Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,39 +1,14 @@
|
|
| 1 |
-
import subprocess
|
| 2 |
-
import shlex
|
| 3 |
-
subprocess.run(
|
| 4 |
-
shlex.split(
|
| 5 |
-
"pip install ./gradio_magicquillv2-0.0.1-py3-none-any.whl"
|
| 6 |
-
)
|
| 7 |
-
)
|
| 8 |
-
import sys
|
| 9 |
import os
|
| 10 |
import gradio as gr
|
| 11 |
import spaces
|
| 12 |
-
import tempfile
|
| 13 |
-
import numpy as np
|
| 14 |
-
import io
|
| 15 |
-
import base64
|
| 16 |
-
from gradio_client import Client, handle_file
|
| 17 |
-
from huggingface_hub import snapshot_download
|
| 18 |
-
from gradio_magicquillv2 import MagicQuillV2
|
| 19 |
-
from fastapi import FastAPI, Request
|
| 20 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 21 |
-
import uvicorn
|
| 22 |
-
import requests
|
| 23 |
-
from PIL import Image, ImageOps
|
| 24 |
-
import random
|
| 25 |
-
import time
|
| 26 |
import torch
|
| 27 |
-
import
|
| 28 |
-
|
| 29 |
-
# Try importing as a package (recommended)
|
| 30 |
from edit_space import KontextEditModel
|
| 31 |
from util import (
|
| 32 |
load_and_preprocess_image,
|
| 33 |
read_base64_image as read_base64_image_utils,
|
| 34 |
create_alpha_mask,
|
| 35 |
tensor_to_base64,
|
| 36 |
-
get_mask_bbox
|
| 37 |
)
|
| 38 |
|
| 39 |
# Initialize models
|
|
@@ -43,21 +18,9 @@ snapshot_download(repo_id="LiuZichen/MagicQuillV2-models", repo_type="model", lo
|
|
| 43 |
|
| 44 |
print("Initializing models...")
|
| 45 |
kontext_model = KontextEditModel()
|
| 46 |
-
|
| 47 |
-
# Initialize SAM Client
|
| 48 |
-
# Replace with your actual SAM Space ID
|
| 49 |
-
sam_client = Client("LiuZichen/MagicQuillHelper")
|
| 50 |
print("Models initialized.")
|
| 51 |
|
| 52 |
-
|
| 53 |
-
.ms {
|
| 54 |
-
width: 60%;
|
| 55 |
-
margin: auto
|
| 56 |
-
}
|
| 57 |
-
"""
|
| 58 |
-
|
| 59 |
-
url = "http://localhost:7860"
|
| 60 |
-
|
| 61 |
def generate(merged_image, total_mask, original_image, add_color_image, add_edge_mask, remove_edge_mask, fill_mask, add_prop_image, positive_prompt, negative_prompt, fine_edge, fix_perspective, grow_size, edge_strength, color_strength, local_strength, seed, steps, cfg):
|
| 62 |
print("prompt is:", positive_prompt)
|
| 63 |
print("other parameters:", negative_prompt, fine_edge, fix_perspective, grow_size, edge_strength, color_strength, local_strength, seed, steps, cfg)
|
|
@@ -66,10 +29,6 @@ def generate(merged_image, total_mask, original_image, add_color_image, add_edge
|
|
| 66 |
raise RuntimeError("KontextEditModel not initialized")
