Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +178 -0
- localenpl5.jpeg +0 -0
- requirements.txt +14 -0
app.py
ADDED
|
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
+
import torch
|
| 4 |
+
import unicodedata
|
| 5 |
+
import re
|
| 6 |
+
import whisper
|
| 7 |
+
import tempfile
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
import nltk
|
| 11 |
+
nltk.download('punkt')
|
| 12 |
+
from nltk.tokenize import sent_tokenize
|
| 13 |
+
|
| 14 |
+
import fitz # PyMuPDF
|
| 15 |
+
import docx
|
| 16 |
+
from bs4 import BeautifulSoup
|
| 17 |
+
import markdown2
|
| 18 |
+
import chardet
|
| 19 |
+
|
| 20 |
+
# Device setup
|
| 21 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 22 |
+
|
| 23 |
+
# Load Wolof MarianMT model from HF hub (cached manually)
|
| 24 |
+
translator = None
|
| 25 |
+
whisper_model = None
|
| 26 |
+
|
| 27 |
+
def load_wolof_model():
|
| 28 |
+
global translator
|
| 29 |
+
if translator is None:
|
| 30 |
+
model_name = "LocaleNLP/eng_wolof"
|
| 31 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
|
| 32 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 33 |
+
translator = pipeline("translation", model=model, tokenizer=tokenizer, device=0 if device.type == 'cuda' else -1)
|
| 34 |
+
return translator
|
| 35 |
+
|
| 36 |
+
def load_whisper_model():
|
| 37 |
+
global whisper_model
|
| 38 |
+
if whisper_model is None:
|
| 39 |
+
whisper_model = whisper.load_model("base")
|
| 40 |
+
return whisper_model
|
| 41 |
+
|
| 42 |
+
def transcribe_audio(audio_file):
|
| 43 |
+
model = load_whisper_model()
|
| 44 |
+
if isinstance(audio_file, str):
|
| 45 |
+
audio_path = audio_file
|
| 46 |
+
else:
|
| 47 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
|
| 48 |
+
tmp.write(audio_file.read())
|
| 49 |
+
audio_path = tmp.name
|
| 50 |
+
result = model.transcribe(audio_path)
|
| 51 |
+
if not isinstance(audio_file, str):
|
| 52 |
+
os.remove(audio_path)
|
| 53 |
+
return result["text"]
|
| 54 |
+
|
| 55 |
+
def extract_text_from_file(uploaded_file):
|
| 56 |
+
# Handle both filepath (str) and file-like object
|
| 57 |
+
if isinstance(uploaded_file, str):
|
| 58 |
+
file_path = uploaded_file
|
| 59 |
+
file_type = file_path.split('.')[-1].lower()
|
| 60 |
+
with open(file_path, "rb") as f:
|
| 61 |
+
content = f.read()
|
| 62 |
+
else:
|
| 63 |
+
file_type = uploaded_file.name.split('.')[-1].lower()
|
| 64 |
+
content = uploaded_file.read()
|
| 65 |
+
|
| 66 |
+
if file_type == "pdf":
|
| 67 |
+
with fitz.open(stream=content, filetype="pdf") as doc:
|
| 68 |
+
return "\n".join([page.get_text() for page in doc])
|
| 69 |
+
elif file_type == "docx":
|
| 70 |
+
if isinstance(uploaded_file, str):
|
| 71 |
+
doc = docx.Document(file_path)
|
| 72 |
+
else:
|
| 73 |
+
doc = docx.Document(uploaded_file)
|
| 74 |
+
return "\n".join([para.text for para in doc.paragraphs])
|
| 75 |
+
else:
|
| 76 |
+
encoding = chardet.detect(content)['encoding']
|
| 77 |
+
if encoding:
|
| 78 |
+
content = content.decode(encoding, errors='ignore')
|
| 79 |
+
if file_type in ("html", "htm"):
|
| 80 |
+
soup = BeautifulSoup(content, "html.parser")
|
| 81 |
+
return soup.get_text()
|
| 82 |
+
elif file_type == "md":
|
| 83 |
+
html = markdown2.markdown(content)
|
| 84 |
+
soup = BeautifulSoup(html, "html.parser")
|
| 85 |
+
return soup.get_text()
|
| 86 |
+
elif file_type == "srt":
|
| 87 |
+
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", content)
|
| 88 |
+
elif file_type in ("txt", "text"):
|
| 89 |
+
return content
|
| 90 |
+
else:
|
| 91 |
+
raise ValueError("Unsupported file type")
|
| 92 |
+
|
| 93 |
+
def translate(text):
|
| 94 |
+
translator = load_wolof_model()
|
| 95 |
+
lang_tag = ">>wol<<"
|
| 96 |
+
|
| 97 |
+
paragraphs = text.split("\n")
|
| 98 |
+
translated_output = []
|
| 99 |
+
|
| 100 |
+
with torch.no_grad():
|
| 101 |
+
for para in paragraphs:
|
| 102 |
+
if not para.strip():
|
| 103 |
+
