MagicQuillV2 / train /train_kontext_local.py
LiuZichen's picture
update
f460ce6
raw
history blame
45.6 kB
import argparse
import copy
import logging
import math
import os
import shutil
from contextlib import nullcontext
from pathlib import Path
import re
from safetensors.torch import save_file
from PIL import Image
import numpy as np
import torch
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
import diffusers
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from diffusers.optimization import get_scheduler
from diffusers.training_utils import (
cast_training_params,
compute_density_for_timestep_sampling,
compute_loss_weighting_for_sd3,
)
from diffusers.utils.torch_utils import is_compiled_module
from diffusers.utils import (
check_min_version,
is_wandb_available,
)
from src.prompt_helper import *
from src.lora_helper import *
from src.jsonl_datasets_kontext_local import make_train_dataset_mixed, collate_fn
from src.pipeline_flux_kontext_control import (
FluxKontextControlPipeline,
resize_position_encoding,
prepare_latent_subject_ids,
PREFERRED_KONTEXT_RESOLUTIONS
)
from src.transformer_flux import FluxTransformer2DModel
from diffusers.models.attention_processor import FluxAttnProcessor2_0
from src.layers import MultiDoubleStreamBlockLoraProcessor, MultiSingleStreamBlockLoraProcessor
from tqdm.auto import tqdm
if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.31.0.dev0")
logger = get_logger(__name__)
def compute_background_preserving_loss(model_pred, target, mask_values, weighting, background_weight: float = 3.0):
"""
Compute loss with higher penalty on background (non-masked) regions to preserve them.
model_pred/target: [B, C, H, W]
mask_values: [B, 1, H_img, W_img] with values in {0,1} at image resolution
weighting: broadcastable to [B, C, H, W]
Returns per-pixel loss map [B, C, H, W]
"""
base_loss = (weighting.float() * (model_pred.float() - target.float()) ** 2)
mask_latent = torch.nn.functional.interpolate(
mask_values,
size=(model_pred.shape[2], model_pred.shape[3]),
mode='bilinear',
align_corners=False,
)
foreground_mask = mask_latent
background_mask = 1.0 - mask_latent
foreground_mask = foreground_mask.expand_as(base_loss)
background_mask = background_mask.expand_as(base_loss)
foreground_loss = base_loss * foreground_mask
background_loss = base_loss * background_mask * float(background_weight)
total_loss = foreground_loss + background_loss
return total_loss
def log_validation(
pipeline,
args,
accelerator,
pipeline_args,
step,
torch_dtype,
is_final_validation=False,
):
logger.info(
f"Running validation... Strict per-case evaluation for image, spatial image, and prompt."
)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
autocast_ctx = nullcontext()
# Build per-case evaluation: require equal lengths for image, spatial image, and prompt
if args.validation_images is None or args.validation_images == ['None']:
raise ValueError("validation_images must be provided and non-empty")
if args.validation_prompt is None:
raise ValueError("validation_prompt must be provided and non-empty")
control_dict_root = dict(pipeline_args.get("control_dict", {})) if pipeline_args is not None else {}
spatial_ls = control_dict_root.get("spatial_images", []) or []
val_imgs = args.validation_images
prompts = args.validation_prompt
if not (len(val_imgs) == len(prompts) == len(spatial_ls)):
raise ValueError(
f"Length mismatch: validation_images={len(val_imgs)}, validation_prompt={len(prompts)}, spatial_images={len(spatial_ls)}"
)
results = []
def _resize_to_preferred(img: Image.Image) -> Image.Image:
w, h = img.size
aspect_ratio = w / h if h != 0 else 1.0
_, target_w, target_h = min(
(abs(aspect_ratio - (pref_w / pref_h)), pref_w, pref_h)
for (pref_h, pref_w) in PREFERRED_KONTEXT_RESOLUTIONS
)
return img.resize((target_w, target_h), Image.BICUBIC)
# Distributed per-rank assignment: each process handles its own slice of cases
num_cases = len(prompts)
logger.info(f"Paired validation (distributed): {num_cases} cases across {accelerator.num_processes} ranks")
rank = accelerator.process_index
world_size = accelerator.num_processes
local_indices = list(range(rank, num_cases, world_size))
local_images = []
with autocast_ctx:
for idx in local_indices:
try:
base_img = Image.open(val_imgs[idx]).convert("RGB")
resized_img = _resize_to_preferred(base_img)
except Exception as e:
raise ValueError(f"Failed to load/resize validation image idx={idx}: {e}")
case_args = dict(pipeline_args) if pipeline_args is not None else {}
