Spaces:
Sleeping
Sleeping
LalitMahale
commited on
Commit
·
a2d4cca
1
Parent(s):
e2faad1
project push
Browse files- .gitignore +3 -0
- app.py +38 -0
- config.py +2 -0
- requirements.txt +5 -0
- src/multimodelsearch.py +33 -0
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
data
|
| 2 |
+
src/__pycache__*
|
| 3 |
+
__pycache__*
|
app.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from src.multimodelsearch import MultiModelSearch
|
| 3 |
+
st.set_page_config(
|
| 4 |
+
layout="wide",
|
| 5 |
+
page_title="Recommendation_engine"
|
| 6 |
+
)
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def main():
|
| 10 |
+
st.markdown("<h1 style = 'text-align:center; color:black;'>Recommendation_engine</h1>",unsafe_allow_html=True)
|
| 11 |
+
|
| 12 |
+
multimodelserch = MultiModelSearch()
|
| 13 |
+
|
| 14 |
+
query = st.text_input("Enter Your Query")
|
| 15 |
+
|
| 16 |
+
if st.button("Search") and len(query) > 0:
|
| 17 |
+
result = multimodelserch.search(query=query)
|
| 18 |
+
st.info(f"Your query : {query}")
|
| 19 |
+
st.subheader("Search Results")
|
| 20 |
+
col1,col2,col3 = st.columns(3)
|
| 21 |
+
|
| 22 |
+
with col1:
|
| 23 |
+
st.write(f"Score: {round(result[0].score*100)}%")
|
| 24 |
+
st.image(result[0].content,use_column_width=True)
|
| 25 |
+
|
| 26 |
+
with col2:
|
| 27 |
+
st.write(f"Score: {round(result[1].score*100)}%")
|
| 28 |
+
st.image(result[1].content,use_column_width=True)
|
| 29 |
+
|
| 30 |
+
with col3:
|
| 31 |
+
st.write(f"Score: {round(result[2].score*100)}%")
|
| 32 |
+
st.image(result[2].content,use_column_width=True)
|
| 33 |
+
|
| 34 |
+
else:
|
| 35 |
+
st.warning("Please Enter query.......")
|
| 36 |
+
|
| 37 |
+
if __name__ == "__main__":
|
| 38 |
+
main()
|
config.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MODEL_DIM = 512
|
| 2 |
+
MODEL_NAME = 'sentence-transformers/clip-ViT-B-32'
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
sentence-transformers
|
| 2 |
+
streamlit
|
| 3 |
+
torch
|
| 4 |
+
farm-haystack
|
| 5 |
+
|
src/multimodelsearch.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from haystack import Document
|
| 3 |
+
from haystack import Pipeline
|
| 4 |
+
from haystack.document_stores import InMemoryDocumentStore
|
| 5 |
+
from haystack.nodes.retriever.multimodal import MultiModalRetriever
|
| 6 |
+
from config import MODEL_DIM, MODEL_NAME
|
| 7 |
+
|
| 8 |
+
class MultiModelSearch:
|
| 9 |
+
def __init__(self):
|
| 10 |
+
self.document_stores = InMemoryDocumentStore(embedding_dim=MODEL_DIM)
|
| 11 |
+
document_directory = os.path.join(os.getcwd(),"data")
|
| 12 |
+
# fetch all images and write into haystack document
|
| 13 |
+
images = [
|
| 14 |
+
Document(content= f"{document_directory}/{filename}",content_type="image" )
|
| 15 |
+
for filename in os.listdir(document_directory)
|
| 16 |
+
]
|
| 17 |
+
|
| 18 |
+
self.document_stores.write_documents(images)
|
| 19 |
+
self.retriever_text_to_image = MultiModalRetriever(
|
| 20 |
+
document_store= self.document_stores,
|
| 21 |
+
query_embedding_model= MODEL_NAME,
|
| 22 |
+
query_type="text",
|
| 23 |
+
document_embedding_models= {"image":MODEL_NAME},
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
self.document_stores.update_embeddings(retriever=self.retriever_text_to_image)
|
| 27 |
+
|
| 28 |
+
self.pipeline = Pipeline()
|
| 29 |
+
self.pipeline.add_node(component=self.retriever_text_to_image, name="retriever_text_to_image", inputs=["Query"])
|
| 30 |
+
|
| 31 |
+
def search(self,query, top_k = 3):
|
| 32 |
+
results = self.pipeline.run(query=query, params={"retriever_text_to_image": {"top_k":top_k}})
|
| 33 |
+
return sorted(results["documents"],key= lambda d:d.score, reverse=True)
|