Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,1020 +1,10 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from sentence_transformers import SentenceTransformer, util
|
| 3 |
-
from transformers import (
|
| 4 |
-
AutoTokenizer, AutoModelForSequenceClassification,
|
| 5 |
-
GPT2LMHeadModel, pipeline
|
| 6 |
-
)
|
| 7 |
-
import torch
|
| 8 |
-
import torch.nn.functional as F
|
| 9 |
-
import plotly.graph_objects as go
|
| 10 |
-
import plotly.express as px
|
| 11 |
-
from plotly.subplots import make_subplots
|
| 12 |
-
import numpy as np
|
| 13 |
-
import re
|
| 14 |
-
from collections import Counter
|
| 15 |
-
import math
|
| 16 |
-
import warnings
|
| 17 |
-
from sklearn.linear_model import LogisticRegression
|
| 18 |
-
from sklearn.preprocessing import StandardScaler
|
| 19 |
-
from scipy.special import expit # sigmoid function
|
| 20 |
-
warnings.filterwarnings("ignore")
|
| 21 |
-
|
| 22 |
-
class AdvancedAIDetector:
|
| 23 |
-
def __init__(self):
|
| 24 |
-
print("Initializing AI Detector...")
|
| 25 |
-
|
| 26 |
-
# Use only reliable, well-tested models that work in HF Spaces
|
| 27 |
-
self.detectors = {}
|
| 28 |
-
self.tokenizers = {}
|
| 29 |
-
|
| 30 |
-
# Load primary AI detection model (known to work)
|
| 31 |
-
try:
|
| 32 |
-
self.detectors['roberta_ai_classifier'] = AutoModelForSequenceClassification.from_pretrained('roberta-base-openai-detector')
|
| 33 |
-
self.tokenizers['roberta'] = AutoTokenizer.from_pretrained('roberta-base-openai-detector')
|
| 34 |
-
print("β RoBERTa AI classifier loaded successfully")
|
| 35 |
-
except Exception as e:
|
| 36 |
-
print(f"β Failed to load RoBERTa classifier: {e}")
|
| 37 |
-
self.detectors['roberta_ai_classifier'] = None
|
| 38 |
-
|
| 39 |
-
# Load secondary classifier (alternative)
|
| 40 |
-
try:
|
| 41 |
-
self.detectors['alternative_classifier'] = AutoModelForSequenceClassification.from_pretrained('martin-ha/toxic-comment-model')
|
| 42 |
-
self.tokenizers['alternative'] = AutoTokenizer.from_pretrained('martin-ha/toxic-comment-model')
|
| 43 |
-
print("β Alternative classifier loaded successfully")
|
| 44 |
-
except Exception as e:
|
| 45 |
-
print(f"β Failed to load alternative classifier: {e}")
|
| 46 |
-
self.detectors['alternative_classifier'] = None
|
| 47 |
-
|
| 48 |
-
# Perplexity models - use only GPT-2 base to avoid memory issues
|
| 49 |
-
self.perplexity_models = {}
|
| 50 |
-
self.perplexity_tokenizers = {}
|
| 51 |
-
|
| 52 |
-
try:
|
| 53 |
-
self.perplexity_models['gpt2'] = GPT2LMHeadModel.from_pretrained("gpt2")
|
| 54 |
-
self.perplexity_tokenizers['gpt2'] = AutoTokenizer.from_pretrained("gpt2")
|
| 55 |
-
self.perplexity_models['gpt2'].eval()
|
| 56 |
-
print("β GPT-2 perplexity model loaded successfully")
|
| 57 |
-
except Exception as e:
|
| 58 |
-
print(f"β Failed to load GPT-2: {e}")
|
| 59 |
-
self.perplexity_models['gpt2'] = None
|
| 60 |
-
|
| 61 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 62 |
-
print(f"Using device: {self.device}")
|
| 63 |
-
|
| 64 |
-
# Initialize ensemble classifier and scaler
|
| 65 |
-
self.ensemble_classifier = None
|
| 66 |
-
self.feature_scaler = None
|
| 67 |
-
self._initialize_ensemble_classifier()
|
| 68 |
-
|
| 69 |
-
def _initialize_ensemble_classifier(self):
|
| 70 |
-
"""Initialize a simple ensemble classifier for better confidence scoring"""
|
| 71 |
-
try:
|
| 72 |
-
# Create synthetic training data for the ensemble classifier
|
| 73 |
-
# This is a simplified approach - in production, use real labeled data
|
| 74 |
-
X_train = []
|
| 75 |
-
y_train = []
|
| 76 |
-
|
| 77 |
-
# Simulate AI-generated text features
|
| 78 |
-
for _ in range(100):
|
| 79 |
-
# AI-like features: high classifier score, low perplexity, low diversity
|
| 80 |
-
classifier_score = np.random.normal(0.8, 0.1)
|
| 81 |
-
perplexity_score = np.random.normal(0.3, 0.1)
|
| 82 |
-
feature_score = np.random.normal(0.7, 0.1)
|
| 83 |
-
X_train.append([classifier_score, perplexity_score, feature_score])
|
| 84 |
-
y_train.append(1) # AI
|
| 85 |
-
|
| 86 |
-
# Simulate human-written text features
|
| 87 |
-
for _ in range(100):
|
| 88 |
-
# Human-like features: low classifier score, high perplexity, high diversity
|
| 89 |
-
classifier_score = np.random.normal(0.3, 0.1)
|
| 90 |
-
perplexity_score = np.random.normal(0.7, 0.1)
|
| 91 |
-
feature_score = np.random.normal(0.3, 0.1)
|
| 92 |
-
X_train.append([classifier_score, perplexity_score, feature_score])
|
| 93 |
-
y_train.append(0) # Human
|
| 94 |
-
|
| 95 |
-
X_train = np.array(X_train)
|
| 96 |
-
y_train = np.array(y_train)
|
| 97 |
-
|
| 98 |
-
# Initialize and train the ensemble classifier
|
| 99 |
-
self.feature_scaler = StandardScaler()
|
| 100 |
-
X_train_scaled = self.feature_scaler.fit_transform(X_train)
|
| 101 |
-
|
| 102 |
-
self.ensemble_classifier = LogisticRegression(random_state=42)
|
| 103 |
-
self.ensemble_classifier.fit(X_train_scaled, y_train)
|
| 104 |
-
|
| 105 |
-
print("β Ensemble classifier initialized successfully")
|
| 106 |
-
|
| 107 |
-
except Exception as e:
|
| 108 |
-
print(f"β Failed to initialize ensemble classifier: {e}")
|
| 109 |
-
self.ensemble_classifier = None
|
| 110 |
-
self.feature_scaler = None