case_args.pop("height", None)
case_args.pop("width", None)
if resized_img is not None:
tw, th = resized_img.size
case_args["height"] = th
case_args["width"] = tw
case_control = dict(case_args.get("control_dict", {}))
spatial_case = spatial_ls[idx]
# Compose masked image cond: resized_img * (1 - binary_mask)
try:
mask_img = Image.open(spatial_case).convert("L") if isinstance(spatial_case, str) else spatial_case.convert("L")
except Exception:
mask_img = spatial_case.convert("L")
mask_img = mask_img.resize(resized_img.size, Image.NEAREST)
mask_np = np.array(mask_img)
mask_bin = (mask_np > 127).astype(np.uint8)
inv_mask = (1 - mask_bin).astype(np.uint8)
base_np = np.array(resized_img)
masked_np = base_np * inv_mask[..., None]
masked_img = Image.fromarray(masked_np.astype(np.uint8))
case_control["spatial_images"] = [masked_img]
case_args["control_dict"] = case_control
case_args["prompt"] = prompts[idx]
img = pipeline(image=resized_img, **case_args, generator=generator).images[0]
local_images.append(img)
# Gather one image per rank (pad missing ranks with black images) to main process
fixed_size = (1024, 1024)
has_sample = torch.tensor([1 if len(local_images) > 0 else 0], device=accelerator.device, dtype=torch.int)
local_idx = torch.tensor([local_indices[0] if len(local_indices) > 0 else -1], device=accelerator.device, dtype=torch.long)
if len(local_images) > 0:
gathered_img = local_images[0].resize(fixed_size, Image.BICUBIC)
img_np = np.asarray(gathered_img).astype(np.uint8)
else:
img_np = np.zeros((fixed_size[1], fixed_size[0], 3), dtype=np.uint8)
img_tensor = torch.from_numpy(img_np).to(device=accelerator.device)
if img_tensor.ndim == 3:
img_tensor = img_tensor.unsqueeze(0)
gathered_has = accelerator.gather(has_sample)
gathered_idx = accelerator.gather(local_idx)
gathered_imgs = accelerator.gather(img_tensor)
if accelerator.is_main_process:
for i in range(int(gathered_has.shape[0])):
if int(gathered_has[i].item()) == 1:
idx = int(gathered_idx[i].item())
arr = gathered_imgs[i].cpu().numpy()
pil_img = Image.fromarray(arr.astype(np.uint8))
# Resize back to original validation image size
try:
orig = Image.open(val_imgs[idx]).convert("RGB")
pil_img = pil_img.resize(orig.size, Image.BICUBIC)
except Exception:
pass
results.append(pil_img)
del pipeline
if torch.cuda.is_available():
torch.cuda.empty_cache()
return results
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"):
text_encoder_config = transformers.PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "T5EncoderModel":
from transformers import T5EncoderModel
return T5EncoderModel
else:
raise ValueError(f"{model_class} is not supported.")
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Training script for Flux Kontext with EasyControl.")
parser.add_argument("--lora_num", type=int, default=1, help="number of the lora.")
parser.add_argument("--cond_size", type=int, default=512, help="size of the condition data.")
parser.add_argument("--mode", type=str, default=None, help="Controller mode; kept for compatibility.")
# New dataset (local edits + inpaint JSONL) mixed 1:1
parser.add_argument("--local_edits_json", type=str, default="/robby/share/Editing/qingyan/InstructV2V/Qwen2_5_72B_instructs_10W.json", help="Path to local edits JSON")
parser.add_argument("--train_data_dir", type=str, default="/robby/share/Editing/lzc/data/pexel_final/inpaint_edit_outputs_merged.jsonl", help="Path to inpaint JSONL file for mixing 1:1")
parser.add_argument("--source_frames_dir", type=str, default="/robby/share/Editing/qingyan/InstructV2V/pexel-video-merged-1frame", help="Root dir containing group folders like 0139")
parser.add_argument("--target_frames_dir", type=str, default="/robby/share/Editing/qingyan/InstructV2V/pexel-video-1frame-kontext-edit/local", help="Root dir containing group folders like 0139")
parser.add_argument("--masks_dir", type=str, default="/robby/share/Editing/lzc/InstructV2V/diff_masks", help="Root dir of precomputed masks organized as <group>/<prefix>_{i}.png")
parser.add_argument("--pretrained_model_name_or_path", type=str, default="", required=False, help="Base model path")
parser.add_argument("--pretrained_lora_path", type=str, default=None, required=False, help="LoRA checkpoint to initialize from")
parser.add_argument("--revision", type=str, default=None, required=False, help="Revision of pretrained model")
parser.add_argument("--variant", type=str, default=None, help="Variant of the model files")
parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.")
