import inspect import math from typing import Callable, List, Optional, Tuple, Union, Any, Dict from einops import rearrange import torch from torch import nn import torch.nn.functional as F from torch import Tensor from diffusers.models.attention_processor import Attention TXTLEN = 128 KONTEXT = False class LoRALinearLayer(nn.Module): def __init__( self, in_features: int, out_features: int, rank: int = 4, network_alpha: Optional[float] = None, device: Optional[Union[torch.device, str]] = None, dtype: Optional[torch.dtype] = None, cond_widths: Optional[List[int]] = None, cond_heights: Optional[List[int]] = None, lora_index: int = 0, n_loras: int = 1, ): super().__init__() self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype) self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype) self.network_alpha = network_alpha self.rank = rank self.out_features = out_features self.in_features = in_features nn.init.normal_(self.down.weight, std=1 / rank) nn.init.zeros_(self.up.weight) self.cond_heights = cond_heights if cond_heights is not None else [512] self.cond_widths = cond_widths if cond_widths is not None else [512] self.lora_index = lora_index self.n_loras = n_loras def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: orig_dtype = hidden_states.dtype dtype = self.down.weight.dtype batch_size = hidden_states.shape[0] cond_sizes = [(w // 8 * h // 8 * 16 // 64) for w, h in zip(self.cond_widths, self.cond_heights)] total_cond_size = sum(cond_sizes) block_size = hidden_states.shape[1] - total_cond_size offset = sum(cond_sizes[:self.lora_index]) current_cond_size = cond_sizes[self.lora_index] shape = (batch_size, hidden_states.shape[1], 3072) mask = torch.ones(shape, device=hidden_states.device, dtype=dtype) mask[:, :block_size + offset, :] = 0 mask[:, block_size + offset + current_cond_size:, :] = 0 hidden_states = mask * hidden_states down_hidden_states = self.down(hidden_states.to(dtype)) up_hidden_states = self.up(down_hidden_states) if self.network_alpha is not None: up_hidden_states *= self.network_alpha / self.rank return up_hidden_states.to(orig_dtype) class MultiSingleStreamBlockLoraProcessor(nn.Module): def __init__(self, dim: int, ranks: List[int], lora_weights: List[float], network_alphas: List[float], device=None, dtype=None, cond_widths: Optional[List[int]] = None, cond_heights: Optional[List[int]] = None, n_loras=1): super().__init__() self.n_loras = n_loras self.cond_widths = cond_widths if cond_widths is not None else [512] self.cond_heights = cond_heights if cond_heights is not None else [512] self.q_loras = nn.ModuleList([ LoRALinearLayer(dim, dim, ranks[i], network_alphas[i], device=device, dtype=dtype, cond_widths=self.cond_widths, cond_heights=self.cond_heights, lora_index=i, n_loras=n_loras) for i in range(n_loras) ]) self.k_loras = nn.ModuleList([ LoRALinearLayer(dim, dim, ranks[i], network_alphas[i], device=device, dtype=dtype, cond_widths=self.cond_widths, cond_heights=self.cond_heights, lora_index=i, n_loras=n_loras) for i in range(n_loras) ]) self.v_loras = nn.ModuleList([ LoRALinearLayer(dim, dim, ranks[i], network_alphas[i], device=device, dtype=dtype, cond_widths=self.cond_widths, cond_heights=self.cond_heights, lora_index=i, n_loras=n_loras) for i in range(n_loras) ]) self.lora_weights = lora_weights self.bank_attn = None self.bank_kv: List[torch.Tensor] = [] def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, use_cond = False ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape scaled_seq_len = hidden_states.shape[1] cond_sizes = [(w // 8 * h // 8 * 16 // 64) for w, h in zip(self.cond_widths, self.cond_heights)] total_cond_size = sum(cond_sizes) block_size = scaled_seq_len - total_cond_size scaled_cond_sizes = cond_sizes scaled_block_size = block_size global TXTLEN global KONTEXT if KONTEXT: img_start, img_end = TXTLEN, (TXTLEN + block_size) // 2 else: img_start, img_end = TXTLEN, block_size cond_start, cond_end = block_size, scaled_seq_len cache = len(self.bank_kv) == 0 if cache: query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) for i in range(self.n_loras): query = query + self.lora_weights[i] * self.q_loras[i](hidden_states) key = key + self.lora_weights[i] * self.k_loras[i](hidden_states) value = value + self.lora_weights[i] * self.v_loras[i](hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) self.bank_kv.extend([key[:, :, scaled_block_size:, :], value[:, :, scaled_block_size:, :]]) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query, key = apply_rotary_emb(query, image_rotary_emb), apply_rotary_emb(key, image_rotary_emb) mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device) mask[ :scaled_block_size, :] = 0 current_offset = 0 for i in range(self.n_loras): start, end = scaled_block_size + current_offset, scaled_block_size + current_offset + scaled_cond_sizes[i] mask[start:end, start:end] = 0 current_offset += scaled_cond_sizes[i] mask *= -1e20 c_factor = getattr(self, "c_factor", None) if