|
| 111 |
-
|
| 112 |
-
def calculate_perplexity(self, text, max_length=512):
|
| 113 |
-
"""Calculate perplexity with robust error handling"""
|
| 114 |
-
if 'gpt2' not in self.perplexity_models or not self.perplexity_models['gpt2']:
|
| 115 |
-
return float('inf')
|
| 116 |
-
|
| 117 |
-
try:
|
| 118 |
-
model = self.perplexity_models['gpt2']
|
| 119 |
-
tokenizer = self.perplexity_tokenizers['gpt2']
|
| 120 |
-
|
| 121 |
-
# Truncate text to avoid memory issues
|
| 122 |
-
words = text.split()
|
| 123 |
-
if len(words) > max_length // 4: # Rough word-to-token ratio
|
| 124 |
-
text = ' '.join(words[:max_length // 4])
|
| 125 |
-
|
| 126 |
-
# Add padding token if it doesn't exist
|
| 127 |
-
if tokenizer.pad_token is None:
|
| 128 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 129 |
-
|
| 130 |
-
encodings = tokenizer(text, return_tensors='pt', truncation=True,
|
| 131 |
-
max_length=max_length, padding=True)
|
| 132 |
-
input_ids = encodings.input_ids
|
| 133 |
-
|
| 134 |
-
# Move to device
|
| 135 |
-
model.to(self.device)
|
| 136 |
-
input_ids = input_ids.to(self.device)
|
| 137 |
-
|
| 138 |
-
with torch.no_grad():
|
| 139 |
-
outputs = model(input_ids, labels=input_ids)
|
| 140 |
-
loss = outputs.loss
|
| 141 |
-
perplexity = torch.exp(loss).item()
|
| 142 |
-
|
| 143 |
-
return perplexity if not math.isnan(perplexity) else float('inf')
|
| 144 |
-
|
| 145 |
-
except Exception as e:
|
| 146 |
-
print(f"Perplexity calculation error: {e}")
|
| 147 |
-
return float('inf')
|
| 148 |
-
|
| 149 |
-
def improved_perplexity_to_probability(self, perplexity):
|
| 150 |
-
"""Convert perplexity to AI probability using calibrated sigmoid function"""
|
| 151 |
-
if math.isinf(perplexity) or math.isnan(perplexity):
|
| 152 |
-
return 0.5
|
| 153 |
-
|
| 154 |
-
try:
|
| 155 |
-
# Calibrated sigmoid transformation based on empirical data
|
| 156 |
-
# These parameters were tuned for better performance
|
| 157 |
-
midpoint = 30.0 # Perplexity value that corresponds to 50% probability
|
| 158 |
-
steepness = -0.1 # Controls the steepness of the sigmoid
|
| 159 |
-
|
| 160 |
-
# Apply sigmoid transformation
|
| 161 |
-
sigmoid_input = steepness * (perplexity - midpoint)
|
| 162 |
-
probability = expit(sigmoid_input) # More stable than manual sigmoid
|
| 163 |
-
|
| 164 |
-
# Ensure reasonable bounds
|
| 165 |
-
return max(0.05, min(0.95, probability))
|
| 166 |
-
|
| 167 |
-
except Exception as e:
|
| 168 |
-
print(f"Perplexity conversion error: {e}")
|
| 169 |
-
return 0.5
|
| 170 |
-
|
| 171 |
-
def extract_linguistic_features(self, text):
|
| 172 |
-
"""Extract linguistic features with robust error handling"""
|
| 173 |
-
try:
|
| 174 |
-
features = {}
|
| 175 |
-
|
| 176 |
-
# Basic text statistics
|
| 177 |
-
sentences = re.split(r'[.!?]+', text.strip())
|
| 178 |
-
sentences = [s.strip() for s in sentences if s.strip()]
|
| 179 |
-
words = text.split()
|
| 180 |
-
|
| 181 |
-
# Safe calculations with fallbacks
|
| 182 |
-
features['sentence_count'] = len(sentences)
|
| 183 |
-
features['word_count'] = len(words)
|
| 184 |
-
|
| 185 |
-
if sentences:
|
| 186 |
-
sentence_lengths = [len(s.split()) for s in sentences]
|
| 187 |
-
features['avg_sentence_length'] = np.mean(sentence_lengths)
|
| 188 |
-
features['sentence_length_std'] = np.std(sentence_lengths) if len(sentences) > 1 else 0
|
| 189 |
-
else:
|
| 190 |
-
features['avg_sentence_length'] = 0
|
| 191 |
-
features['sentence_length_std'] = 0
|
| 192 |
-
|
| 193 |
-
# Lexical diversity
|
| 194 |
-
if words:
|
| 195 |
-
unique_words = set(word.lower() for word in words if word.isalpha())
|
| 196 |
-
features['lexical_diversity'] = len(unique_words) / len(words)
|
| 197 |
-
features['avg_word_length'] = np.mean([len(word) for word in words])
|
| 198 |
-
else:
|
| 199 |
-
features['lexical_diversity'] = 0
|
| 200 |
-
features['avg_word_length'] = 0
|
| 201 |
-
|
| 202 |
-
# Word frequency analysis (burstiness)
|
| 203 |
-
alpha_words = [word.lower() for word in words if word.isalpha()]
|
| 204 |
-
if len(alpha_words) > 1:
|
| 205 |
-
word_freq = Counter(alpha_words)
|
| 206 |
-
frequencies = list(word_freq.values())
|
| 207 |
-
mean_freq = np.mean(frequencies)
|
| 208 |
-
features['burstiness'] = np.var(frequencies) / mean_freq if mean_freq > 0 else 0
|
| 209 |
-
else:
|
| 210 |
-
features['burstiness'] = 0
|
| 211 |
-
|
| 212 |
-
# Repetition patterns
|
| 213 |
-
if len(words) > 1:
|
| 214 |
-
bigrams = [' '.join(words[i:i+2]) for i in range(len(words)-1)]
|
| 215 |
-
features['bigram_repetition'] = 1 - len(set(bigrams)) / len(bigrams) if bigrams else 0
|
| 216 |
-
else:
|
| 217 |
-
features['bigram_repetition'] = 0
|
| 218 |
-
|
| 219 |
-
# Punctuation analysis
|
| 220 |
-
if text:
|
| 221 |
-
punct_count = len(re.findall(r'[.!?,:;]', text))
|
| 222 |
-
features['punctuation_ratio'] = punct_count / len(text)
|
| 223 |
-
else:
|
| 224 |
-
features['punctuation_ratio'] = 0
|
| 225 |
-
|
| 226 |
-
# Sentence start diversity
|
| 227 |
-
if len(sentences) > 1:
|
| 228 |
-
sentence_starts = []
|
| 229 |
-
for s in sentences:
|
| 230 |
-
words_in_sentence = s.split()
|
| 231 |
-
if words_in_sentence:
|
| 232 |
-
sentence_starts.append(words_in_sentence[0].lower())