parser.add_argument("--max_sequence_length", type=int, default=128, help="Max sequence length for T5")
parser.add_argument("--kontext", type=str, default="enable")
parser.add_argument("--validation_prompt", type=str, nargs="+", default=None)
parser.add_argument("--validation_images", type=str, nargs="+", default=None, help="List of valiadation images")
parser.add_argument("--subject_test_images", type=str, nargs="+", default=None, help="List of subject test images")
parser.add_argument("--spatial_test_images", type=str, nargs="+", default=None, help="List of spatial test images")
parser.add_argument("--num_validation_images", type=int, default=4)
parser.add_argument("--validation_steps", type=int, default=20)
parser.add_argument("--ranks", type=int, nargs="+", default=[256], help="LoRA ranks")
parser.add_argument("--network_alphas", type=int, nargs="+", default=[256], help="LoRA network alphas")
parser.add_argument("--output_dir", type=str, default="/tiamat-NAS/zhangyuxuan/projects2/Easy_Control_0120/single_models/subject_model", help="Output directory")
parser.add_argument("--seed", type=int, default=None)
parser.add_argument("--train_batch_size", type=int, default=1)
parser.add_argument("--num_train_epochs", type=int, default=50)
parser.add_argument("--max_train_steps", type=int, default=None)
parser.add_argument("--checkpointing_steps", type=int, default=1000)
parser.add_argument("--checkpoints_total_limit", type=int, default=None)
parser.add_argument("--resume_from_checkpoint", type=str, default=None)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--gradient_checkpointing", action="store_true")
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--guidance_scale", type=float, default=1.0, help="Flux Kontext is guidance distilled")
parser.add_argument("--scale_lr", action="store_true", default=False)
parser.add_argument("--lr_scheduler", type=str, default="constant")
parser.add_argument("--lr_warmup_steps", type=int, default=500)
parser.add_argument("--lr_num_cycles", type=int, default=1)
parser.add_argument("--lr_power", type=float, default=1.0)
parser.add_argument("--dataloader_num_workers", type=int, default=8)
parser.add_argument("--weighting_scheme", type=str, default="none", choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"])
parser.add_argument("--logit_mean", type=float, default=0.0)
parser.add_argument("--logit_std", type=float, default=1.0)
parser.add_argument("--mode_scale", type=float, default=1.29)
parser.add_argument("--optimizer", type=str, default="AdamW")
parser.add_argument("--use_8bit_adam", action="store_true")
parser.add_argument("--adam_beta1", type=float, default=0.9)
parser.add_argument("--adam_beta2", type=float, default=0.999)
parser.add_argument("--prodigy_beta3", type=float, default=None)
parser.add_argument("--prodigy_decouple", type=bool, default=True)
parser.add_argument("--adam_weight_decay", type=float, default=1e-04)
parser.add_argument("--adam_weight_decay_text_encoder", type=float, default=1e-03)
parser.add_argument("--adam_epsilon", type=float, default=1e-08)
parser.add_argument("--prodigy_use_bias_correction", type=bool, default=True)
parser.add_argument("--prodigy_safeguard_warmup", type=bool, default=True)
parser.add_argument("--max_grad_norm", type=float, default=1.0)
parser.add_argument("--logging_dir", type=str, default="logs")
parser.add_argument("--cache_latents", action="store_true", default=False)
parser.add_argument("--report_to", type=str, default="tensorboard")
parser.add_argument("--mixed_precision", type=str, default="bf16", choices=["no", "fp16", "bf16"])
parser.add_argument("--upcast_before_saving", action="store_true", default=False)
parser.add_argument("--mix_ratio", type=float, default=0, help="Ratio of inpaint to local edits (B per A). 0=only local edits, 1=1:1, 2=1:2")
parser.add_argument("--background_weight", type=float, default=1.0, help="Background preserving loss weight multiplier")
# Blending options for dataset pixel_values
parser.add_argument("--blend_pixel_values", action="store_true", help="Blend target/source into pixel_values using mask")
parser.add_argument("--blend_kernel", type=int, default=21, help="Gaussian blur kernel size (must be odd)")
parser.add_argument("--blend_sigma", type=float, default=10.0, help="Gaussian blur sigma")
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
return args
def main(args):
if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
raise ValueError("Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 or fp32 instead.")
