Spaces:
Running
on
Zero
Running
on
Zero
| import inspect | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextModel, | |
| CLIPTokenizer, | |
| CLIPVisionModelWithProjection, | |
| T5EncoderModel, | |
| T5TokenizerFast, | |
| ) | |
| from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
| from diffusers.loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin | |
| from diffusers.models import AutoencoderKL, FluxTransformer2DModel | |
| from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
| from diffusers.utils import ( | |
| USE_PEFT_BACKEND, | |
| is_torch_xla_available, | |
| logging, | |
| replace_example_docstring, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput | |
| from torchvision.transforms.functional import pad | |
| from diffusers.models.attention_processor import FluxAttnProcessor2_0 | |
| from .lora_helper import prepare_lora_processors, load_checkpoint | |
| from .layers_cache import MultiDoubleStreamBlockLoraProcessor, MultiSingleStreamBlockLoraProcessor | |
| import re | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| PREFERRED_KONTEXT_RESOLUTIONS = [ | |
| (672, 1568), | |
| (688, 1504), | |
| (720, 1456), | |
| (752, 1392), | |
| (800, 1328), | |
| (832, 1248), | |
| (880, 1184), | |
| (944, 1104), | |
| (1024, 1024), | |
| (1104, 944), | |
| (1184, 880), | |
| (1248, 832), | |
| (1328, 800), | |
| (1392, 752), | |
| (1456, 720), | |
| (1504, 688), | |
| (1568, 672), | |
| ] | |
| def calculate_shift( | |
| image_seq_len, | |
| base_seq_len: int = 256, | |
| max_seq_len: int = 4096, | |
| base_shift: float = 0.5, | |
| max_shift: float = 1.15, | |
| ): | |
| m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | |
| b = base_shift - m * base_seq_len | |
| mu = image_seq_len * m + b | |
| return mu | |
| def prepare_latent_image_ids_(height, width, device, dtype): | |
| latent_image_ids = torch.zeros(height, width, 3, device=device, dtype=dtype) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height, device=device)[:, None] # y | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width, device=device)[None, :] # x | |
| return latent_image_ids | |
| def prepare_latent_subject_ids(height, width, device, dtype): | |
| latent_image_ids = torch.zeros(height, width, 3, device=device, dtype=dtype) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height, device=device)[:, None] | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width, device=device)[None, :] | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| latent_image_ids = latent_image_ids.reshape( | |
| latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| return latent_image_ids.to(device=device, dtype=dtype) | |
| def resize_position_encoding( | |
| batch_size, original_height, original_width, target_height, target_width, device, dtype | |
| ): | |
| latent_image_ids = prepare_latent_image_ids_(original_height // 2, original_width // 2, device, dtype) | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| latent_image_ids = latent_image_ids.reshape( | |
| latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| scale_h = original_height / target_height | |
| scale_w = original_width / target_width | |
| latent_image_ids_resized = torch.zeros(target_height // 2, target_width // 2, 3, device=device, dtype=dtype) | |
| latent_image_ids_resized[..., 1] = ( | |
| latent_image_ids_resized[..., 1] + torch.arange(target_height // 2, device=device)[:, None] * scale_h | |
| ) | |
| latent_image_ids_resized[..., 2] = ( | |
| latent_image_ids_resized[..., 2] + torch.arange(target_width // 2, device=device)[None, :] * scale_w | |
| ) | |
| cond_latent_image_id_height, cond_latent_image_id_width, cond_latent_image_id_channels = ( | |
| latent_image_ids_resized.shape | |
| ) | |
| cond_latent_image_ids = latent_image_ids_resized.reshape( | |
| cond_latent_image_id_height * cond_latent_image_id_width, cond_latent_image_id_channels | |
| ) | |
| return latent_image_ids, cond_latent_image_ids | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
| def retrieve_latents( | |
| encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
| ): | |
| if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
| return encoder_output.latent_dist.sample(generator) | |
| elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
| return encoder_output.latent_dist.mode() | |
| elif hasattr(encoder_output, "latents"): | |
| return encoder_output.latents | |
| else: | |
| raise AttributeError("Could not access latents of provided encoder_output") | |
| class FluxKontextControlPipeline( | |
| DiffusionPipeline, | |