|
| 233 |
-
|
| 234 |
-
if sentence_starts:
|
| 235 |
-
features['sentence_start_diversity'] = len(set(sentence_starts)) / len(sentence_starts)
|
| 236 |
-
else:
|
| 237 |
-
features['sentence_start_diversity'] = 1
|
| 238 |
-
else:
|
| 239 |
-
features['sentence_start_diversity'] = 1
|
| 240 |
-
|
| 241 |
-
return features
|
| 242 |
-
|
| 243 |
-
except Exception as e:
|
| 244 |
-
print(f"Feature extraction error: {e}")
|
| 245 |
-
# Return default features if extraction fails
|
| 246 |
-
return {
|
| 247 |
-
'sentence_count': 1,
|
| 248 |
-
'word_count': len(text.split()) if text else 0,
|
| 249 |
-
'avg_sentence_length': len(text.split()) if text else 0,
|
| 250 |
-
'sentence_length_std': 0,
|
| 251 |
-
'lexical_diversity': 0.5,
|
| 252 |
-
'avg_word_length': 5,
|
| 253 |
-
'burstiness': 0.5,
|
| 254 |
-
'bigram_repetition': 0,
|
| 255 |
-
'punctuation_ratio': 0.05,
|
| 256 |
-
'sentence_start_diversity': 1
|
| 257 |
-
}
|
| 258 |
-
|
| 259 |
-
def run_classifier_detection(self, text):
|
| 260 |
-
"""Run classifier-based detection with proper error handling"""
|
| 261 |
-
classifier_results = {}
|
| 262 |
-
|
| 263 |
-
# Try RoBERTa classifier
|
| 264 |
-
if self.detectors.get('roberta_ai_classifier') and self.tokenizers.get('roberta'):
|
| 265 |
-
try:
|
| 266 |
-
model = self.detectors['roberta_ai_classifier']
|
| 267 |
-
tokenizer = self.tokenizers['roberta']
|
| 268 |
-
|
| 269 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True,
|
| 270 |
-
padding=True, max_length=512)
|
| 271 |
-
|
| 272 |
-
# Move to device
|
| 273 |
-
model.to(self.device)
|
| 274 |
-
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 275 |
-
|
| 276 |
-
with torch.no_grad():
|
| 277 |
-
outputs = model(**inputs)
|
| 278 |
-
probs = torch.softmax(outputs.logits, dim=1)[0]
|
| 279 |
-
|
| 280 |
-
# Handle different output formats
|
| 281 |
-
if len(probs) >= 2:
|
| 282 |
-
ai_prob = probs[1].item() # AI probability
|
| 283 |
-
human_prob = probs[0].item() # Human probability
|
| 284 |
-
else:
|
| 285 |
-
ai_prob = probs[0].item()
|
| 286 |
-
human_prob = 1 - ai_prob
|
| 287 |
-
|
| 288 |
-
classifier_results['roberta_ai_prob'] = ai_prob
|
| 289 |
-
classifier_results['roberta_human_prob'] = human_prob
|
| 290 |
-
|
| 291 |
-
except Exception as e:
|
| 292 |
-
print(f"RoBERTa classifier error: {e}")
|
| 293 |
-
|
| 294 |
-
# If no classifiers worked, provide fallback
|
| 295 |
-
if not classifier_results:
|
| 296 |
-
# Simple heuristic fallback based on text characteristics
|
| 297 |
-
perplexity = self.calculate_perplexity(text)
|
| 298 |
-
if not math.isinf(perplexity):
|
| 299 |
-
# Use improved perplexity conversion
|
| 300 |
-
ai_prob = self.improved_perplexity_to_probability(perplexity)
|
| 301 |
-
else:
|
| 302 |
-
ai_prob = 0.5 # Neutral when we can't determine
|
| 303 |
-
|
| 304 |
-
classifier_results['fallback_ai_prob'] = ai_prob
|
| 305 |
-
classifier_results['fallback_human_prob'] = 1 - ai_prob
|
| 306 |
-
|
| 307 |
-
return classifier_results
|
| 308 |
-
|
| 309 |
-
def ensemble_ai_detection(self, text):
|
| 310 |
-
"""Main ensemble detection method with enhanced confidence scoring"""
|
| 311 |
-
try:
|
| 312 |
-
results = {}
|
| 313 |
-
|
| 314 |
-
# 1. Classifier predictions
|
| 315 |
-
classifier_results = self.run_classifier_detection(text)
|
| 316 |
-
results.update(classifier_results)
|
| 317 |
-
|
| 318 |
-
# Extract AI probabilities for ensemble
|
| 319 |
-
ai_probs = [v for k, v in classifier_results.items() if '_ai_prob' in k]
|
| 320 |
-
avg_classifier_score = np.mean(ai_probs) if ai_probs else 0.5
|
| 321 |
-
|
| 322 |
-
# 2. Perplexity analysis with improved conversion
|
| 323 |
-
perplexity = self.calculate_perplexity(text)
|
| 324 |
-
results['gpt2_perplexity'] = round(perplexity, 2) if not math.isinf(perplexity) else 999
|
| 325 |
-
|
| 326 |
-
# Use improved perplexity to probability conversion
|
| 327 |
-
perplexity_score = self.improved_perplexity_to_probability(perplexity)
|
| 328 |
-
|
| 329 |
-
# 3. Linguistic features
|
| 330 |
-
features = self.extract_linguistic_features(text)
|
| 331 |
-
results.update({f'feature_{k}': round(v, 4) for k, v in features.items()})
|
| 332 |
-
|
| 333 |
-
# Calculate feature-based score
|
| 334 |
-
feature_score = self.calculate_feature_score(features)
|
| 335 |
-
|
| 336 |
-
# 4. Enhanced ensemble scoring
|
| 337 |
-
if self.ensemble_classifier and self.feature_scaler:
|
| 338 |
-
# Use trained ensemble classifier for better confidence
|
| 339 |
-
try:
|
| 340 |
-
feature_vector = np.array([[avg_classifier_score, perplexity_score, feature_score]])
|
| 341 |
-
feature_vector_scaled = self.feature_scaler.transform(feature_vector)
|
| 342 |
-
|
| 343 |
-
ensemble_score = self.ensemble_classifier.predict_proba(feature_vector_scaled)[0][1]
|
| 344 |
-
confidence = max(self.ensemble_classifier.predict_proba(feature_vector_scaled)[0]) * 0.9
|
| 345 |
-
|
| 346 |
-
except Exception as e:
|
| 347 |
-
print(f"Ensemble classifier error: {e}")
|
| 348 |
-
# Fallback to weighted average
|
| 349 |
-
ensemble_score = (
|
| 350 |
-
avg_classifier_score * 0.5 + # 50% classifier
|
| 351 |
-
perplexity_score * 0.3 + # 30% perplexity
|
| 352 |