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(args.logging_dir, exist_ok=True)
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
kwargs_handlers=[kwargs],
)
if torch.backends.mps.is_available():
accelerator.native_amp = False
if args.report_to == "wandb":
if not is_wandb_available():
raise ImportError("Install wandb for logging during training.")
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed)
if accelerator.is_main_process and args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Tokenizers
tokenizer_one = transformers.CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
)
tokenizer_two = transformers.T5TokenizerFast.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.revision
)
# Text encoders
text_encoder_cls_one = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder")
text_encoder_cls_two = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2")
# Scheduler and models
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
noise_scheduler_copy = copy.deepcopy(noise_scheduler)
text_encoder_one, text_encoder_two = load_text_encoders(args, text_encoder_cls_one, text_encoder_cls_two)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant)
transformer = FluxTransformer2DModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="transformer", revision=args.revision, variant=args.variant)
# Train only LoRA adapters
transformer.requires_grad_(True)
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
raise ValueError("Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 or fp32 instead.")
vae.to(accelerator.device, dtype=weight_dtype)
transformer.to(accelerator.device, dtype=weight_dtype)
text_encoder_one.to(accelerator.device, dtype=weight_dtype)
text_encoder_two.to(accelerator.device, dtype=weight_dtype)
if args.gradient_checkpointing:
transformer.enable_gradient_checkpointing()
# Setup LoRA attention processors
if args.pretrained_lora_path is not None:
lora_path = args.pretrained_lora_path
checkpoint = load_checkpoint(lora_path)
lora_attn_procs = {}
double_blocks_idx = list(range(19))
single_blocks_idx = list(range(38))
number = 1
for name, attn_processor in transformer.attn_processors.items():
match = re.search(r'\.(\d+)\.', name)
if match:
layer_index = int(match.group(1))
if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
lora_state_dicts = {}
for key, value in checkpoint.items():
if re.search(r'\.(\d+)\.', key):
checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
if checkpoint_layer_index == layer_index and key.startswith("transformer_blocks"):
lora_state_dicts[key] = value
lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
dim=3072, ranks=args.ranks, network_alphas=args.network_alphas, lora_weights=[1 for _ in range(args.lora_num)], device=accelerator.device, dtype=weight_dtype, cond_width=args.cond_size, cond_height=args.cond_size, n_loras=args.lora_num
)
for n in range(number):
lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
lora_attn_procs[name].proj_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.down.weight', None)
lora_attn_procs[name].proj_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.up.weight', None)
elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
lora_state_dicts = {}
for key, value in checkpoint.items():
if re.search(r'\.(\d+)\.', key):
checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
if checkpoint_layer_index == layer_index and key.startswith("single_transformer_blocks"):
lora_state_dicts[key] = value
lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
dim=3072, ranks=args.ranks, network_alphas=args.network_alphas, lora_weights=[1 for _ in range(args.lora_num)], device=accelerator.device, dtype=weight_dtype, cond_width=args.cond_size, cond_height=args.cond_size, n_loras=args.lora_num
)
for n in range(number):
lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
else:
lora_attn_procs[name] = FluxAttnProcessor2_0()
else:
lora_attn_procs = {}
double_blocks_idx = list(range(19))
single_blocks_idx = list(range(38))
for name, attn_processor in transformer.attn_processors.items():
match = re.search(r'\.(\d+)\.', name)
if match:
layer_index = int(match.group(1))
if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
