Krish2005tech2 commited on
Commit
3073782
·
verified ·
1 Parent(s): de1c0ef

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +137 -137
app.py CHANGED
@@ -1,138 +1,138 @@
1
- import os
2
- import json
3
- import datetime
4
- import threading
5
- from pathlib import Path
6
-
7
- import numpy as np
8
- import gradio as gr
9
- from dotenv import load_dotenv
10
- from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings
11
-
12
- # ================= ENV =================
13
- load_dotenv()
14
- NVIDIA_API_KEY = os.getenv("NVIDIA_API_KEY")
15
- if not NVIDIA_API_KEY:
16
- raise RuntimeError("NVIDIA_API_KEY not found")
17
-
18
- os.environ["NVIDIA_API_KEY"] = NVIDIA_API_KEY
19
-
20
- # ================= CONFIG =================
21
- DAILY_LIMIT = 50
22
- RATE_FILE = Path("rate_limit.json")
23
- EMBEDDINGS_FILE = Path("embeddings.json")
24
- MAX_HISTORY_TURNS = 3 # keep last 3 Q/A pairs
25
-
26
- lock = threading.Lock()
27
-
28
- # ================= MODELS =================
29
- embedder = NVIDIAEmbeddings(
30
- model="nvidia/nv-embed-v1",
31
- truncate="END"
32
- )
33
-
34
- llm = ChatNVIDIA(
35
- model="mistralai/mixtral-8x22b-instruct-v0.1",
36
- temperature=0.2
37
- )
38
-
39
- # ================= LOAD DOCS =================
40
- with open(EMBEDDINGS_FILE) as f:
41
- DOCS = json.load(f)
42
-
43
- # ================= UTILS =================
44
- def cosine(a, b):
45
- a, b = np.array(a), np.array(b)
46
- return float(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)))
47
-
48
- def retrieve(question, k=4):
49
- qvec = embedder.embed_query(question)
50
- scored = [(cosine(qvec, d["embedding"]), d["text"]) for d in DOCS]
51
- scored.sort(reverse=True)
52
- return [t for _, t in scored[:k]]
53
-
54
- def check_rate_limit():
55
- today = datetime.date.today().isoformat()
56
- with lock:
57
- data = json.loads(RATE_FILE.read_text()) if RATE_FILE.exists() else {}
58
- if data.get(today, 0) >= DAILY_LIMIT:
59
- return False
60
- data[today] = data.get(today, 0) + 1
61
- RATE_FILE.write_text(json.dumps(data))
62
- return True
63
-
64
- def build_prompt(context, history, question):
65
- history_text = "\n".join(
66
- f"User: {q}\nAssistant: {a}"
67
- for q, a in history[-MAX_HISTORY_TURNS:]
68
- )
69
-
70
- return f"""
71
- You are a document-grounded assistant.
72
- Answer ONLY using the context.
73
- If the answer is not present, say "I don't know".
74
-
75
- Conversation so far:
76
- {history_text}
77
-
78
- Context:
79
- {"\n\n---\n\n".join(context)}
80
-
81
- User question:
82
- {question}
83
- """.strip()
84
-
85
- # ================= CHAT FN (STREAMING) =================
86
- def chat_stream(question, history):
87
- if not question.strip():
88
- yield history
89
- return
90
-
91
- if not check_rate_limit():
92
- history.append((question, "Daily limit reached (50 queries)."))
93
- yield history
94
- return
95
-
96
- context = retrieve(question)
97
- prompt = build_prompt(context, history, question)
98
-
99
- partial = ""
100
- for chunk in llm.stream(prompt):
101
- partial += chunk.content
102
- yield history + [(question, partial)]
103
-
104
- # ================= UI =================
105
- with gr.Blocks(title="Academic Regulations RAG") as demo:
106
- gr.Markdown("## 📘 Academic Regulations Queries")
107
- gr.Markdown(
108
- "Ask questions about the academic regulations document. "
109
- "Answers are generated **only** from the official document."