-
feature_score * 0.2 # 20% features
|
| 353 |
-
)
|
| 354 |
-
confidence = 0.7 # Default confidence
|
| 355 |
-
else:
|
| 356 |
-
# Fallback to weighted average with improved weights
|
| 357 |
-
ensemble_score = (
|
| 358 |
-
avg_classifier_score * 0.5 + # 50% classifier
|
| 359 |
-
perplexity_score * 0.3 + # 30% perplexity
|
| 360 |
-
feature_score * 0.2 # 20% features
|
| 361 |
-
)
|
| 362 |
-
|
| 363 |
-
# Calculate confidence based on score consistency
|
| 364 |
-
scores = [avg_classifier_score, perplexity_score, feature_score]
|
| 365 |
-
score_std = np.std(scores)
|
| 366 |
-
confidence = max(0.6, min(0.9, 1.0 - score_std))
|
| 367 |
-
|
| 368 |
-
# 5. Generate verdict with improved logic
|
| 369 |
-
verdict = self.get_enhanced_verdict(ensemble_score, confidence)
|
| 370 |
-
|
| 371 |
-
results['ensemble_score'] = round(ensemble_score, 4)
|
| 372 |
-
results['final_verdict'] = verdict
|
| 373 |
-
results['confidence'] = f"{confidence:.1%}"
|
| 374 |
-
|
| 375 |
-
return results
|
| 376 |
-
|
| 377 |
-
except Exception as e:
|
| 378 |
-
print(f"Ensemble detection error: {e}")
|
| 379 |
-
# Return safe fallback results
|
| 380 |
-
return {
|
| 381 |
-
'ensemble_score': 0.5,
|
| 382 |
-
'final_verdict': 'Error - Unable to analyze',
|
| 383 |
-
'confidence': '0.0%',
|
| 384 |
-
'error': str(e)
|
| 385 |
-
}
|
| 386 |
-
|
| 387 |
-
def calculate_feature_score(self, features):
|
| 388 |
-
"""Calculate AI probability from linguistic features with improved logic"""
|
| 389 |
-
try:
|
| 390 |
-
ai_indicators = 0
|
| 391 |
-
total_indicators = 0
|
| 392 |
-
|
| 393 |
-
# Enhanced feature analysis with better thresholds
|
| 394 |
-
|
| 395 |
-
# Low lexical diversity suggests AI (more strict threshold)
|
| 396 |
-
if features.get('lexical_diversity', 0.5) < 0.35:
|
| 397 |
-
ai_indicators += 2 # Weighted higher
|
| 398 |
-
elif features.get('lexical_diversity', 0.5) < 0.5:
|
| 399 |
-
ai_indicators += 1
|
| 400 |
-
total_indicators += 2
|
| 401 |
-
|
| 402 |
-
# Low sentence start diversity suggests AI
|
| 403 |
-
if features.get('sentence_start_diversity', 1) < 0.7:
|
| 404 |
-
ai_indicators += 1
|
| 405 |
-
total_indicators += 1
|
| 406 |
-
|
| 407 |
-
# Low burstiness suggests AI (refined threshold)
|
| 408 |
-
burstiness = features.get('burstiness', 1)
|
| 409 |
-
if burstiness < 0.3:
|
| 410 |
-
ai_indicators += 2
|
| 411 |
-
elif burstiness < 0.6:
|
| 412 |
-
ai_indicators += 1
|
| 413 |
-
total_indicators += 2
|
| 414 |
-
|
| 415 |
-
# Very consistent sentence lengths suggest AI
|
| 416 |
-
sentence_std = features.get('sentence_length_std', 10)
|
| 417 |
-
if sentence_std < 2:
|
| 418 |
-
ai_indicators += 2
|
| 419 |
-
elif sentence_std < 5:
|
| 420 |
-
ai_indicators += 1
|
| 421 |
-
total_indicators += 2
|
| 422 |
-
|
| 423 |
-
# High bigram repetition suggests AI
|
| 424 |
-
if features.get('bigram_repetition', 0) > 0.3:
|
| 425 |
-
ai_indicators += 1
|
| 426 |
-
total_indicators += 1
|
| 427 |
-
|
| 428 |
-
return ai_indicators / total_indicators if total_indicators > 0 else 0.5
|
| 429 |
-
|
| 430 |
-
except Exception as e:
|
| 431 |
-
print(f"Feature score calculation error: {e}")
|
| 432 |
-
return 0.5
|
| 433 |
-
|
| 434 |
-
def get_enhanced_verdict(self, ensemble_score, confidence):
|
| 435 |
-
"""Generate verdict with improved thresholds and confidence consideration"""
|
| 436 |
-
try:
|
| 437 |
-
# Adjust thresholds based on confidence level
|
| 438 |
-
high_conf_threshold = 0.8
|
| 439 |
-
medium_conf_threshold = 0.6
|
| 440 |
-
|
| 441 |
-
if confidence > high_conf_threshold:
|
| 442 |
-
# High confidence - use stricter thresholds
|
| 443 |
-
if ensemble_score > 0.75:
|
| 444 |
-
return "Highly Likely AI-Generated"
|
| 445 |
-
elif ensemble_score > 0.6:
|
| 446 |
-
return "Likely AI-Generated"
|
| 447 |
-
elif ensemble_score > 0.4:
|
| 448 |
-
return "Possibly AI-Generated"
|
| 449 |
-
elif ensemble_score > 0.25:
|
| 450 |
-
return "Likely Human-Written"
|
| 451 |
-
else:
|
| 452 |
-
return "Highly Likely Human-Written"
|
| 453 |
-
|
| 454 |
-
elif confidence > medium_conf_threshold:
|
| 455 |
-
# Medium confidence - moderate thresholds
|
| 456 |
-
if ensemble_score > 0.7:
|
| 457 |
-
return "Likely AI-Generated"
|
| 458 |
-
elif ensemble_score > 0.55:
|
| 459 |
-
return "Possibly AI-Generated"
|
| 460 |
-
elif ensemble_score > 0.45:
|
| 461 |
-
return "Unclear - Manual Review Recommended"
|
| 462 |
-
elif ensemble_score > 0.3:
|
| 463 |
-
return "Possibly Human-Written"
|
| 464 |
-
else:
|
| 465 |
-
return "Likely Human-Written"
|
| 466 |
-
else:
|
| 467 |
-
# Low confidence - conservative approach
|
| 468 |
-
if ensemble_score > 0.8:
|
| 469 |
-
return "Possibly AI-Generated"
|
| 470 |
-
elif ensemble_score > 0.2:
|
| 471 |
-
return "Unclear - Manual Review Recommended"
|
| 472 |
-
else:
|
| 473 |
-
return "Possibly Human-Written"
|
| 474 |
-
|
| 475 |
-
except Exception as e:
|
| 476 |
-
print(f"Verdict generation error: {e}")
|
| 477 |
-
return "Error in Analysis"
|
| 478 |
-
|
| 479 |
-
# Enhanced Semantic Similarity System with Antonym Detection
|
| 480 |
-
class AdvancedSimilarityDetector:
|
| 481 |
-
def __init__(self):
|
| 482 |
-
print("Initializing Similarity Detector...")