|
| 67 |
|
| 68 |
# Preprocess inputs
|
| 69 |
-
# utils.read_base64_image returns BytesIO, which create_alpha_mask accepts (via Image.open)
|
| 70 |
-
# load_and_preprocess_image accepts path, so we might need to check if it accepts file-like object.
|
| 71 |
-
# utils.load_and_preprocess_image uses Image.open(image_path), so BytesIO works.
|
| 72 |
-
|
| 73 |
merged_image_tensor = load_and_preprocess_image(read_base64_image_utils(merged_image))
|
| 74 |
total_mask_tensor = create_alpha_mask(read_base64_image_utils(total_mask))
|
| 75 |
original_image_tensor = load_and_preprocess_image(read_base64_image_utils(original_image))
|
|
@@ -126,322 +85,39 @@ def generate(merged_image, total_mask, original_image, add_color_image, add_edge
|
|
| 126 |
res_base64 = tensor_to_base64(final_image)
|
| 127 |
return res_base64
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
steps,
|
| 161 |
-
cfg
|
| 162 |
-
)
|
| 163 |
-
x["from_backend"]["generated_image"] = res_base64
|
| 164 |
-
except Exception as e:
|
| 165 |
-
print(f"Error in generation: {e}")
|
| 166 |
-
x["from_backend"]["generated_image"] = None
|
| 167 |
-
|
| 168 |
-
return x
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
with gr.Blocks(title="MagicQuill V2") as demo:
|
| 172 |
-
with gr.Row():
|
| 173 |
-
ms = MagicQuillV2()
|
| 174 |
-
|
| 175 |
-
with gr.Row():
|
| 176 |
-
with gr.Column():
|
| 177 |
-
btn = gr.Button("Run", variant="primary")
|
| 178 |
-
with gr.Column():
|
| 179 |
-
with gr.Accordion("parameters", open=False):
|
| 180 |
-
negative_prompt = gr.Textbox(
|
| 181 |
-
label="Negative Prompt",
|
| 182 |
-
value="",
|
| 183 |
-
interactive=True
|
| 184 |
-
)
|
| 185 |
-
fine_edge = gr.Radio(
|
| 186 |
-
label="Fine Edge",
|
| 187 |
-
choices=['enable', 'disable'],
|
| 188 |
-
value='disable',
|
| 189 |
-
interactive=True
|
| 190 |
-
)
|
| 191 |
-
fix_perspective = gr.Radio(
|
| 192 |
-
label="Fix Perspective",
|
| 193 |
-
choices=['enable', 'disable'],
|
| 194 |
-
value='disable',
|
| 195 |
-
interactive=True
|
| 196 |
-
)
|
| 197 |
-
grow_size = gr.Slider(
|
| 198 |
-
label="Grow Size",
|
| 199 |
-
minimum=10,
|
| 200 |
-
maximum=100,
|
| 201 |
-
value=50,
|
| 202 |
-
step=1,
|
| 203 |
-
interactive=True
|
| 204 |
-
)
|
| 205 |
-
edge_strength = gr.Slider(
|
| 206 |
-
label="Edge Strength",
|
| 207 |
-
minimum=0.0,
|
| 208 |
-
maximum=5.0,
|
| 209 |
-
value=0.6,
|
| 210 |
-
step=0.01,
|
| 211 |
-
interactive=True
|
| 212 |
-
)
|
| 213 |
-
color_strength = gr.Slider(
|
| 214 |
-
label="Color Strength",
|
| 215 |
-
minimum=0.0,
|
| 216 |
-
maximum=5.0,
|
| 217 |
-
value=1.5,
|
| 218 |
-
step=0.01,
|
| 219 |
-
interactive=True
|
| 220 |
-
)
|
| 221 |
-
local_strength = gr.Slider(
|
| 222 |
-
label="Local Strength",
|
| 223 |
-
minimum=0.0,
|
| 224 |
-
maximum=5.0,
|
| 225 |
-
value=1.0,
|
| 226 |
-
step=0.01,
|
| 227 |
-
interactive=True
|
| 228 |
-
)
|
| 229 |
-
seed = gr.Number(
|
| 230 |
-
label="Seed",
|
| 231 |
-
value=-1,
|
| 232 |
-
precision=0,
|
| 233 |
-
interactive=True
|
| 234 |
-
)
|
| 235 |
-
steps = gr.Slider(
|
| 236 |
-
label="Steps",
|
| 237 |