110
- )
111
-
112
- chatbot = gr.Chatbot(height=420)
113
-
114
- question = gr.Textbox(
115
- placeholder="e.g. What is the E grade?",
116
- label="Your question",
117
- scale=4
118
- )
119
- ask = gr.Button("Ask", scale=1, min_width=100)
120
-
121
- clear = gr.Button("Clear Chat")
122
-
123
- ask.click(chat_stream, [question, chatbot], chatbot)
124
-
125
- question.submit(
126
- chat_stream,
127
- inputs=[question, chatbot],
128
- outputs=chatbot
129
- )
130
-
131
- clear.click(lambda: [], None, chatbot)
132
-
133
- # ================= RUN =================
134
- if __name__ == "__main__":
135
- demo.launch(
136
- server_name="0.0.0.0",
137
- server_port=int(os.getenv("PORT", 7860))
138
  )
 
1
+ import os
2
+ import json
3
+ import datetime
4
+ import threading
5
+ from pathlib import Path
6
+
7
+ import numpy as np
8
+ import gradio as gr
9
+ from dotenv import load_dotenv
10
+ from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings
11
+
12
+ # ================= ENV =================
13
+ load_dotenv()
14
+ NVIDIA_API_KEY = os.getenv("NVIDIA_API_KEY")
15
+ if not NVIDIA_API_KEY:
16
+ raise RuntimeError("NVIDIA_API_KEY not found")
17
+
18
+ os.environ["NVIDIA_API_KEY"] = NVIDIA_API_KEY
19
+
20
+ # ================= CONFIG =================
21
+ DAILY_LIMIT = 50
22
+ RATE_FILE = Path("rate_limit.json")
23
+ EMBEDDINGS_FILE = Path("embeddings.json")
24
+ MAX_HISTORY_TURNS = 3 # keep last 3 Q/A pairs
25
+
26
+ lock = threading.Lock()
27
+
28
+ # ================= MODELS =================
29
+ embedder = NVIDIAEmbeddings(
30
+ model="nvidia/nv-embed-v1",
31
+ truncate="END"
32
+ )
33
+
34
+ llm = ChatNVIDIA(
35
+ model="mistralai/mixtral-8x22b-instruct-v0.1",
36
+ temperature=0.2
37
+ )
38
+
39
+ # ================= LOAD DOCS =================
40
+ with open(EMBEDDINGS_FILE) as f:
41
+ DOCS = json.load(f)
42
+
43
+ # ================= UTILS =================
44
+ def cosine(a, b):
45
+ a, b = np.array(a), np.array(b)
46
+ return float(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)))
47
+
48
+ def retrieve(question, k=4):
49
+ qvec = embedder.embed_query(question)
50
+ scored = [(cosine(qvec, d["embedding"]), d["text"]) for d in DOCS]
51
+ scored.sort(reverse=True)
52
+ return [t for _, t in scored[:k]]
53
+
54
+ def check_rate_limit():
55
+ today = datetime.date.today().isoformat()
56
+ with lock:
57
+ data = json.loads(RATE_FILE.read_text()) if RATE_FILE.exists() else {}
58
+ if data.get(today, 0) >= DAILY_LIMIT:
59
+ return False
60
+ data[today] = data.get(today, 0) + 1
61
+ RATE_FILE.write_text(json.dumps(data))
62
+ return True
63
+
64
+ def build_prompt(context, history, question):
65
+ history_text = "\n".join([
66
+ f"User: {q}\nAssistant: {a}"
67
+ for q, a in history[-MAX_HISTORY_TURNS:]
68
+ ])
69
+
70
+ context_text = "\n\n---\n\n".join(context)
71
+
72
+ return f"""You are a document-grounded assistant.
73
+ Answer ONLY using the context.
74
+ If the answer is not present, say "I don't know".
75
+
76
+ Conversation so far:
77
+ {history_text}
78
+
79
+ Context:
80
+ {context_text}
81
+
82
+ User question:
83
+ {question}""".strip()
84
+
85
+ # ================= CHAT FN (STREAMING) =================
86
+ def chat_stream(question, history):
87
+ if not question.strip():
88
+ yield history
89
+ return
90
+
91
+ if not check_rate_limit():
92
+ history.append((question, "Daily limit reached (50 queries)."))
93
+ yield history
94
+ return
95
+
96
+ context = retrieve(question)
97
+ prompt = build_prompt(context, history, question)
98
+
99
+ partial = ""
100
+ for chunk in llm.stream(prompt):
101
+ partial += chunk.content
102
+ yield history + [(question, partial)]
103
+
104
+ # ================= UI =================
105
+ with gr.Blocks(title="Academic Regulations RAG") as demo:
106
+ gr.Markdown("## 📘 Academic Regulations Queries")
107
+ gr.Markdown(
108
+ "Ask questions about the academic regulations document. "
109
+ "Answers are generated **only** from the official document."
110
+ )
111
+
112
+ chatbot = gr.Chatbot(height=420)
113
+
114
+ question = gr.Textbox(
115
+ placeholder="e.g. What is the E grade?",
116
+ label="Your question",
117
+ scale=4
118
+ )
119
+ ask = gr.Button("Ask", scale=1, min_width=100)
120
+
121
+ clear = gr.Button("Clear Chat")
122
+
123
+ ask.click(chat_stream, [question, chatbot], chatbot)
124
+
125
+ question.submit(
126
+ chat_stream,
127
+ inputs=[question, chatbot],
128
+ outputs=chatbot
129
+ )
130
+
131
+ clear.click(lambda: [], None, chatbot)
132
+
133
+ # ================= RUN =================
134
+ if __name__ == "__main__":
135
+ demo.launch(
136
+ server_name="0.0.0.0",
137
+ server_port=int(os.getenv("PORT", 7860))
138
  )