|
| 483 |
-
self.models = {}
|
| 484 |
-
|
| 485 |
-
# Common antonym pairs for penalty detection
|
| 486 |
-
self.antonym_pairs = {
|
| 487 |
-
'excellent': ['terrible', 'awful', 'horrible', 'bad', 'poor'],
|
| 488 |
-
'good': ['bad', 'terrible', 'awful', 'horrible', 'poor'],
|
| 489 |
-
'great': ['terrible', 'awful', 'horrible', 'bad', 'poor'],
|
| 490 |
-
'fast': ['slow', 'sluggish', 'gradual'],
|
| 491 |
-
'quick': ['slow', 'sluggish', 'gradual'],
|
| 492 |
-
'efficient': ['inefficient', 'slow', 'sluggish'],
|
| 493 |
-
'high': ['low', 'small', 'little'],
|
| 494 |
-
'large': ['small', 'tiny', 'little'],
|
| 495 |
-
'big': ['small', 'tiny', 'little'],
|
| 496 |
-
'hot': ['cold', 'freezing', 'cool'],
|
| 497 |
-
'warm': ['cold', 'freezing', 'cool'],
|
| 498 |
-
'bright': ['dark', 'dim', 'dull'],
|
| 499 |
-
'light': ['dark', 'heavy'],
|
| 500 |
-
'easy': ['hard', 'difficult', 'challenging'],
|
| 501 |
-
'simple': ['complex', 'complicated', 'difficult'],
|
| 502 |
-
'happy': ['sad', 'unhappy', 'miserable'],
|
| 503 |
-
'positive': ['negative', 'bad'],
|
| 504 |
-
'love': ['hate', 'dislike'],
|
| 505 |
-
'like': ['dislike', 'hate'],
|
| 506 |
-
'beautiful': ['ugly', 'hideous'],
|
| 507 |
-
'strong': ['weak', 'fragile'],
|
| 508 |
-
'rich': ['poor', 'broke'],
|
| 509 |
-
'smart': ['stupid', 'dumb', 'ignorant'],
|
| 510 |
-
'clean': ['dirty', 'messy', 'filthy'],
|
| 511 |
-
'safe': ['dangerous', 'risky', 'unsafe'],
|
| 512 |
-
'healthy': ['unhealthy', 'sick'],
|
| 513 |
-
'new': ['old', 'ancient', 'outdated'],
|
| 514 |
-
'modern': ['old', 'ancient', 'outdated'],
|
| 515 |
-
'young': ['old', 'elderly', 'aged'],
|
| 516 |
-
'early': ['late', 'delayed'],
|
| 517 |
-
'first': ['last', 'final'],
|
| 518 |
-
'begin': ['end', 'finish', 'conclude'],
|
| 519 |
-
'start': ['end', 'finish', 'stop'],
|
| 520 |
-
'open': ['closed', 'shut'],
|
| 521 |
-
'win': ['lose', 'fail'],
|
| 522 |
-
'success': ['failure', 'defeat'],
|
| 523 |
-
'increase': ['decrease', 'reduce', 'lower'],
|
| 524 |
-
'more': ['less', 'fewer'],
|
| 525 |
-
'always': ['never', 'rarely'],
|
| 526 |
-
'all': ['none', 'nothing'],
|
| 527 |
-
'yes': ['no'],
|
| 528 |
-
'agree': ['disagree', 'oppose'],
|
| 529 |
-
'accept': ['reject', 'refuse', 'deny'],
|
| 530 |
-
'include': ['exclude', 'omit'],
|
| 531 |
-
'remember': ['forget']
|
| 532 |
-
}
|
| 533 |
-
|
| 534 |
-
# Load primary model
|
| 535 |
-
try:
|
| 536 |
-
self.models['sentence_bert'] = SentenceTransformer('all-mpnet-base-v2')
|
| 537 |
-
print("β Sentence-BERT loaded successfully")
|
| 538 |
-
except Exception as e:
|
| 539 |
-
print(f"β Failed to load Sentence-BERT: {e}")
|
| 540 |
-
# Fallback to smaller model
|
| 541 |
-
try:
|
| 542 |
-
self.models['sentence_bert'] = SentenceTransformer('all-MiniLM-L6-v2')
|
| 543 |
-
print("β Fallback model loaded successfully")
|
| 544 |
-
except Exception as e2:
|
| 545 |
-
print(f"β Failed to load fallback model: {e2}")
|
| 546 |
-
|
| 547 |
-
# Load secondary model if resources allow
|
| 548 |
-
try:
|
| 549 |
-
self.models['multilingual'] = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
|
| 550 |
-
print("β Multilingual model loaded successfully")
|
| 551 |
-
except Exception as e:
|
| 552 |
-
print(f"β Multilingual model not loaded: {e}")
|
| 553 |
-
|
| 554 |
-
def detect_antonym_penalty(self, text1, text2):
|
| 555 |
-
"""Detect antonym pairs and calculate penalty"""
|
| 556 |
-
try:
|
| 557 |
-
# Tokenize and clean texts
|
| 558 |
-
words1 = set(re.findall(r'\b\w+\b', text1.lower()))
|
| 559 |
-
words2 = set(re.findall(r'\b\w+\b', text2.lower()))
|
| 560 |
-
|
| 561 |
-
penalty = 0.0
|
| 562 |
-
antonym_found = False
|
| 563 |
-
detected_pairs = []
|
| 564 |
-
|
| 565 |
-
# Check for antonym pairs
|
| 566 |
-
for word1 in words1:
|
| 567 |
-
if word1 in self.antonym_pairs:
|
| 568 |
-
antonyms = self.antonym_pairs[word1]
|
| 569 |
-
for antonym in antonyms:
|
| 570 |
-
if antonym in words2:
|
| 571 |
-
# Check context similarity (simple approach)
|
| 572 |
-
context_penalty = self.calculate_context_penalty(text1, text2, word1, antonym)
|
| 573 |
-
penalty += context_penalty
|
| 574 |
-
antonym_found = True
|
| 575 |
-
detected_pairs.append((word1, antonym))
|
| 576 |
-
|
| 577 |
-
# Also check reverse direction
|
| 578 |
-
for word2 in words2:
|
| 579 |
-
if word2 in self.antonym_pairs:
|
| 580 |
-
antonyms = self.antonym_pairs[word2]
|
| 581 |
-
for antonym in antonyms:
|
| 582 |
-
if antonym in words1:
|
| 583 |
-
# Avoid double counting
|
| 584 |
-
if (antonym, word2) not in detected_pairs and (word2, antonym) not in detected_pairs:
|
| 585 |
-
context_penalty = self.calculate_context_penalty(text1, text2, antonym, word2)
|
| 586 |
-
penalty += context_penalty
|
| 587 |
-
antonym_found = True
|
| 588 |
-
detected_pairs.append((antonym, word2))
|
| 589 |
-
|
| 590 |
-
return penalty, antonym_found, detected_pairs
|
| 591 |
-
|
| 592 |
-
except Exception as e:
|
| 593 |
-
print(f"Antonym detection error: {e}")
|
| 594 |
-
return 0.0, False, []
|
| 595 |
-
|
| 596 |
-
def calculate_context_penalty(self, text1, text2, word1, word2):
|
| 597 |
-
"""Calculate penalty based on context similarity around antonym pairs"""
|
| 598 |
-
try:
|
| 599 |
-
# Simple context analysis - check if surrounding words are similar
|
| 600 |
-
def get_context(text, target_word, window=3):
|
| 601 |
-
words = re.findall(r'\b\w+\b', text.lower())
|
| 602 |
-
try:
|
| 603 |
-
idx = words.index(target_word)
|
| 604 |
-
start = max(0, idx - window)
|
| 605 |
-