-
minimum=0,
|
| 238 |
-
maximum=50,
|
| 239 |
-
value=20,
|
| 240 |
-
interactive=True
|
| 241 |
-
)
|
| 242 |
-
cfg = gr.Slider(
|
| 243 |
-
label="CFG",
|
| 244 |
-
minimum=0.0,
|
| 245 |
-
maximum=20.0,
|
| 246 |
-
value=3.5,
|
| 247 |
-
step=0.1,
|
| 248 |
-
interactive=True
|
| 249 |
-
)
|
| 250 |
-
|
| 251 |
-
btn.click(generate_image_handler, inputs=[ms, negative_prompt, fine_edge, fix_perspective, grow_size, edge_strength, color_strength, local_strength, seed, steps, cfg], outputs=ms)
|
| 252 |
-
|
| 253 |
-
app = FastAPI()
|
| 254 |
-
app.add_middleware(
|
| 255 |
-
CORSMiddleware,
|
| 256 |
-
allow_origins=['*'],
|
| 257 |
-
allow_credentials=True,
|
| 258 |
-
allow_methods=["*"],
|
| 259 |
-
allow_headers=["*"],
|
| 260 |
)
|
| 261 |
|
| 262 |
-
def get_root_url(
|
| 263 |
-
request: Request, route_path: str, root_path: str | None
|
| 264 |
-
):
|
| 265 |
-
print(root_path)
|
| 266 |
-
return root_path
|
| 267 |
-
import gradio.route_utils
|
| 268 |
-
gr.route_utils.get_root_url = get_root_url
|
| 269 |
-
|
| 270 |
-
# @app.post("/magic_quill/generate_image")
|
| 271 |
-
# async def generate_image(request: Request):
|
| 272 |
-
# data = await request.json()
|
| 273 |
-
# res = generate(
|
| 274 |
-
# data["merged_image"],
|
| 275 |
-
# data["total_mask"],
|
| 276 |
-
# data["original_image"],
|
| 277 |
-
# data["add_color_image"],
|
| 278 |
-
# data["add_edge_mask"],
|
| 279 |
-
# data["remove_edge_mask"],
|
| 280 |
-
# data["fill_mask"],
|
| 281 |
-
# data["add_prop_image"],
|
| 282 |
-
# data["positive_prompt"],
|
| 283 |
-
# data["negative_prompt"],
|
| 284 |
-
# data["fine_edge"],
|
| 285 |
-
# data["fix_perspective"],
|
| 286 |
-
# data["grow_size"],
|
| 287 |
-
# data["edge_strength"],
|
| 288 |
-
# data["color_strength"],
|
| 289 |
-
# data["local_strength"],
|
| 290 |
-
# data["seed"],
|
| 291 |
-
# data["steps"],
|
| 292 |
-
# data["cfg"]
|
| 293 |
-
# )
|
| 294 |
-
# return {'res': res}
|
| 295 |
-
|
| 296 |
-
@app.post("/magic_quill/process_background_img")
|
| 297 |
-
async def process_background_img(request: Request):
|
| 298 |
-
img = await request.json()
|
| 299 |
-
from util import process_background
|
| 300 |
-
# process_background returns tensor [1, H, W, 3] in uint8 or float
|
| 301 |
-
resized_img_tensor = process_background(img)
|
| 302 |
-
|
| 303 |
-
# tensor_to_base64 from util expects tensor
|
| 304 |
-
resized_img_base64 = "data:image/webp;base64," + tensor_to_base64(
|
| 305 |
-
resized_img_tensor,
|
| 306 |
-
quality=80,
|
| 307 |
-
method=6
|
| 308 |
-
)
|
| 309 |
-
return resized_img_base64
|
| 310 |
-
|
| 311 |
-
@app.post("/magic_quill/segmentation")
|
| 312 |
-
async def segmentation(request: Request):
|
| 313 |
-
json_data = await request.json()
|
| 314 |
-
image_base64 = json_data.get("image", None)
|
| 315 |
-
coordinates_positive = json_data.get("coordinates_positive", None)
|
| 316 |
-
coordinates_negative = json_data.get("coordinates_negative", None)
|
| 317 |
-
bboxes = json_data.get("bboxes", None)
|
| 318 |
-
|
| 319 |
-
if sam_client is None:
|
| 320 |
-
return {"error": "sam client not initialized"}