| FluxLoraLoaderMixin, | |
| FromSingleFileMixin, | |
| TextualInversionLoaderMixin, | |
| ): | |
| r""" | |
| The Flux Kontext pipeline for image-to-image and text-to-image generation with control module. | |
| Reference: https://bfl.ai/announcements/flux-1-kontext-dev | |
| Args: | |
| transformer ([`FluxTransformer2DModel`]): | |
| Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. | |
| scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
| A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| text_encoder_2 ([`T5EncoderModel`]): | |
| [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically | |
| the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). | |
| tokenizer_2 (`T5TokenizerFast`): | |
| Second Tokenizer of class | |
| [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). | |
| """ | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" | |
| _optional_components = [] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds"] | |
| def __init__( | |
| self, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| text_encoder_2: T5EncoderModel, | |
| tokenizer_2: T5TokenizerFast, | |
| transformer: FluxTransformer2DModel, | |
| image_encoder: CLIPVisionModelWithProjection = None, | |
| feature_extractor: CLIPImageProcessor = None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| image_encoder=None, | |
| feature_extractor=None, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 | |
| # Flux latents are packed into 2x2 patches, so use VAE factor multiplied by patch size for image processing | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) | |
| self.tokenizer_max_length = ( | |
| self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 | |
| ) | |
| self.default_sample_size = 128 | |
| self.latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16 | |
| self.control_lora_processors: Dict[str, Dict[str, Any]] = {} | |
| self.control_lora_cond_sizes: Dict[str, Any] = {} | |
| self.control_lora_weights: Dict[str, Any] = {} | |
| self.current_control_type: Optional[Union[str, List[str]]] = None | |
| def load_control_loras(self, lora_config: Dict[str, Dict[str, Any]]): | |
| """ | |
| Loads and prepares LoRA attention processors for different control types. | |
| Args: | |
| lora_config: A dict where keys are control types (e.g., 'edge') and values are dicts | |
| containing 'path', 'lora_weights', and 'cond_size'. | |
| """ | |
| for control_type, config in lora_config.items(): | |
| print(f"Loading LoRA for control type: {control_type}") | |
| checkpoint = load_checkpoint(config["path"]) | |
| processors = prepare_lora_processors( | |
| checkpoint=checkpoint, | |
| lora_weights=config["lora_weights"], | |
| transformer=self.transformer, | |
| cond_size=config["cond_size"], | |
| number=len(config["lora_weights"]) if config.get("lora_weights") is not None else None, | |
| ) | |
| self.control_lora_processors[control_type] = processors | |
| self.control_lora_cond_sizes[control_type] = config["cond_size"] | |
| self.control_lora_weights[control_type] = config["lora_weights"] | |
| print("All control LoRAs loaded and prepared.") | |
| def _combine_control_loras(self, control_types: List[str]): | |
| """ | |
| Combines multiple control LoRAs into a single set of attention processors. | |
| """ | |
| if not control_types: | |
| return FluxAttnProcessor2_0() | |
| try: | |
| first_param = next(self.transformer.parameters()) | |
| target_device = first_param.device | |
| target_dtype = first_param.dtype | |
| except StopIteration: | |
| target_device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| target_dtype = torch.float32 | |
| combined_procs = {} | |
| # LoRA weights must come from configuration, not from gammas (which control strength) | |
| all_lora_weights = [] | |
| # Determine total number of LoRAs and ranks across all control types | |
| total_loras = 0 | |
| all_ranks = [] | |
| all_cond_sizes = [] | |
| for control_type in control_types: | |
| procs = self.control_lora_processors.get(control_type) | |
| if not procs: | |
| raise ValueError(f"Control type '{control_type}' not loaded.") | |
| # Collect configured LoRA weights for this control type | |
| conf_weights = self.control_lora_weights.get(control_type) | |
| if conf_weights is None: | |
| raise ValueError(f"Control type '{control_type}' has no configured lora_weights.") | |
| all_lora_weights.extend(conf_weights) | |
| # Get n_loras from the first processor | |
| first_proc = next(iter(procs.values())) | |
| n_loras_in_control = first_proc.n_loras | |
| total_loras += n_loras_in_control | |