end = min(len(words), idx + window + 1)
|
| 606 |
-
return set(words[start:end]) - {target_word}
|
| 607 |
-
except ValueError:
|
| 608 |
-
return set()
|
| 609 |
-
|
| 610 |
-
context1 = get_context(text1, word1)
|
| 611 |
-
context2 = get_context(text2, word2)
|
| 612 |
-
|
| 613 |
-
if context1 and context2:
|
| 614 |
-
# Calculate Jaccard similarity of contexts
|
| 615 |
-
intersection = len(context1.intersection(context2))
|
| 616 |
-
union = len(context1.union(context2))
|
| 617 |
-
context_similarity = intersection / union if union > 0 else 0
|
| 618 |
-
|
| 619 |
-
# Higher context similarity means higher penalty
|
| 620 |
-
# Base penalty of 0.3, scaled by context similarity
|
| 621 |
-
penalty = 0.3 + (context_similarity * 0.4)
|
| 622 |
-
return min(penalty, 0.7) # Cap at 0.7
|
| 623 |
-
else:
|
| 624 |
-
# Default penalty when context can't be analyzed
|
| 625 |
-
return 0.3
|
| 626 |
-
|
| 627 |
-
except Exception as e:
|
| 628 |
-
print(f"Context penalty calculation error: {e}")
|
| 629 |
-
return 0.3
|
| 630 |
-
|
| 631 |
-
def calculate_multi_metric_similarity(self, text1, text2, threshold=0.4):
|
| 632 |
-
"""Calculate similarity with antonym detection and penalty"""
|
| 633 |
-
try:
|
| 634 |
-
results = {}
|
| 635 |
-
similarity_scores = []
|
| 636 |
-
|
| 637 |
-
# 1. Detect antonyms first
|
| 638 |
-
antonym_penalty, antonym_found, detected_pairs = self.detect_antonym_penalty(text1, text2)
|
| 639 |
-
results['antonym_penalty'] = round(antonym_penalty, 4)
|
| 640 |
-
results['antonym_detected'] = antonym_found
|
| 641 |
-
if detected_pairs:
|
| 642 |
-
results['detected_antonym_pairs'] = detected_pairs
|
| 643 |
-
|
| 644 |
-
# 2. Calculate embeddings and similarities
|
| 645 |
-
for name, model in self.models.items():
|
| 646 |
-
if model:
|
| 647 |
-
try:
|
| 648 |
-
emb1, emb2 = model.encode([text1, text2], convert_to_tensor=True)
|
| 649 |
-
|
| 650 |
-
# Cosine similarity
|
| 651 |
-
cos_sim = util.pytorch_cos_sim(emb1, emb2).item()
|
| 652 |
-
|
| 653 |
-
# Apply antonym penalty specifically to sentence_bert model
|
| 654 |
-
if name == 'sentence_bert' and antonym_found:
|
| 655 |
-
cos_sim_adjusted = max(0.0, cos_sim - antonym_penalty)
|
| 656 |
-
results[f'{name}_cosine_original'] = round(cos_sim, 4)
|
| 657 |
-
results[f'{name}_cosine'] = round(cos_sim_adjusted, 4)
|
| 658 |
-
results[f'{name}_penalty_applied'] = round(antonym_penalty, 4)
|
| 659 |
-
similarity_scores.append(cos_sim_adjusted)
|
| 660 |
-
else:
|
| 661 |
-
results[f'{name}_cosine'] = round(cos_sim, 4)
|
| 662 |
-
similarity_scores.append(cos_sim)
|
| 663 |
-
|
| 664 |
-
# Additional metrics
|
| 665 |
-
dot_sim = torch.dot(emb1, emb2).item()
|
| 666 |
-
results[f'{name}_dot_product'] = round(dot_sim, 4)
|
| 667 |
-
|
| 668 |
-
euclidean_dist = torch.dist(emb1, emb2).item()
|
| 669 |
-
euclidean_sim = 1 / (1 + euclidean_dist)
|
| 670 |
-
results[f'{name}_euclidean_sim'] = round(euclidean_sim, 4)
|
| 671 |
-
|
| 672 |
-
except Exception as e:
|
| 673 |
-
print(f"Error with {name}: {e}")
|
| 674 |
-
continue
|
| 675 |
-
|
| 676 |
-
# 3. Enhanced ensemble score calculation
|
| 677 |
-
if similarity_scores:
|
| 678 |
-
# Weight the sentence_bert model higher if no antonyms detected
|
| 679 |
-
# Weight multilingual model higher if antonyms are detected
|
| 680 |
-
if len(similarity_scores) >= 2 and antonym_found:
|
| 681 |
-
# When antonyms detected, trust multilingual model more
|
| 682 |
-
weights = [0.4, 0.6] # sentence_bert, multilingual
|
| 683 |
-
else:
|
| 684 |
-
# Normal case, trust sentence_bert more
|
| 685 |
-
weights = [0.6, 0.4] if len(similarity_scores) >= 2 else [1.0]
|
| 686 |
-
|
| 687 |
-
# Ensure weights match number of scores
|
| 688 |
-
weights = weights[:len(similarity_scores)]
|
| 689 |
-
if len(weights) < len(similarity_scores):
|
| 690 |
-
weights.extend([1.0] * (len(similarity_scores) - len(weights)))
|
| 691 |
-
|
| 692 |
-
# Normalize weights
|
| 693 |
-
weight_sum = sum(weights)
|
| 694 |
-
weights = [w / weight_sum for w in weights]
|
| 695 |
-
|
| 696 |
-
ensemble_score = sum(score * weight for score, weight in zip(similarity_scores, weights))
|
| 697 |
-
else:
|
| 698 |
-
ensemble_score = 0
|
| 699 |
-
|
| 700 |
-
results['ensemble_similarity'] = round(ensemble_score, 4)
|
| 701 |
-
|
| 702 |
-
# 4. Enhanced interpretation
|
| 703 |
-
interpretation = self.get_enhanced_interpretation(ensemble_score, threshold, antonym_found)
|
| 704 |
-
results['interpretation'] = interpretation
|
| 705 |
-
|
| 706 |
-
return results, ensemble_score
|
| 707 |
-
|
| 708 |
-
except Exception as e:
|
| 709 |
-
print(f"Similarity calculation error: {e}")
|
| 710 |
-
return {"error": str(e)}, 0
|
| 711 |
-
|
| 712 |
-
def get_enhanced_interpretation(self, score, threshold, antonym_detected=False):
|
| 713 |
-
"""Generate interpretation with antonym consideration"""
|
| 714 |
-
try:
|
| 715 |
-
base_interpretation = ""
|
| 716 |
-
|
| 717 |
-
if score > 0.90:
|
| 718 |
-
base_interpretation = "Nearly Identical (Potential Direct Copy)"
|
| 719 |
-
elif score > 0.80:
|
| 720 |
-
base_interpretation = "Very High Similarity (Likely Plagiarism)"
|
| 721 |
-
elif score > 0.70:
|
| 722 |
-
base_interpretation = "High Similarity (Suspicious - Needs Review)"
|
| 723 |
-
elif score > threshold:
|
| 724 |
-
base_interpretation = "Moderate Similarity (Possible Paraphrasing)"
|
| 725 |
-
elif score > 0.2:
|
| 726 |
-
base_interpretation = "Low Similarity (Different Content)"
|
| 727 |
-
else:
|
| 728 |
-
base_interpretation = "Very Low Similarity (Unrelated Content)"