|
| 321 |
-
|
| 322 |
-
# Process coordinates and bboxes
|
| 323 |
-
pos_coordinates = None
|
| 324 |
-
if coordinates_positive and len(coordinates_positive) > 0:
|
| 325 |
-
pos_coordinates = []
|
| 326 |
-
for coord in coordinates_positive:
|
| 327 |
-
coord['x'] = int(round(coord['x']))
|
| 328 |
-
coord['y'] = int(round(coord['y']))
|
| 329 |
-
pos_coordinates.append({'x': coord['x'], 'y': coord['y']})
|
| 330 |
-
pos_coordinates = json.dumps(pos_coordinates)
|
| 331 |
-
|
| 332 |
-
neg_coordinates = None
|
| 333 |
-
if coordinates_negative and len(coordinates_negative) > 0:
|
| 334 |
-
neg_coordinates = []
|
| 335 |
-
for coord in coordinates_negative:
|
| 336 |
-
coord['x'] = int(round(coord['x']))
|
| 337 |
-
coord['y'] = int(round(coord['y']))
|
| 338 |
-
neg_coordinates.append({'x': coord['x'], 'y': coord['y']})
|
| 339 |
-
neg_coordinates = json.dumps(neg_coordinates)
|
| 340 |
-
|
| 341 |
-
bboxes_xyxy = None
|
| 342 |
-
if bboxes and len(bboxes) > 0:
|
| 343 |
-
valid_bboxes = []
|
| 344 |
-
for bbox in bboxes:
|
| 345 |
-
if (bbox.get("startX") is None or
|
| 346 |
-
bbox.get("startY") is None or
|
| 347 |
-
bbox.get("endX") is None or
|
| 348 |
-
bbox.get("endY") is None):
|
| 349 |
-
continue
|
| 350 |
-
else:
|
| 351 |
-
x_min = max(min(int(bbox["startX"]), int(bbox["endX"])), 0)
|
| 352 |
-
y_min = max(min(int(bbox["startY"]), int(bbox["endY"])), 0)
|
| 353 |
-
# Note: image_tensor not available here easily without loading image,
|
| 354 |
-
# but usually we don't need to clip strictly if SAM handles it or we clip to large values
|
| 355 |
-
# For now, we skip strict clipping against image dims or assume 10000
|
| 356 |
-
x_max = int(bbox["startX"]) if int(bbox["startX"]) > int(bbox["endX"]) else int(bbox["endX"])
|
| 357 |
-
y_max = int(bbox["startY"]) if int(bbox["startY"]) > int(bbox["endY"]) else int(bbox["endY"])
|
| 358 |
-
valid_bboxes.append((x_min, y_min, x_max, y_max))
|
| 359 |
-
|
| 360 |
-
bboxes_xyxy = []
|
| 361 |
-
for bbox in valid_bboxes:
|
| 362 |
-
x_min, y_min, x_max, y_max = bbox
|
| 363 |
-
bboxes_xyxy.append((x_min, y_min, x_max, y_max))
|
| 364 |
-
|
| 365 |
-
# Convert to JSON string if that's what the client expects, or keep as list
|
| 366 |
-
# Assuming JSON string for consistency with coords
|
| 367 |
-
if bboxes_xyxy:
|
| 368 |
-
bboxes_xyxy = json.dumps(bboxes_xyxy)
|
| 369 |
-
|
| 370 |
-
print(f"Segmentation request: pos={pos_coordinates}, neg={neg_coordinates}, bboxes={bboxes_xyxy}")
|
| 371 |
-
|
| 372 |
-
try:
|
| 373 |
-
# Save base64 image to temp file
|
| 374 |
-
image_bytes = read_base64_image_utils(image_base64)
|
| 375 |
-
# Image.open to verify and save as WebP (smaller size)
|
| 376 |
-
pil_image = Image.open(image_bytes)
|
| 377 |
-
with tempfile.NamedTemporaryFile(suffix=".webp", delete=False) as temp_in:
|
| 378 |
-
pil_image.save(temp_in.name, format="WEBP", quality=80)
|
| 379 |
-
temp_in_path = temp_in.name
|
| 380 |
-
|
| 381 |
-
# Execute segmentation via Client
|
| 382 |
-
# We assume the remote space returns a filepath to the segmented image (with alpha)
|