| # Correctly get ranks from the processor's LoRA layers | |
| proc_ranks = [lora.down.weight.shape[0] for lora in first_proc.q_loras] | |
| all_ranks.extend(proc_ranks) | |
| cond_size = self.control_lora_cond_sizes[control_type] | |
| cond_sizes = [cond_size] * n_loras_in_control if not isinstance(cond_size, list) else cond_size | |
| all_cond_sizes.extend(cond_sizes) | |
| for name in self.transformer.attn_processors.keys(): | |
| match = re.search(r'\.(\d+)\.', name) | |
| if not match: | |
| continue | |
| layer_index = int(match.group(1)) | |
| if name.startswith("transformer_blocks"): | |
| new_proc = MultiDoubleStreamBlockLoraProcessor( | |
| dim=3072, ranks=all_ranks, network_alphas=all_ranks, lora_weights=all_lora_weights, | |
| device=target_device, dtype=target_dtype, | |
| cond_widths=all_cond_sizes, cond_heights=all_cond_sizes, n_loras=total_loras | |
| ) | |
| elif name.startswith("single_transformer_blocks"): | |
| new_proc = MultiSingleStreamBlockLoraProcessor( | |
| dim=3072, ranks=all_ranks, network_alphas=all_ranks, lora_weights=all_lora_weights, | |
| device=target_device, dtype=target_dtype, | |
| cond_widths=all_cond_sizes, cond_heights=all_cond_sizes, n_loras=total_loras | |
| ) | |
| else: | |
| continue | |
| lora_idx_offset = 0 | |
| for control_type in control_types: | |
| source_proc = self.control_lora_processors[control_type][name] | |
| for i in range(source_proc.n_loras): | |
| current_lora_idx = lora_idx_offset + i | |
| # Copy weights for q, k, v, proj | |
| new_proc.q_loras[current_lora_idx].load_state_dict(source_proc.q_loras[i].state_dict()) | |
| new_proc.k_loras[current_lora_idx].load_state_dict(source_proc.k_loras[i].state_dict()) | |
| new_proc.v_loras[current_lora_idx].load_state_dict(source_proc.v_loras[i].state_dict()) | |
| if hasattr(new_proc, 'proj_loras'): | |
| new_proc.proj_loras[current_lora_idx].load_state_dict(source_proc.proj_loras[i].state_dict()) | |
| lora_idx_offset += source_proc.n_loras | |
| combined_procs[name] = new_proc.to(device=target_device, dtype=target_dtype) | |
| return combined_procs | |
| def set_gamma_values(self, gammas: List[float]): | |
| """ | |
| Set gamma values for bias control modulation on current attention processors and attention modules. | |
| """ | |
| print(f"Setting gamma values to: {gammas}") | |
| # Resolve device/dtype robustly from model parameters | |
| try: | |
| first_param = next(self.transformer.parameters()) | |
| device = first_param.device | |
| dtype = first_param.dtype | |
| except StopIteration: | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| dtype = torch.float32 | |
| gamma_tensor = torch.tensor(gammas, device=device, dtype=dtype) | |
| for name, attn_processor in self.transformer.attn_processors.items(): | |
| if hasattr(attn_processor, 'q_loras'): | |
| setattr(attn_processor, 'c_factor', gamma_tensor) | |
| # print(f" Set c_factor {gamma_tensor} on processor {name}") | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds | |
| def _get_t5_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| num_images_per_prompt: int = 1, | |
| max_sequence_length: int = 512, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| device = device or self._execution_device | |
| dtype = dtype or self.text_encoder.dtype | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2) | |
| text_inputs = self.tokenizer_2( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| return_length=False, | |
| return_overflowing_tokens=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because `max_sequence_length` is set to " | |
| f" {max_sequence_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] | |
| dtype = self.text_encoder_2.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| _, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| return prompt_embeds | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds | |
| def _get_clip_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]], | |
| num_images_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| ): | |
| device = device or self._execution_device | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer_max_length, | |
| truncation=True, | |
| return_overflowing_tokens=False, | |
| return_length=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer_max_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) | |
| # Use pooled output of CLIPTextModel | |
| prompt_embeds = prompt_embeds.pooler_output | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) | |
| return prompt_embeds | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| prompt_2: Union[str, List[str]], | |