dim=3072, ranks=args.ranks, network_alphas=args.network_alphas, lora_weights=[1 for _ in range(args.lora_num)], device=accelerator.device, dtype=weight_dtype, cond_width=args.cond_size, cond_height=args.cond_size, n_loras=args.lora_num
)
elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
dim=3072, ranks=args.ranks, network_alphas=args.network_alphas, lora_weights=[1 for _ in range(args.lora_num)], device=accelerator.device, dtype=weight_dtype, cond_width=args.cond_size, cond_height=args.cond_size, n_loras=args.lora_num
)
else:
lora_attn_procs[name] = attn_processor
transformer.set_attn_processor(lora_attn_procs)
transformer.train()
for n, param in transformer.named_parameters():
if '_lora' not in n:
param.requires_grad = False
print(sum([p.numel() for p in transformer.parameters() if p.requires_grad]) / 1000000, 'M parameters')
def unwrap_model(model):
model = accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model
return model
if args.resume_from_checkpoint:
path = args.resume_from_checkpoint
global_step = int(path.split("-")[-1])
initial_global_step = global_step
else:
initial_global_step = 0
global_step = 0
first_epoch = 0
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
if args.mixed_precision == "fp16":
models = [transformer]
cast_training_params(models, dtype=torch.float32)
params_to_optimize = [p for p in transformer.parameters() if p.requires_grad]
transformer_parameters_with_lr = {"params": params_to_optimize, "lr": args.learning_rate}
print(sum([p.numel() for p in transformer.parameters() if p.requires_grad]) / 1000000, 'parameters')
optimizer_class = torch.optim.AdamW
optimizer = optimizer_class(
[transformer_parameters_with_lr],
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
tokenizers = [tokenizer_one, tokenizer_two]
text_encoders = [text_encoder_one, text_encoder_two]
train_dataset = make_train_dataset_mixed(args, tokenizers, accelerator)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=collate_fn,
num_workers=args.dataloader_num_workers,
)
vae_config_shift_factor = vae.config.shift_factor
vae_config_scaling_factor = vae.config.scaling_factor
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.resume_from_checkpoint:
first_epoch = global_step // num_update_steps_per_epoch
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
transformer, optimizer, train_dataloader, lr_scheduler
)
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Sanitize config for TensorBoard hparams (only allow int/float/bool/str/tensor). Others are stringified if possible; otherwise dropped
def _sanitize_hparams(config_dict):
sanitized = {}
for key, value in dict(config_dict).items():
try:
if value is None:
continue
# numpy scalar types
if isinstance(value, (np.integer,)):
sanitized[key] = int(value)
elif isinstance(value, (np.floating,)):
sanitized[key] = float(value)
elif isinstance(value, (int, float, bool, str)):
sanitized[key] = value
elif isinstance(value, Path):
sanitized[key] = str(value)
elif isinstance(value, (list, tuple)):
# stringify simple sequences; skip if fails
sanitized[key] = str(value)
else:
# best-effort stringify
sanitized[key] = str(value)
except Exception:
# skip unconvertible entries
continue
return sanitized
if accelerator.is_main_process:
tracker_name = "Easy_Control_Kontext"
accelerator.init_trackers(tracker_name, config=_sanitize_hparams(vars(args)))
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
disable=not accelerator.is_local_main_process,
)
def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype)
schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device)
timesteps = timesteps.to(accelerator.device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
# Kontext specifics
vae_scale_factor = 8 # Kontext uses 8x VAE factor; pack/unpack uses additional 2x in methods
# Match pipeline's prepare_latents cond resolution: 2 * (cond_size // (vae_scale_factor * 2))
height_cond = 2 * (args.cond_size // (vae_scale_factor * 2))
width_cond = 2 * (args.cond_size // (vae_scale_factor * 2))
offset = 64
for epoch in range(first_epoch, args.num_train_epochs):
transformer.train()
for step, batch in enumerate(train_dataloader):
models_to_accumulate = [transformer]
with accelerator.accumulate(models_to_accumulate):
