics["search"]["total_results"] += len(additional_search_results)
logger.info(f"[GEMINI SUPERVISOR] Summarizing {len(additional_search_results)} additional search results...")
additional_summary = summarize_web_content(additional_search_results, message)
if additional_summary:
# Enhance answer with additional search context
search_contexts.append(additional_summary)
logger.info("[GEMINI SUPERVISOR] Enhancing answer with additional search context...")
enhanced_with_search = gemini_supervisor_enhance_answer(
message, final_answer,
f"Incorporate the following additional information from web search: {additional_summary}",
raw_medswin_answers, rag_contexts, search_contexts
)
if enhanced_with_search and len(enhanced_with_search.strip()) > 50:
final_answer = enhanced_with_search
logger.info("[GEMINI SUPERVISOR] Answer enhanced with additional search context")
record_stage("followup_search", followup_stage_start)
citations_text = ""
# ===== STEP 8: Finalize answer (translate, add citations, format) =====
# Translate back if needed
if needs_translation and final_answer:
logger.info(f"[GEMINI SUPERVISOR] Translating response back to {original_lang}...")
final_answer = translate_text(final_answer, target_lang=original_lang, source_lang="en")
# Add citations if web sources were used
if web_urls:
unique_urls = list(dict.fromkeys(web_urls)) # Preserve order, remove duplicates
citation_links = []
for url in unique_urls[:5]: # Limit to 5 citations
domain = format_url_as_domain(url)
if domain:
citation_links.append(f"[{domain}]({url})")
if citation_links:
citations_text = "\n\n**Sources:** " + ", ".join(citation_links)
# Add speaker icon
speaker_icon = ' 🔊'
final_answer_with_metadata = final_answer + citations_text + speaker_icon
# Update history with final answer (ONLY final answer, no internal thoughts)
updated_history[-1]["content"] = final_answer_with_metadata
thoughts_text = thought_handler.get_thoughts() if thought_handler else ""
yield updated_history, thoughts_text
# Clean up thought handler
if thought_handler:
logger.removeHandler(thought_handler)
# Log completion
diag_summary = {
"stage_metrics": pipeline_diagnostics["stage_metrics"],
"decisions": pipeline_diagnostics["strategy_decisions"],
"search": pipeline_diagnostics["search"],
}
try:
logger.info(f"[MAC] Diagnostics summary: {json.dumps(diag_summary)[:1200]}")
except Exception:
logger.info(f"[MAC] Diagnostics summary (non-serializable)")
logger.info(f"[MAC] Final answer generated: {len(final_answer)} chars, {len(breakdown.get('sub_topics', []))} tasks completed")
def generate_speech_for_message(text: str):
"""Generate speech for a message and return audio file"""
audio_path = generate_speech(text)
if audio_path:
return audio_path
return None
def create_demo():
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
with gr.Row(elem_classes="main-container"):
with gr.Column(elem_classes="upload-section"):
file_upload = gr.File(
file_count="multiple",
label="Drag and Drop Files Here",
file_types=[".pdf", ".txt", ".doc", ".docx", ".md", ".json", ".xml", ".csv"],
elem_id="file-upload"
)
upload_button = gr.Button("Upload & Index", elem_classes="upload-button")
status_output = gr.Textbox(
label="Status",
placeholder="Upload files to start...",
interactive=False
)
file_info_output = gr.HTML(
label="File Information",
elem_classes="processing-info"
)
upload_button.click(
fn=create_or_update_index,
inputs=[file_upload],
outputs=[status_output, file_info_output]
)
with gr.Column(elem_classes="chatbot-container"):
chatbot = gr.Chatbot(
height=500,
placeholder="Chat with MedSwin... Type your question below.",
show_label=False,
type="messages"
)
with gr.Row(elem_classes="input-row"):
message_input = gr.Textbox(
placeholder="Type your medical question here...",
show_label=False,
container=False,
lines=1,
scale=10
)
mic_button = gr.Audio(
sources=["microphone"],
type="filepath",
label="",
show_label=False,
container=False,
scale=1
)
submit_button = gr.Button("➤", elem_classes="submit-btn", scale=1)
# Timer display for recording (shown below input row)
recording_timer = gr.Textbox(
value="",
label="",
show_label=False,
interactive=False,
visible=False,
container=False,
elem_classes="recording-timer"
)
# Handle microphone transcription
import time
recording_start_time = [None]
def handle_recording_start():
"""Called when recording starts"""
recording_start_time[0] = time.time()
return gr.update(visible=True, value="Recording... 0s")
def handle_recording_stop(audio):
"""Called when recording stops"""
recording_start_time[0] = None
if audio is None:
return gr.update(visible=False, value=""), ""
transcribed = transcribe_audio(audio)
return gr.update(visible=False, value=""), transcribed
# Use JavaScript for timer updates (simpler than Gradio Timer)
mic_button.start_recording(
fn=handle_recording_start,
outputs=[recording_timer]
)
mic_button.stop_recording(
fn=handle_recording_stop,
inputs=[mic_button],
outputs=[recording_timer, message_input]
)
# TTS component for generating speech from messages
with gr.Row(visible=False) as tts_row:
tts_text = gr.Textbox(visible=False)
tts_audio = gr.Audio(label="Generated Speech", visible=False)
# Function to generate speech when speaker icon is clicked
def generate_speech_from_chat(history):
"""Extract last assistant message and generate speech"""
if not history or len(history) == 0:
return None
last_msg = history[-1]
if last_msg.get("role") == "assistant":
text = last_msg.get("content", "").replace(" 🔊", "").strip()
if text:
audio_path = generate_speech(text)
return audio_path
return None
# Add TTS button that appears when assistant responds
tts_button = gr.Button("🔊 Play Response", visible=False, size="sm")
# Update TTS button visibility and generate speech
def update_tts_button(history):
if history and len(history) > 0 and history[-1].get("role") == "assistant":
return gr.update(visible=True)
return gr.update(visible=False)
chatbot.change(
fn=update_tts_button,
inputs=[chatbot],
outputs=[tts_button]
)
tts_button.click(
fn=generate_speech_from_chat,
inputs=[chatbot],
outputs=[tts_audio]
)
with gr.Accordion("⚙️ Advanced Settings", open=False):
with gr.Row():
disable_agentic_reasoning = gr.Checkbox(
value=False,
label="Disable agentic reasoning",
info="Use MedSwin model alone without agentic reasoning, RAG, or web search"
)
show_agentic_thought = gr.Button(
"Show agentic thought",
size="sm"
)
# Scrollable textbox for agentic thoughts (initially hidden)
agentic_thoughts_box = gr.Textbox(
label="Agentic Thoughts",
placeholder="Internal thoughts from MedSwin and supervisor will appear here...",
lines=8,
max_lines=15,
interactive=False,
visible=False,
elem_classes="agentic-thoughts"
)
with gr.Row():
use_rag = gr.Checkbox(
value=False,
label="Enable Document RAG",
info="Answer based on uploaded documents (upload required)"
)
use_web_search = gr.Checkbox(
value=False,
label="Enable Web Search (MCP)",
info="Fetch knowledge from online medical resources"
)
medical_model = gr.Radio(
choices=list(MEDSWIN_MODELS.keys()),
value=DEFAULT_MEDICAL_MODEL,
label="Medical Model",
info="MedSwin TA (default), others download on first use"
)
system_prompt = gr.Textbox(
value="As a medical specialist, provide detailed and accurate answers based on the provided medical documents and context. Ensure all information is clinically accurate and cite sources when available.",
label="System Prompt",
lines=3
)
with gr.Tab("Generation Parameters"):
temperature = gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.2,
label="Temperature"
)
max_new_tokens = gr.Slider(
minimum=512,
maximum=4096,
step=128,
value=2048,
label="Max New Tokens",
info="Increased for medical models to prevent early stopping"
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.7,
label="Top P"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Top K"
)
penalty = gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition Penalty"
)
with gr.Tab("Retrieval Parameters"):
retriever_k = gr.Slider(
minimum=5,
maximum=30,
step=1,
value=15,
label="Initial Retrieval Size (Top K)"
)
merge_threshold = gr.Slider(
minimum=0.1,
maximum=0.9,
step=0.1,
value=0.5,
label="Merge Threshold (lower = more merging)"
)
# Toggle function for showing/hiding agentic thoughts
show_thoughts_state = gr.State(value=False)
def toggle_thoughts_box(current_state):
"""Toggle visibility of agentic thoughts box"""
new_state = not current_state
return gr.update(visible=new_state), new_state
show_agentic_thought.click(
fn=toggle_thoughts_box,
inputs=[show_thoughts_state],
outputs=[agentic_thoughts_box, show_thoughts_state]
)
submit_button.click(
fn=stream_chat,
inputs=[
message_input,
chatbot,
system_prompt,
temperature,
max_new_tokens,
top_p,
top_k,
penalty,
retriever_k,
merge_threshold,
use_rag,
medical_model,
use_web_search,
disable_agentic_reasoning,
show_thoughts_state
],
outputs=[chatbot, agentic_thoughts_box]
)
message_input.submit(
fn=stream_chat,
inputs=[
message_input,
chatbot,
system_prompt,
temperature,
max_new_tokens,
top_p,
top_k,
penalty,
retriever_k,
merge_threshold,
use_rag,
medical_model,
use_web_search,
disable_agentic_reasoning,
show_thoughts_state
],
outputs=[chatbot, agentic_thoughts_box]
)
return demo
if __name__ == "__main__":
# Preload models on startup
logger.info("Preloading models on startup...")
logger.info("Initializing default medical model (MedSwin TA)...")
initialize_medical_model(DEFAULT_MEDICAL_MODEL)
logger.info("Preloading TTS model...")
try:
initialize_tts_model()
if global_tts_model is not None:
logger.info("TTS model preloaded successfully!")
else:
logger.warning("TTS model not available - will use MCP or disable voice generation")
except Exception as e:
logger.warning(f"TTS model preloading failed: {e}")
logger.warning("Text-to-speech will use MCP or be disabled")
# Check Gemini MCP availability
if MCP_AVAILABLE:
logger.info("Gemini MCP is available for translation, summarization, document parsing, and transcription")
else:
logger.warning("Gemini MCP not available - translation, summarization, document parsing, and transcription features will be limited")
logger.info("Model preloading complete!")
demo = create_demo()
demo.launch() |