| device: Optional[torch.device] = None, | |
| num_images_per_prompt: int = 1, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| max_sequence_length: int = 512, | |
| lora_scale: Optional[float] = None, | |
| ): | |
| r""" | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in all text-encoders | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| lora_scale (`float`, *optional*): | |
| A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| """ | |
| device = device or self._execution_device | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if self.text_encoder is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder_2, lora_scale) | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt_embeds is None: | |
| prompt_2 = prompt_2 or prompt | |
| prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | |
| # We only use the pooled prompt output from the CLIPTextModel | |
| pooled_prompt_embeds = self._get_clip_prompt_embeds( | |
| prompt=prompt, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| ) | |
| prompt_embeds = self._get_t5_prompt_embeds( | |
| prompt=prompt_2, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| if self.text_encoder is not None: | |
| if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None: | |
| if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder_2, lora_scale) | |
| dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype | |
| text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) | |
| return prompt_embeds, pooled_prompt_embeds, text_ids | |
| # Adapted from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.check_inputs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| prompt_embeds=None, | |
| pooled_prompt_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| max_sequence_length=None, | |
| ): | |
| if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: | |
| raise ValueError( | |
| f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}." | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_2 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | |
| raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | |
| if prompt_embeds is not None and pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
| ) | |
| if max_sequence_length is not None and max_sequence_length > 512: | |
| raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids | |
| def _prepare_latent_image_ids(batch_size, height, width, device, dtype): | |
| latent_image_ids = torch.zeros(height, width, 3) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :] | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| latent_image_ids = latent_image_ids.reshape( | |
| latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| return latent_image_ids.to(device=device, dtype=dtype) | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents | |
| def _pack_latents(latents, batch_size, num_channels_latents, height, width): | |
| latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) | |
| latents = latents.permute(0, 2, 4, 1, 3, 5) | |
| latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) | |
| return latents | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents | |
| def _unpack_latents(latents, height, width, vae_scale_factor): | |
| batch_size, num_patches, channels = latents.shape | |
| # VAE applies 8x compression on images but we must also account for packing which requires | |
| # latent height and width to be divisible by 2. | |
| height = 2 * (int(height) // (vae_scale_factor * 2)) | |
| width = 2 * (int(width) // (vae_scale_factor * 2)) | |
| latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) | |
| latents = latents.permute(0, 3, 1, 4, 2, 5) | |
| latents = latents.reshape(batch_size, channels // (2 * 2), height, width) | |
| return latents | |
| def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | |
| for i in range(image.shape[0]) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = retrieve_latents(self.vae.encode(image), generator=generator) | |
| image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
| return image_latents | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.enable_vae_slicing | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
| compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.disable_vae_slicing | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.enable_vae_tiling | |
| def enable_vae_tiling(self): | |
| r""" | |
| Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
| compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
| processing larger images. | |