tokens = [batch["text_ids_1"], batch["text_ids_2"]]
prompt_embeds, pooled_prompt_embeds, text_ids = encode_token_ids(text_encoders, tokens, accelerator)
prompt_embeds = prompt_embeds.to(dtype=vae.dtype, device=accelerator.device)
pooled_prompt_embeds = pooled_prompt_embeds.to(dtype=vae.dtype, device=accelerator.device)
text_ids = text_ids.to(dtype=vae.dtype, device=accelerator.device)
pixel_values = batch["pixel_values"].to(dtype=vae.dtype)
height_ = 2 * (int(pixel_values.shape[-2]) // (vae_scale_factor * 2))
width_ = 2 * (int(pixel_values.shape[-1]) // (vae_scale_factor * 2))
model_input = vae.encode(pixel_values).latent_dist.sample()
model_input = (model_input - vae_config_shift_factor) * vae_config_scaling_factor
model_input = model_input.to(dtype=weight_dtype)
latent_image_ids, cond_latent_image_ids = resize_position_encoding(
model_input.shape[0], height_, width_, height_cond, width_cond, accelerator.device, weight_dtype
)
noise = torch.randn_like(model_input)
bsz = model_input.shape[0]
u = compute_density_for_timestep_sampling(
weighting_scheme=args.weighting_scheme,
batch_size=bsz,
logit_mean=args.logit_mean,
logit_std=args.logit_std,
mode_scale=args.mode_scale,
)
indices = (u * noise_scheduler_copy.config.num_train_timesteps).long()
timesteps = noise_scheduler_copy.timesteps[indices].to(device=model_input.device)
sigmas = get_sigmas(timesteps, n_dim=model_input.ndim, dtype=model_input.dtype)
noisy_model_input = (1.0 - sigmas) * model_input + sigmas * noise
packed_noisy_model_input = FluxKontextControlPipeline._pack_latents(
noisy_model_input,
batch_size=model_input.shape[0],
num_channels_latents=model_input.shape[1],
height=model_input.shape[2],
width=model_input.shape[3],
)
latent_image_ids_to_concat = [latent_image_ids]
packed_cond_model_input_to_concat = []
if args.kontext == "enable":
source_pixel_values = batch["source_pixel_values"].to(dtype=vae.dtype)
source_image_latents = vae.encode(source_pixel_values).latent_dist.sample()
source_image_latents = (source_image_latents - vae_config_shift_factor) * vae_config_scaling_factor
image_latent_h, image_latent_w = source_image_latents.shape[2:]
packed_image_latents = FluxKontextControlPipeline._pack_latents(
source_image_latents,
batch_size=source_image_latents.shape[0],
num_channels_latents=source_image_latents.shape[1],
height=image_latent_h,
width=image_latent_w,
)
source_image_ids = FluxKontextControlPipeline._prepare_latent_image_ids(
batch_size=source_image_latents.shape[0],
height=image_latent_h // 2,
width=image_latent_w // 2,
device=accelerator.device,
dtype=weight_dtype,
)
source_image_ids[..., 0] = 1 # Mark as condition
latent_image_ids_to_concat.append(source_image_ids)
subject_pixel_values = batch.get("subject_pixel_values")
if subject_pixel_values is not None:
subject_pixel_values = subject_pixel_values.to(dtype=vae.dtype)
subject_input = vae.encode(subject_pixel_values).latent_dist.sample()
subject_input = (subject_input - vae_config_shift_factor) * vae_config_scaling_factor
subject_input = subject_input.to(dtype=weight_dtype)
sub_number = subject_pixel_values.shape[-2] // args.cond_size
latent_subject_ids = prepare_latent_subject_ids(height_cond // 2, width_cond // 2, accelerator.device, weight_dtype)
latent_subject_ids[..., 0] = 2
latent_subject_ids[:, 1] += offset
sub_latent_image_ids = torch.cat([latent_subject_ids for _ in range(sub_number)], dim=0)
latent_image_ids_to_concat.append(sub_latent_image_ids)
packed_subject_model_input = FluxKontextControlPipeline._pack_latents(
subject_input,
batch_size=subject_input.shape[0],
num_channels_latents=subject_input.shape[1],
height=subject_input.shape[2],
width=subject_input.shape[3],
)
packed_cond_model_input_to_concat.append(packed_subject_model_input)
cond_pixel_values = batch.get("cond_pixel_values")
if cond_pixel_values is not None:
cond_pixel_values = cond_pixel_values.to(dtype=vae.dtype)
cond_input = vae.encode(cond_pixel_values).latent_dist.sample()
cond_input = (cond_input - vae_config_shift_factor) * vae_config_scaling_factor
cond_input = cond_input.to(dtype=weight_dtype)
cond_number = cond_pixel_values.shape[-2] // args.cond_size
cond_latent_image_ids[..., 0] = 2