translated_output.append("")
|
| 104 |
+
continue
|
| 105 |
+
sentences = [s.strip() for s in para.split('. ') if s.strip()]
|
| 106 |
+
formatted = [f"{lang_tag} {s}" for s in sentences]
|
| 107 |
+
|
| 108 |
+
results = translator(formatted,
|
| 109 |
+
max_length=5000,
|
| 110 |
+
num_beams=5,
|
| 111 |
+
early_stopping=True,
|
| 112 |
+
no_repeat_ngram_size=3,
|
| 113 |
+
repetition_penalty=1.5,
|
| 114 |
+
length_penalty=1.2)
|
| 115 |
+
translated_sentences = [r['translation_text'].capitalize() for r in results]
|
| 116 |
+
translated_output.append('. '.join(translated_sentences))
|
| 117 |
+
|
| 118 |
+
return "\n".join(translated_output)
|
| 119 |
+
|
| 120 |
+
def process_input(input_mode, text, audio_file, file_obj):
|
| 121 |
+
input_text = ""
|
| 122 |
+
if input_mode == "Text":
|
| 123 |
+
input_text = text
|
| 124 |
+
elif input_mode == "Audio":
|
| 125 |
+
if audio_file is not None:
|
| 126 |
+
input_text = transcribe_audio(audio_file)
|
| 127 |
+
elif input_mode == "File":
|
| 128 |
+
if file_obj is not None:
|
| 129 |
+
input_text = extract_text_from_file(file_obj)
|
| 130 |
+
return input_text
|
| 131 |
+
|
| 132 |
+
def translate_and_return(text):
|
| 133 |
+
if not text.strip():
|
| 134 |
+
return "No input text to translate."
|
| 135 |
+
return translate(text)
|
| 136 |
+
|
| 137 |
+
# Gradio UI components
|
| 138 |
+
with gr.Blocks() as demo:
|
| 139 |
+
gr.Markdown("## LocaleNLP English-to-Wolof Translator")
|
| 140 |
+
gr.Markdown("Upload English text, audio, or document to translate to Wolof using a custom MarianMT model.")
|
| 141 |
+
|
| 142 |
+
with gr.Row():
|
| 143 |
+
input_mode = gr.Radio(choices=["Text", "Audio", "File"], label="Select input mode", value="Text")
|
| 144 |
+
|
| 145 |
+
input_text = gr.Textbox(label="Enter English text", lines=10, visible=True)
|
| 146 |
+
audio_input = gr.Audio(label="Upload audio (.wav, .mp3, .m4a)", type="filepath", visible=False)
|
| 147 |
+
file_input = gr.File(file_types=['.pdf', '.docx', '.html', '.htm', '.md', '.srt', '.txt'], label="Upload document", visible=False)
|
| 148 |
+
|
| 149 |
+
extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10, interactive=False)
|
| 150 |
+
translate_button = gr.Button("Translate to Wolof")
|
| 151 |
+
output_text = gr.Textbox(label="Translated Wolof Text", lines=10, interactive=False)
|
| 152 |
+
|
| 153 |
+
def update_visibility(mode):
|
| 154 |
+
return {
|
| 155 |
+
input_text: gr.update(visible=(mode=="Text")),
|
| 156 |
+
audio_input: gr.update(visible=(mode=="Audio")),
|
| 157 |
+
file_input: gr.update(visible=(mode=="File")),
|
| 158 |
+
extracted_text: gr.update(value="", visible=True),
|
| 159 |
+
output_text: gr.update(value="")
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
input_mode.change(fn=update_visibility, inputs=input_mode, outputs=[input_text, audio_input, file_input, extracted_text, output_text])
|
| 163 |
+
|
| 164 |
+
def handle_process(mode, text, audio, file_obj):
|
| 165 |
+
try:
|
| 166 |
+
extracted = process_input(mode, text, audio, file_obj)
|
| 167 |
+
return extracted, ""
|
| 168 |
+
except Exception as e:
|
| 169 |
+
return "", f"Error: {str(e)}"
|
| 170 |
+
|
| 171 |
+
translate_button.click(fn=handle_process, inputs=[input_mode, input_text, audio_input, file_input], outputs=[extracted_text, output_text])
|
| 172 |
+
|
| 173 |
+
def handle_translate(text):
|
| 174 |
+
return translate_and_return(text)
|
| 175 |
+
|
| 176 |
+
translate_button.click(fn=handle_translate, inputs=extracted_text, outputs=output_text)
|
| 177 |
+
|
| 178 |
+
demo.launch()
|
localenpl5.jpeg
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
altair
|
| 2 |
+
pandas
|
| 3 |
+
streamlit
|
| 4 |
+
transformers
|
| 5 |
+
torch
|
| 6 |
+
openai-whisper
|
| 7 |
+
nltk
|
| 8 |
+
PyMuPDF
|
| 9 |
+
python-docx
|
| 10 |
+
beautifulsoup4
|
| 11 |
+
markdown2
|
| 12 |
+
chardet
|
| 13 |
+
sentencepiece
|
| 14 |
+
sacremoses
|