| """ | |
| self.vae.enable_tiling() | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.disable_vae_tiling | |
| def disable_vae_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_tiling() | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| image, | |
| subject_images, | |
| spatial_images, | |
| latents=None, | |
| cond_size=512, | |
| num_subject_images: int = 0, | |
| num_spatial_images: int = 0, | |
| ): | |
| height = 2 * (int(height) // (self.vae_scale_factor * 2)) | |
| width = 2 * (int(width) // (self.vae_scale_factor * 2)) | |
| height_cond = 2 * (cond_size // (self.vae_scale_factor * 2)) | |
| width_cond = 2 * (cond_size // (self.vae_scale_factor * 2)) | |
| image_latents = image_ids = None | |
| image_latent_h = 0 # Initialize to handle case where image is None | |
| # Prepare noise latents | |
| shape = (batch_size, num_channels_latents, height, width) | |
| if latents is None: | |
| noise_latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| noise_latents = latents.to(device=device, dtype=dtype) | |
| noise_latents = self._pack_latents(noise_latents, batch_size, num_channels_latents, height, width) | |
| # print(noise_latents.shape) | |
| noise_latent_image_ids, cond_latent_image_ids_resized = resize_position_encoding( | |
| batch_size, height, width, height_cond, width_cond, device, dtype | |
| ) | |
| # noise IDs are marked with 0 in the first channel | |
| noise_latent_image_ids[..., 0] = 0 | |
| cond_latents_to_concat = [] | |
| latents_ids_to_concat = [noise_latent_image_ids] | |
| # 1. Prepare `image` (Kontext) latents | |
| if image is not None: | |
| image = image.to(device=device, dtype=dtype) | |
| if image.shape[1] != self.latent_channels: | |
| image_latents = self._encode_vae_image(image=image, generator=generator) | |
| else: | |
| image_latents = image | |
| image_latent_h, image_latent_w = image_latents.shape[2:] | |
| image_latents = self._pack_latents( | |
| image_latents, batch_size, num_channels_latents, image_latent_h, image_latent_w | |
| ) | |
| image_ids = self._prepare_latent_image_ids( | |
| batch_size, image_latent_h // 2, image_latent_w // 2, device, dtype | |
| ) | |
| image_ids[..., 0] = 1 # Mark as condition | |
| latents_ids_to_concat.append(image_ids) | |
| # 2. Prepare `subject_images` latents | |
| if subject_images is not None and num_subject_images > 0: | |
| subject_images = subject_images.to(device=device, dtype=dtype) | |
| subject_image_latents = self._encode_vae_image(image=subject_images, generator=generator) | |
| subject_latent_h, subject_latent_w = subject_image_latents.shape[2:] | |
| subject_latents = self._pack_latents( | |
| subject_image_latents, batch_size, num_channels_latents, subject_latent_h, subject_latent_w | |
| ) | |
| latent_subject_ids = prepare_latent_subject_ids(height_cond // 2, width_cond // 2, device, dtype) | |
| latent_subject_ids[..., 0] = 1 | |
| latent_subject_ids[:, 1] += image_latent_h // 2 | |
| subject_latent_image_ids = torch.cat([latent_subject_ids for _ in range(num_subject_images)], dim=0) | |
| cond_latents_to_concat.append(subject_latents) | |
| latents_ids_to_concat.append(subject_latent_image_ids) | |
| # 3. Prepare `spatial_images` latents | |
| if spatial_images is not None and num_spatial_images > 0: | |
| spatial_images = spatial_images.to(device=device, dtype=dtype) | |
| spatial_image_latents = self._encode_vae_image(image=spatial_images, generator=generator) | |
| spatial_latent_h, spatial_latent_w = spatial_image_latents.shape[2:] | |
| cond_latents = self._pack_latents( | |
| spatial_image_latents, batch_size, num_channels_latents, spatial_latent_h, spatial_latent_w | |
| ) | |
| cond_latent_image_ids_resized[..., 0] = 2 # Mark as condition | |
| cond_latent_image_ids = torch.cat( | |
| [cond_latent_image_ids_resized for _ in range(num_spatial_images)], dim=0 | |
| ) | |
| cond_latents_to_concat.append(cond_latents) | |
| latents_ids_to_concat.append(cond_latent_image_ids) | |
| cond_latents = torch.cat(cond_latents_to_concat, dim=1) if cond_latents_to_concat else None | |
| latent_image_ids = torch.cat(latents_ids_to_concat, dim=0) | |
| return noise_latents, image_latents, cond_latents, latent_image_ids | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def joint_attention_kwargs(self): | |
| return self._joint_attention_kwargs | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def current_timestep(self): | |
| return self._current_timestep | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| image: Optional[PipelineImageInput] = None, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| sigmas: Optional[List[float]] = None, | |