cond_latent_image_ids_rep = torch.cat([cond_latent_image_ids for _ in range(cond_number)], dim=0)
latent_image_ids_to_concat.append(cond_latent_image_ids_rep)
packed_cond_model_input = FluxKontextControlPipeline._pack_latents(
cond_input,
batch_size=cond_input.shape[0],
num_channels_latents=cond_input.shape[1],
height=cond_input.shape[2],
width=cond_input.shape[3],
)
packed_cond_model_input_to_concat.append(packed_cond_model_input)
latent_image_ids = torch.cat(latent_image_ids_to_concat, dim=0)
cond_packed_noisy_model_input = torch.cat(packed_cond_model_input_to_concat, dim=1)
if accelerator.unwrap_model(transformer).config.guidance_embeds:
guidance = torch.tensor([args.guidance_scale], device=accelerator.device)
guidance = guidance.expand(model_input.shape[0])
else:
guidance = None
latent_model_input=packed_noisy_model_input
if args.kontext == "enable":
latent_model_input = torch.cat([latent_model_input, packed_image_latents], dim=1)
model_pred = transformer(
hidden_states=latent_model_input,
cond_hidden_states=cond_packed_noisy_model_input,
timestep=timesteps / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
return_dict=False,
)[0]
model_pred = model_pred[:, : packed_noisy_model_input.size(1)]
model_pred = FluxKontextControlPipeline._unpack_latents(
model_pred,
height=int(pixel_values.shape[-2]),
width=int(pixel_values.shape[-1]),
vae_scale_factor=vae_scale_factor,
)
weighting = compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas)
target = noise - model_input
# mask_values = batch.get("mask_values")
# if mask_values is not None:
# mask_values = mask_values.to(device=accelerator.device, dtype=model_pred.dtype)
# loss_map = compute_background_preserving_loss(
# model_pred=model_pred,
# target=target,
# mask_values=mask_values,
# weighting=weighting,
# background_weight=args.background_weight,
# )
# loss = torch.mean(loss_map.reshape(target.shape[0], -1), 1)
# loss = loss.mean()
# else:
loss = torch.mean((weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), 1)
loss = loss.mean()
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = (transformer.parameters())
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process:
if global_step % args.checkpointing_steps == 0:
if args.checkpoints_total_limit is not None:
checkpoints = os.listdir(args.output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints")
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
os.makedirs(save_path, exist_ok=True)
unwrapped_model_state = accelerator.unwrap_model(transformer).state_dict()
lora_state_dict = {k: unwrapped_model_state[k] for k in unwrapped_model_state.keys() if '_lora' in k}
save_file(lora_state_dict, os.path.join(save_path, "lora.safetensors"))
logger.info(f"Saved state to {save_path}")
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if args.validation_prompt is not None and global_step % args.validation_steps == 0:
pipeline = FluxKontextControlPipeline.from_pretrained(
args.pretrained_model_name_or_path,
vae=vae,
text_encoder=accelerator.unwrap_model(text_encoder_one),
text_encoder_2=accelerator.unwrap_model(text_encoder_two),
transformer=accelerator.unwrap_model(transformer),
revision=args.revision,
variant=args.variant,
torch_dtype=weight_dtype,
)
if args.spatial_test_images is not None and len(args.spatial_test_images) != 0 and args.spatial_test_images != ['None']:
spatial_paths = args.spatial_test_images
spatial_ls = [Image.open(image_path).convert("RGB") for image_path in spatial_paths]
else:
spatial_ls = []
pipeline_args = {
"prompt": args.validation_prompt,
"cond_size": args.cond_size,
"guidance_scale": 3.5,
"num_inference_steps": 20,
"max_sequence_length": 128,
"control_dict": {"spatial_images": spatial_ls},
}
images = log_validation(
pipeline=pipeline,
args=args,
accelerator=accelerator,
pipeline_args=pipeline_args,
step=global_step,
torch_dtype=weight_dtype,
)
if accelerator.is_main_process:
save_path = os.path.join(args.output_dir, "validation")
os.makedirs(save_path, exist_ok=True)
save_folder = os.path.join(save_path, f"checkpoint-{global_step}")
os.makedirs(save_folder, exist_ok=True)
for idx, img in enumerate(images):
img.save(os.path.join(save_folder, f"{idx}.jpg"))
del pipeline
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)