c_factor is not None: # print(f"Using c_factor: {c_factor}") current_offset = 0 for i in range(self.n_loras): bias = torch.log(c_factor[i]) cond_i_start, cond_i_end = cond_start + current_offset, cond_start + current_offset + scaled_cond_sizes[i] mask[img_start:img_end, cond_i_start:cond_i_end] = bias current_offset += scaled_cond_sizes[i] # c_factor_kontext = getattr(self, "c_factor_kontext", None) # if c_factor_kontext is not None: # bias = torch.log(c_factor_kontext) # kontext_start, kontext_end = img_end, block_size # mask[img_start:img_end, kontext_start:kontext_end] = bias # mask[kontext_start:kontext_end, img_start:img_end] = bias # mask[kontext_start:kontext_end, kontext_end:] = -1e20 hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask.to(query.dtype)) self.bank_attn = hidden_states[:, :, scaled_block_size:, :] else: query, key, value = attn.to_q(hidden_states), attn.to_k(hidden_states), attn.to_v(hidden_states) inner_dim = query.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = torch.cat([key[:, :, :scaled_block_size, :], self.bank_kv[0]], dim=-2) value = torch.cat([value[:, :, :scaled_block_size, :], self.bank_kv[1]], dim=-2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query, key = apply_rotary_emb(query, image_rotary_emb), apply_rotary_emb(key, image_rotary_emb) query = query[:, :, :scaled_block_size, :] attn_mask = None c_factor = getattr(self, "c_factor", None) if c_factor is not None: # print(f"Using c_factor: {c_factor}") attn_mask = torch.zeros((query.shape[2], key.shape[2]), device=query.device, dtype=query.dtype) current_offset = 0 for i in range(self.n_loras): bias = torch.log(c_factor[i]) cond_i_start, cond_i_end = cond_start + current_offset, cond_start + current_offset + scaled_cond_sizes[i] attn_mask[img_start:img_end, cond_i_start:cond_i_end] = bias current_offset += scaled_cond_sizes[i] # c_factor_kontext = getattr(self, "c_factor_kontext", None) # if c_factor_kontext is not None: # if attn_mask is None: # attn_mask = torch.zeros((query.shape[2], key.shape[2]), device=query.device, dtype=query.dtype) # bias = torch.log(c_factor_kontext) # kontext_start, kontext_end = img_end, block_size # attn_mask[img_start:img_end, kontext_start:kontext_end] = bias # attn_mask[kontext_start:kontext_end, img_start:img_end] = bias # attn_mask[kontext_start:kontext_end, kontext_end:] = -1e20 hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attn_mask) if self.bank_attn is not None: hidden_states = torch.cat([hidden_states, self.bank_attn], dim=-2) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) cond_hidden_states = hidden_states[:, block_size:,:] hidden_states = hidden_states[:, : block_size,:] return (hidden_states, cond_hidden_states) if use_cond else hidden_states class MultiDoubleStreamBlockLoraProcessor(nn.Module): def __init__(self, dim: int, ranks: List[int], lora_weights: List[float], network_alphas: List[float], device=None, dtype=None, cond_widths: Optional[List[int]] = None, cond_heights: Optional[List[int]] = None, n_loras=1): super().__init__() self.n_loras = n_loras self.cond_widths = cond_widths if cond_widths is not None else [512] self.cond_heights = cond_heights if cond_heights is not None else [512] self.q_loras = nn.ModuleList([LoRALinearLayer(dim, dim, ranks[i], network_alphas[i], device=device, dtype=dtype, cond_widths=self.cond_widths, cond_heights=self.cond_heights, lora_index=i, n_loras=n_loras) for i in range(n_loras)]) self.k_loras = nn.ModuleList([LoRALinearLayer(dim, dim, ranks[i], network_alphas[i], device=device, dtype=dtype, cond_widths=self.cond_widths, cond_heights=self.cond_heights, lora_index=i, n_loras=n_loras) for i in range(n_loras)]) self.v_loras = nn.ModuleList([LoRALinearLayer(dim, dim, ranks[i], network_alphas[i], device=device, dtype=dtype, cond_widths=self.cond_widths, cond_heights=self.cond_heights, lora_index=i, n_loras=n_loras) for i in range(n_loras)]) self.proj_loras = nn.ModuleList([LoRALinearLayer(dim, dim, ranks[i], network_alphas[i], device=device, dtype=dtype, cond_widths=self.cond_widths, cond_heights=self.cond_heights, lora_index=i, n_loras=n_loras) for i in range(n_loras)]) self.lora_weights = lora_weights self.bank_attn = None self.bank_kv: List[torch.Tensor] = [] def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, use_cond=False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]: global TXTLEN global KONTEXT TXTLEN = encoder_hidden_states.shape[1] if encoder_hidden_states is not None else 128 batch_size, _, _ = hidden_states.shape cond_sizes = [(w // 8 * h // 8 * 16 // 64) for w, h in zip(self.cond_widths, self.cond_heights)] block_size = hidden_states.shape[1] - sum(cond_sizes) scaled_seq_len = encoder_hidden_states.shape[1] + hidden_states.shape[1] scaled_cond_sizes = cond_sizes scaled_block_size = scaled_seq_len - sum(scaled_cond_sizes) if KONTEXT: img_start, img_end = TXTLEN, (TXTLEN + block_size) // 2 else: img_start, img_end = TXTLEN, block_size cond_start, cond_end = scaled_block_size, scaled_seq_len inner_dim, head_dim = 3072, 3072 // attn.heads encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) cache = len(self.bank_kv) == 0 if cache: query, key, value = attn.to_q(hidden_states), attn.to_k(hidden_states), attn.to_v(hidden_states) for i in range(self.n_loras): query, key, value = query + self.lora_weights[i] * self.q_loras[i](hidden_states), key + self.lora_weights[i] * self.k_loras[i](hidden_states), value + self.lora_weights[i] * self.v_loras[i](hidden_states) query, key, value = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2), key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2), value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) self.bank_kv.extend([key[:, :, block_size:, :], value[:, :, block_size:, :]]) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) query, key, value = torch.cat([encoder_hidden_states_query_proj, query], dim=2), torch.cat([encoder_hidden_states_key_proj, key], dim=2), torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query, key = apply_rotary_emb(query, image_rotary_emb), apply_rotary_emb(key, image_rotary_emb) mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device) mask[:scaled_block_size, :] = 0 current_offset = 0 for i in range(self.n_loras): start, end = scaled_block_size + current_offset, scaled_block_size + current_offset + scaled_cond_sizes[i] mask[start:end, start:end] = 0 current_offset += scaled_cond_sizes[i] mask *= -1e20 c_factor = getattr(self, "c_factor", None) if c_factor is not None: # print(f"Using c_factor: {c_factor}") current_offset = 0 for i in range(self.n_loras): bias = torch.log(c_factor[i]) cond_i_start, cond_i_end = cond_start + current_offset, cond_start + current_offset + scaled_cond_sizes[i] mask[img_start:img_end, cond_i_start:cond_i_end] = bias current_offset += scaled_cond_sizes[i] # c_factor_kontext = getattr(self, "c_factor_kontext", None) # if c_factor_kontext is not None: # bias = torch.log(c_factor_kontext) # kontext_start, kontext_end = img_end, block_size # mask[img_start:img_end, kontext_start:kontext_end] = bias # mask[kontext_start:kontext_end, img_start:img_end] = bias # mask[kontext_start:kontext_end, kontext_end:] = -1e20 hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask.to(query.dtype)) self.bank_attn = hidden_states[:, :, scaled_block_size:, :] else: query, key, value = attn.to_q(hidden_states), attn.to_k(hidden_states), attn.to_v(hidden_states) query, key, value = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2), key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2), value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key, value = torch.cat([key[:, :, :block_size, :], self.bank_kv[0]], dim=-2), torch.cat([value[:, :, :block_size, :], self.bank_kv[1]], dim=-2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) query, key, value = torch.cat([encoder_hidden_states_query_proj, query], dim=2), torch.cat([encoder_hidden_states_key_proj, key], dim=2), torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query, key = apply_rotary_emb(query, image_rotary_emb), apply_rotary_emb(key, image_rotary_emb) query = query[:, :, :scaled_block_size, :] attn_mask = None c_factor = getattr(self, "c_factor", None) if c_factor is not None: # print(f"Using c_factor: {c_factor}") attn_mask = torch.zeros((query.shape[2], key.shape[2]), device=query.device, dtype=query.dtype) current_offset = 0 for i in range(self.n_loras): bias = torch.log(c_factor[i]) cond_i_start, cond_i_end = cond_start + current_offset, cond_start + current_offset + scaled_cond_sizes[i] attn_mask[img_start:img_end, cond_i_start:cond_i_end] = bias current_offset += scaled_cond_sizes[i] # c_factor_kontext = getattr(self, "c_factor_kontext", None) # if c_factor_kontext is not None: # if attn_mask is None: # attn_mask = torch.zeros((query.shape[2], key.shape[2]), device=query.device, dtype=query.dtype) # bias = torch.log(c_factor_kontext) # kontext_start, kontext_end = img_end, block_size # attn_mask[img_start:img_end, kontext_start:kontext_end] = bias # attn_mask[kontext_start:kontext_end, img_start:img_end] = bias # attn_mask[kontext_start:kontext_end, kontext_end:] = -1e20 hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attn_mask) if self.bank_attn is not None: hidden_states = torch.cat([hidden_states, self.bank_attn], dim=-2) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) encoder_hidden_states, hidden_states = hidden_states[:, :encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1]:] hidden_states = attn.to_out[0](hidden_states) for i in range(self.n_loras): hidden_states = hidden_states + self.lora_weights[i] * self.proj_loras[i](hidden_states) hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) cond_hidden_states = hidden_states[:, block_size:,:] hidden_states = hidden_states[:, :block_size,:] return (hidden_states, encoder_hidden_states, cond_hidden_states) if use_cond else (encoder_hidden_states, hidden_states)