| guidance_scale: float = 3.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| cond_size: int = 512, | |
| control_dict: Optional[Dict[str, Any]] = None, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
| `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both | |
| numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list | |
| or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a | |
| list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image | |
| latents as `image`, but if passing latents directly it is not encoded again. | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| will be used instead. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
| their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
| will be used. | |
| guidance_scale (`float`, *optional*, defaults to 3.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion | |
| Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2. | |
| of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting | |
| `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to | |
| the text `prompt`, usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
| joint_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| max_sequence_length (`int` defaults to 512): | |
| Maximum sequence length to use with the `prompt`. | |
| cond_size (`int`, *optional*, defaults to 512): | |
| The size for conditioning images. | |
| Examples: | |
| Returns: | |
| [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` | |
| is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated | |
| images. | |
| """ | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._current_timestep = None | |
| self._interrupt = False | |
| # Normalize control_dict to an empty dict so kontext-only inference works without controls | |
| control_dict = control_dict or {} | |
| spatial_images = control_dict.get("spatial_images", []) | |
| num_spatial_images = len(spatial_images) | |
| subject_images = control_dict.get("subject_images", []) | |
| num_subject_images = len(subject_images) | |
| requested_control_type = control_dict.get("type") or None | |
| # Normalize to list for unified handling | |
| if requested_control_type and isinstance(requested_control_type, str): | |
| requested_control_type = [requested_control_type] | |
| # Revert to default if no control type is requested and a control is active | |
| if not requested_control_type and self.current_control_type: | |
| print("Reverting to default attention processors.") | |
| self.transformer.set_attn_processor(FluxAttnProcessor2_0()) | |
| self.current_control_type = None | |
| # Switch processors only if the control type(s) have changed | |
| elif requested_control_type != self.current_control_type: | |
| if requested_control_type: | |
| print(f"Switching to LoRA control type(s): {requested_control_type}") | |
| processors = self._combine_control_loras(requested_control_type) | |
| self.transformer.set_attn_processor(processors) | |
| # For cond_size, we assume they are compatible and just use the first one. | |
| self.cond_size = self.control_lora_cond_sizes[requested_control_type[0]] | |
| self.current_control_type = requested_control_type | |
| # Align cond_size to selected control type (if any) | |
| if hasattr(self, "cond_size"): | |
| selected_cond_size = self.cond_size | |
| if isinstance(selected_cond_size, list) and len(selected_cond_size) > 0: | |
| cond_size = int(selected_cond_size[0]) | |
| elif isinstance(selected_cond_size, int): | |
| cond_size = selected_cond_size | |
| # Set gamma values simply based on provided control_dict['gammas']. | |
| if requested_control_type: | |
| raw_gammas = control_dict.get("gammas", []) | |
| if not isinstance(raw_gammas, list): | |
| raw_gammas = [raw_gammas] | |
| # flatten one level | |
| flattened_gammas: List[float] = [] | |
| for g in raw_gammas: | |
| if isinstance(g, (list, tuple)): | |
| flattened_gammas.extend([float(x) for x in g]) | |
| else: | |
| flattened_gammas.append(float(g)) | |
| if len(flattened_gammas) > 0: | |
| self.set_gamma_values(flattened_gammas) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| lora_scale = ( | |
| self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
| ) | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| # 3. Preprocess images | |
| if image is not None and not (isinstance(image, torch.Tensor) and image.size(1) == self.latent_channels): | |
| img = image[0] if isinstance(image, list) else image | |