| 383 |
-
# NOW it returns mask_np image
|
| 384 |
-
result_path = sam_client.predict(
|
| 385 |
-
handle_file(temp_in_path),
|
| 386 |
-
pos_coordinates,
|
| 387 |
-
neg_coordinates,
|
| 388 |
-
bboxes_xyxy,
|
| 389 |
-
api_name="/segment"
|
| 390 |
-
)
|
| 391 |
-
|
| 392 |
-
# Clean up input temp
|
| 393 |
-
os.unlink(temp_in_path)
|
| 394 |
-
|
| 395 |
-
# Process result
|
| 396 |
-
# result_path should be a generic object, usually a tuple (image_path, mask_path) or just image_path
|
| 397 |
-
# Depending on how the remote space is implemented.
|
| 398 |
-
if isinstance(result_path, (list, tuple)):
|
| 399 |
-
result_path = result_path[0] # Take the first return value if multiple
|
| 400 |
-
|
| 401 |
-
if not result_path or not os.path.exists(result_path):
|
| 402 |
-
raise RuntimeError("Client returned invalid result path")
|
| 403 |
-
|
| 404 |
-
# result_path is the Mask Image (White=Selected, Black=Background)
|
| 405 |
-
mask_pil = Image.open(result_path)
|
| 406 |
-
if mask_pil.mode != 'L':
|
| 407 |
-
mask_pil = mask_pil.convert('L')
|
| 408 |
-
|
| 409 |
-
pil_image = pil_image.convert("RGB")
|
| 410 |
-
if pil_image.size != mask_pil.size:
|
| 411 |
-
mask_pil = mask_pil.resize(pil_image.size, Image.NEAREST)
|
| 412 |
-
|
| 413 |
-
r, g, b = pil_image.split()
|
| 414 |
-
res_pil = Image.merge("RGBA", (r, g, b, mask_pil))
|
| 415 |
-
|
| 416 |
-
# Extract bbox from mask (alpha)
|
| 417 |
-
mask_tensor = torch.from_numpy(np.array(mask_pil) / 255.0).float().unsqueeze(0)
|
| 418 |
-
mask_bbox = get_mask_bbox(mask_tensor)
|
| 419 |
-
if mask_bbox:
|
| 420 |
-
x_min, y_min, x_max, y_max = mask_bbox
|
| 421 |
-
seg_bbox = {'startX': x_min, 'startY': y_min, 'endX': x_max, 'endY': y_max}
|
| 422 |
-
else:
|
| 423 |
-
seg_bbox = {'startX': 0, 'startY': 0, 'endX': 0, 'endY': 0}
|
| 424 |
-
|
| 425 |
-
print(seg_bbox)
|
| 426 |
-
|
| 427 |
-
# Convert result to base64
|
| 428 |
-
# We need to convert the PIL image to base64 string
|
| 429 |
-
buffered = io.BytesIO()
|
| 430 |
-
res_pil.save(buffered, format="PNG")
|
| 431 |
-
image_base64_res = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 432 |
-
|
| 433 |
-
return {
|
| 434 |
-
"error": False,
|
| 435 |
-
"segmentation_image": "data:image/png;base64," + image_base64_res,
|
| 436 |
-
"segmentation_bbox": seg_bbox
|
| 437 |
-
}
|
| 438 |
-
|
| 439 |
-
except Exception as e:
|
| 440 |
-
print(f"Error in segmentation: {e}")
|
| 441 |
-
return {"error": str(e)}
|
| 442 |
-
|
| 443 |
-
app = gr.mount_gradio_app(app, demo, "/")
|
| 444 |
-
|
| 445 |
if __name__ == "__main__":
|
| 446 |
-
# uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 447 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
+
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
| 6 |
from edit_space import KontextEditModel
|
| 7 |
from util import (
|
| 8 |
load_and_preprocess_image,
|
| 9 |
read_base64_image as read_base64_image_utils,
|
| 10 |
create_alpha_mask,
|
| 11 |
tensor_to_base64,
|
|
|
|
| 12 |
)
|
| 13 |
|
| 14 |
# Initialize models
|
|
|
|
| 18 |
|
| 19 |
print("Initializing models...")