|
| 729 |
-
|
| 730 |
-
# Add antonym context if detected
|
| 731 |
-
if antonym_detected:
|
| 732 |
-
base_interpretation += " - Antonym penalty applied due to opposing meanings"
|
| 733 |
-
|
| 734 |
-
return base_interpretation
|
| 735 |
-
|
| 736 |
-
except:
|
| 737 |
-
return "Unable to interpret similarity"
|
| 738 |
|
| 739 |
-
#
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
similarity_detector = AdvancedSimilarityDetector()
|
| 743 |
-
print("β All detectors initialized successfully")
|
| 744 |
-
except Exception as e:
|
| 745 |
-
print(f"β Detector initialization error: {e}")
|
| 746 |
-
ai_detector = None
|
| 747 |
-
similarity_detector = None
|
| 748 |
-
|
| 749 |
-
# Enhanced Gradio functions with comprehensive error handling
|
| 750 |
-
def enhanced_similarity_check(text1, text2, threshold):
|
| 751 |
-
"""Enhanced similarity checking with antonym detection"""
|
| 752 |
-
try:
|
| 753 |
-
if not text1.strip() or not text2.strip():
|
| 754 |
-
return {"error": "Please provide both texts"}, "Error: Empty text provided", go.Figure()
|
| 755 |
-
|
| 756 |
-
if not similarity_detector:
|
| 757 |
-
return {"error": "Similarity detector not available"}, "Error: Detector initialization failed", go.Figure()
|
| 758 |
-
|
| 759 |
-
results, ensemble_score = similarity_detector.calculate_multi_metric_similarity(text1, text2, threshold)
|
| 760 |
-
|
| 761 |
-
if "error" in results:
|
| 762 |
-
return results, f"Error: {results['error']}", go.Figure()
|
| 763 |
-
|
| 764 |
-
explanation = f"""
|
| 765 |
-
## Enhanced Similarity Analysis Results
|
| 766 |
-
|
| 767 |
-
**Ensemble Similarity Score:** {results.get('ensemble_similarity', 'N/A')} ({results.get('interpretation', 'N/A')})
|
| 768 |
-
|
| 769 |
-
### Antonym Detection:
|
| 770 |
-
- **Antonyms Detected:** {'Yes' if results.get('antonym_detected', False) else 'No'}
|
| 771 |
-
- **Penalty Applied:** {results.get('antonym_penalty', 0.0)}
|
| 772 |
-
"""
|
| 773 |
-
|
| 774 |
-
if results.get('detected_antonym_pairs'):
|
| 775 |
-
explanation += f"- **Detected Pairs:** {', '.join([f'{p[0]}β{p[1]}' for p in results['detected_antonym_pairs']])}\n"
|
| 776 |
-
|
| 777 |
-
explanation += f"""
|
| 778 |
-
### Individual Model Scores:
|
| 779 |
-
"""
|
| 780 |
-
|
| 781 |
-
for key, value in results.items():
|
| 782 |
-
if '_cosine' in key and not key.endswith('_original'):
|
| 783 |
-
model_name = key.replace('_cosine', '').replace('_', ' ').title()
|
| 784 |
-
explanation += f"- **{model_name}:** {value}\n"
|
| 785 |
-
|
| 786 |
-
# Show original score if penalty was applied
|
| 787 |
-
original_key = key + '_original'
|
| 788 |
-
if original_key in results:
|
| 789 |
-
explanation += f" - Original Score: {results[original_key]}\n"
|
| 790 |
-
explanation += f" - Penalty Applied: {results.get(key.replace('_cosine', '_penalty_applied'), 0)}\n"
|
| 791 |
-
|
| 792 |
-
explanation += f"""
|
| 793 |
-
**Threshold:** {threshold}
|
| 794 |
-
**Analysis:** Enhanced multi-model ensemble with antonym detection and context-aware penalties.
|
| 795 |
-
"""
|
| 796 |
-
|
| 797 |
-
# Create enhanced visualization
|
| 798 |
-
fig = make_subplots(
|
| 799 |
-
rows=1, cols=2,
|
| 800 |
-
subplot_titles=('Similarity Score', 'Model Comparison'),
|
| 801 |
-
specs=[[{"type": "indicator"}, {"type": "bar"}]]
|
| 802 |
-
)
|
| 803 |
-
|
| 804 |
-
# Gauge chart
|
| 805 |
-
fig.add_trace(go.Indicator(
|
| 806 |
-
mode="gauge+number",
|
| 807 |
-
value=ensemble_score,
|
| 808 |
-
domain={'x': [0, 1], 'y': [0, 1]},
|
| 809 |
-
title={'text': "Ensemble Score"},
|
| 810 |
-
gauge={
|
| 811 |
-
'axis': {'range': [None, 1]},
|
| 812 |
-
'bar': {'color': "darkblue"},
|
| 813 |
-
'steps': [
|
| 814 |
-
{'range': [0, threshold], 'color': "lightgray"},
|
| 815 |
-
{'range': [threshold, 0.7], 'color': "yellow"},
|
| 816 |
-
{'range': [0.7, 0.9], 'color': "orange"},
|
| 817 |
-
{'range': [0.9, 1], 'color': "red"}],
|
| 818 |
-
'threshold': {
|
| 819 |
-
'line': {'color': "red", 'width': 4},
|
| 820 |
-
'thickness': 0.75,
|
| 821 |
-
'value': threshold}}), row=1, col=1)
|
| 822 |
-
|
| 823 |
-
# Model comparison bar chart
|
| 824 |
-
model_names = []
|
| 825 |
-
model_scores = []
|
| 826 |
-
for key, value in results.items():
|
| 827 |
-
if '_cosine' in key and not key.endswith('_original'):
|
| 828 |
-
model_name = key.replace('_cosine', '').replace('_', ' ').title()
|
| 829 |
-
model_names.append(model_name)
|
| 830 |
-
model_scores.append(value)
|
| 831 |
-
|
| 832 |
-
if model_names and model_scores:
|
| 833 |
-
colors = ['red' if results.get('antonym_detected') and 'Sentence Bert' in name else 'blue' for name in model_names]
|
| 834 |
-
fig.add_trace(go.Bar(
|
| 835 |
-
x=model_names,
|
| 836 |
-
y=model_scores,
|
| 837 |
-
marker_color=colors,
|
| 838 |
-
name="Model Scores"
|
| 839 |
-
), row=1, col=2)
|
| 840 |
-
|
| 841 |
-
fig.update_layout(height=400, showlegend=False)
|
| 842 |
-
|
| 843 |
-
return results, explanation, fig
|
| 844 |
-
|
| 845 |
-
except Exception as e:
|
| 846 |
-
error_msg = f"Unexpected error in similarity check: {str(e)}"
|
| 847 |
-
return {"error": error_msg}, error_msg, go.Figure()
|
| 848 |
-
|
| 849 |
-
def enhanced_ai_detection(text):
|
| 850 |
-
"""Enhanced AI detection with improved confidence scoring"""
|
| 851 |
-
try:
|
| 852 |
-
if not text.strip():
|
| 853 |
-
return {"error": "Please provide text to analyze"}, "Error: Empty text provided", go.Figure()
|
| 854 |
-
|
| 855 |
-
if not ai_detector:
|
| 856 |
-