| image_height, image_width = self.image_processor.get_default_height_width(img) | |
| aspect_ratio = image_width / image_height | |
| # Kontext is trained on specific resolutions, using one of them is recommended | |
| _, image_width, image_height = min( | |
| (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS | |
| ) | |
| multiple_of = self.vae_scale_factor * 2 | |
| image_width = image_width // multiple_of * multiple_of | |
| image_height = image_height // multiple_of * multiple_of | |
| image = self.image_processor.resize(image, image_height, image_width) | |
| image = self.image_processor.preprocess(image, image_height, image_width) | |
| if len(subject_images) > 0: | |
| subject_image_ls = [] | |
| for subject_image in subject_images: | |
| w, h = subject_image.size[:2] | |
| scale = cond_size / max(h, w) | |
| new_h, new_w = int(h * scale), int(w * scale) | |
| subject_image = self.image_processor.preprocess(subject_image, height=new_h, width=new_w) | |
| subject_image = subject_image.to(dtype=self.vae.dtype) | |
| pad_h = cond_size - subject_image.shape[-2] | |
| pad_w = cond_size - subject_image.shape[-1] | |
| subject_image = pad( | |
| subject_image, padding=(int(pad_w / 2), int(pad_h / 2), int(pad_w / 2), int(pad_h / 2)), fill=0 | |
| ) | |
| subject_image_ls.append(subject_image) | |
| subject_images = torch.cat(subject_image_ls, dim=-2) | |
| else: | |
| subject_images = None | |
| if len(spatial_images) > 0: | |
| condition_image_ls = [] | |
| for img in spatial_images: | |
| condition_image = self.image_processor.preprocess(img, height=cond_size, width=cond_size) | |
| condition_image = condition_image.to(dtype=self.vae.dtype) | |
| condition_image_ls.append(condition_image) | |
| spatial_images = torch.cat(condition_image_ls, dim=-2) | |
| else: | |
| spatial_images = None | |
| # 4. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| latents, image_latents, cond_latents, latent_image_ids = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| image, | |
| subject_images, | |
| spatial_images, | |
| latents, | |
| cond_size, | |
| num_subject_images=num_subject_images, | |
| num_spatial_images=num_spatial_images, | |
| ) | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas | |
| # sigmas = np.array([1.0000, 0.9836, 0.9660, 0.9471, 0.9266, 0.9045, 0.8805, 0.8543, 0.8257, 0.7942, 0.7595, 0.7210, 0.6780, 0.6297, 0.5751, 0.5128, 0.4412, 0.3579, 0.2598, 0.1425]) | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.get("base_image_seq_len", 256), | |
| self.scheduler.config.get("max_image_seq_len", 4096), | |
| self.scheduler.config.get("base_shift", 0.5), | |
| self.scheduler.config.get("max_shift", 1.15), | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| sigmas=sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # handle guidance | |
| if self.transformer.config.guidance_embeds: | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
| guidance = guidance.expand(latents.shape[0]) | |
| else: | |
| guidance = None | |
| if self.joint_attention_kwargs is None: | |
| self._joint_attention_kwargs = {} | |
| # K/V Caching | |
| for name, attn_processor in self.transformer.attn_processors.items(): | |
| if hasattr(attn_processor, "bank_kv"): | |
| attn_processor.bank_kv.clear() | |
| if hasattr(attn_processor, "bank_attn"): | |
| attn_processor.bank_attn = None | |
| if cond_latents is not None: | |
| latent_model_input = latents | |
| if image_latents is not None: | |
| latent_model_input = torch.cat([latent_model_input, image_latents], dim=1) | |
| print(latent_model_input.shape) | |
| warmup_latents = latent_model_input | |
| warmup_latent_ids = latent_image_ids | |
| t = torch.tensor([timesteps[0]], device=device) | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| _ = self.transformer( | |
| hidden_states=warmup_latents, | |
| cond_hidden_states=cond_latents, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=warmup_latent_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # 6. Denoising loop | |
| self.scheduler.set_begin_index(0) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| latent_model_input = latents | |
| if image_latents is not None: | |
| latent_model_input = torch.cat([latent_model_input, image_latents], dim=1) | |
| self._current_timestep = t | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| cond_hidden_states=cond_latents, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_pred[:, : latents.size(1)] | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| self._current_timestep = None | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(images=image) | |