|
| 20 |
kontext_model = KontextEditModel()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
print("Models initialized.")
|
| 22 |
|
| 23 |
+
@spaces.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def generate(merged_image, total_mask, original_image, add_color_image, add_edge_mask, remove_edge_mask, fill_mask, add_prop_image, positive_prompt, negative_prompt, fine_edge, fix_perspective, grow_size, edge_strength, color_strength, local_strength, seed, steps, cfg):
|
| 25 |
print("prompt is:", positive_prompt)
|
| 26 |
print("other parameters:", negative_prompt, fine_edge, fix_perspective, grow_size, edge_strength, color_strength, local_strength, seed, steps, cfg)
|
|
|
|
| 29 |
raise RuntimeError("KontextEditModel not initialized")
|
| 30 |
|
| 31 |
# Preprocess inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
merged_image_tensor = load_and_preprocess_image(read_base64_image_utils(merged_image))
|
| 33 |
total_mask_tensor = create_alpha_mask(read_base64_image_utils(total_mask))
|
| 34 |
original_image_tensor = load_and_preprocess_image(read_base64_image_utils(original_image))
|
|
|
|
| 85 |
res_base64 = tensor_to_base64(final_image)
|
| 86 |
return res_base64
|
| 87 |
|
| 88 |
+
# Create Gradio Interface
|
| 89 |
+
# All image inputs are passed as base64 strings (Textboxes)
|
| 90 |
+
inputs = [
|
| 91 |
+
gr.Textbox(label="merged_image"),
|
| 92 |
+
gr.Textbox(label="total_mask"),
|
| 93 |
+
gr.Textbox(label="original_image"),
|
| 94 |
+
gr.Textbox(label="add_color_image"),
|
| 95 |
+
gr.Textbox(label="add_edge_mask"),
|
| 96 |
+
gr.Textbox(label="remove_edge_mask"),
|
| 97 |
+
gr.Textbox(label="fill_mask"),
|
| 98 |
+
gr.Textbox(label="add_prop_image"),
|
| 99 |
+
gr.Textbox(label="positive_prompt"),
|
| 100 |
+
gr.Textbox(label="negative_prompt"),
|
| 101 |
+
gr.Textbox(label="fine_edge"),
|
| 102 |
+
gr.Textbox(label="fix_perspective"),
|
| 103 |
+
gr.Number(label="grow_size"),
|
| 104 |
+
gr.Number(label="edge_strength"),
|
| 105 |
+
gr.Number(label="color_strength"),
|
| 106 |
+
gr.Number(label="local_strength"),
|
| 107 |
+
gr.Number(label="seed"),
|
| 108 |
+
gr.Number(label="steps"),
|
| 109 |
+
gr.Number(label="cfg"),
|
| 110 |
+
]
|
| 111 |
+
|
| 112 |
+
outputs = gr.Textbox(label="generated_image_base64")
|
| 113 |
+
|
| 114 |
+
demo = gr.Interface(
|
| 115 |
+
fn=generate,
|
| 116 |
+
inputs=inputs,
|
| 117 |
+
outputs=outputs,
|
| 118 |
+
api_name="generate"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
)
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
if __name__ == "__main__":
|
|
|
|
| 122 |
demo.launch()
|
| 123 |
+
|