return {"error": "AI detector not available"}, "Error: Detector initialization failed", go.Figure()
|
| 857 |
-
|
| 858 |
-
results = ai_detector.ensemble_ai_detection(text)
|
| 859 |
-
|
| 860 |
-
if "error" in results:
|
| 861 |
-
return results, f"Error: {results.get('error', 'Unknown error')}", go.Figure()
|
| 862 |
-
|
| 863 |
-
explanation = f"""
|
| 864 |
-
## Enhanced AI Detection Analysis
|
| 865 |
-
|
| 866 |
-
**Final Verdict:** {results.get('final_verdict', 'N/A')}
|
| 867 |
-
**Confidence:** {results.get('confidence', 'N/A')}
|
| 868 |
-
**Ensemble Score:** {results.get('ensemble_score', 'N/A')}
|
| 869 |
-
|
| 870 |
-
### Classifier Results:
|
| 871 |
-
"""
|
| 872 |
-
|
| 873 |
-
for key, value in results.items():
|
| 874 |
-
if '_ai_prob' in key:
|
| 875 |
-
model_name = key.replace('_ai_prob', '').replace('_', ' ').title()
|
| 876 |
-
explanation += f"- **{model_name}:** {value:.1%} AI probability\n"
|
| 877 |
-
|
| 878 |
-
explanation += f"""
|
| 879 |
-
### Advanced Perplexity Analysis:
|
| 880 |
-
- **GPT-2 Perplexity:** {results.get('gpt2_perplexity', 'N/A')} (lower = more AI-like)
|
| 881 |
-
- **Calibrated Sigmoid Conversion:** Applied for better probability estimation
|
| 882 |
-
|
| 883 |
-
### Key Linguistic Features:
|
| 884 |
-
- **Lexical Diversity:** {results.get('feature_lexical_diversity', 'N/A')} (lower suggests AI)
|
| 885 |
-
- **Sentence Length Std:** {results.get('feature_sentence_length_std', 'N/A')} (lower suggests AI)
|
| 886 |
-
- **Burstiness:** {results.get('feature_burstiness', 'N/A')} (lower suggests AI)
|
| 887 |
-
- **Sentence Start Diversity:** {results.get('feature_sentence_start_diversity', 'N/A')} (lower suggests AI)
|
| 888 |
-
- **Bigram Repetition:** {results.get('feature_bigram_repetition', 'N/A')} (higher suggests AI)
|
| 889 |
-
|
| 890 |
-
### Enhancement Notes:
|
| 891 |
-
- Uses trained ensemble classifier for improved confidence
|
| 892 |
-
- Sigmoid-calibrated perplexity conversion
|
| 893 |
-
- Enhanced feature weighting and thresholds
|
| 894 |
-
"""
|
| 895 |
-
|
| 896 |
-
# Create enhanced visualization
|
| 897 |
-
fig = make_subplots(
|
| 898 |
-
rows=2, cols=2,
|
| 899 |
-
subplot_titles=('Confidence Level', 'Ensemble Score', 'Feature Analysis', 'Model Breakdown'),
|
| 900 |
-
specs=[[{"type": "indicator"}, {"type": "indicator"}],
|
| 901 |
-
[{"type": "bar"}, {"type": "pie"}]]
|
| 902 |
-
)
|
| 903 |
-
|
| 904 |
-
# Confidence gauge
|
| 905 |
-
confidence_val = float(results.get('confidence', '50%').strip('%')) / 100
|
| 906 |
-
fig.add_trace(go.Indicator(
|
| 907 |
-
mode="gauge+number",
|
| 908 |
-
value=confidence_val,
|
| 909 |
-
domain={'x': [0, 1], 'y': [0, 1]},
|
| 910 |
-
title={'text': "Confidence"},
|
| 911 |
-
gauge={
|
| 912 |
-
'axis': {'range': [None, 1]},
|
| 913 |
-
'bar': {'color': "green"},
|
| 914 |
-
'steps': [
|
| 915 |
-
{'range': [0, 0.6], 'color': "lightgray"},
|
| 916 |
-
{'range': [0.6, 0.8], 'color': "yellow"},
|
| 917 |
-
{'range': [0.8, 1], 'color': "green"}]}), row=1, col=1)
|
| 918 |
-
|
| 919 |
-
# Ensemble score gauge
|
| 920 |
-
ensemble_score = results.get('ensemble_score', 0.5)
|
| 921 |
-
fig.add_trace(go.Indicator(
|
| 922 |
-
mode="gauge+number",
|
| 923 |
-
value=ensemble_score,
|
| 924 |
-
domain={'x': [0, 1], 'y': [0, 1]},
|
| 925 |
-
title={'text': "AI Probability"},
|
| 926 |
-
gauge={
|
| 927 |
-
'axis': {'range': [None, 1]},
|
| 928 |
-
'bar': {'color': "red" if ensemble_score > 0.6 else "blue"},
|
| 929 |
-
'steps': [
|
| 930 |
-
{'range': [0, 0.3], 'color': "lightblue"},
|
| 931 |
-
{'range': [0.3, 0.7], 'color': "yellow"},
|
| 932 |
-
{'range': [0.7, 1], 'color': "lightcoral"}]}), row=1, col=2)
|
| 933 |
-
|
| 934 |
-
# Feature analysis bar chart
|
| 935 |
-
feature_names = []
|
| 936 |
-
feature_values = []
|
| 937 |
-
for key, value in results.items():
|
| 938 |
-
if key.startswith('feature_') and key in ['feature_lexical_diversity', 'feature_burstiness',
|
| 939 |
-
'feature_sentence_start_diversity']:
|
| 940 |
-
clean_name = key.replace('feature_', '').replace('_', ' ').title()
|
| 941 |
-
feature_names.append(clean_name)
|
| 942 |
-
feature_values.append(value)
|
| 943 |
-
|
| 944 |
-
if feature_names:
|
| 945 |
-
fig.add_trace(go.Bar(
|
| 946 |
-
x=feature_names,
|
| 947 |
-
y=feature_values,
|
| 948 |
-
marker_color='lightblue',
|
| 949 |
-
name="Features"
|
| 950 |
-
), row=2, col=1)
|
| 951 |
-
|
| 952 |
-
# Model breakdown pie chart
|
| 953 |
-
model_probs = []
|
| 954 |
-
model_names = []
|
| 955 |
-
for key, value in results.items():
|
| 956 |
-
if '_ai_prob' in key:
|
| 957 |
-
model_name = key.replace('_ai_prob', '').replace('_', ' ').title()
|
| 958 |
-
model_names.append(model_name)
|
| 959 |
-
model_probs.append(value)
|
| 960 |
-
|
| 961 |
-
if model_names and model_probs:
|
| 962 |
-
fig.add_trace(go.Pie(
|
| 963 |
-
labels=model_names,
|
| 964 |
-
values=model_probs,
|
| 965 |
-
name="Model Scores"
|
| 966 |
-
), row=2, col=2)
|
| 967 |
-
|
| 968 |
-
fig.update_layout(height=600, showlegend=False)
|
| 969 |
-
|
| 970 |
-
return results, explanation, fig
|
| 971 |
-
|
| 972 |
-
except Exception as e:
|
| 973 |
-
error_msg = f"Unexpected error in AI detection: {str(e)}"
|
| 974 |
-
return {"error": error_msg}, error_msg, go.Figure()
|
| 975 |
-
|
| 976 |
-
# Create enhanced Gradio interfaces
|
| 977 |
-
similarity_interface = gr.Interface(
|
| 978 |
-
fn=enhanced_similarity_check,
|
| 979 |
-
inputs=[
|
| 980 |
-
gr.Textbox(label="Text 1", lines=5, placeholder="Enter first text..."),
|
| 981 |
-
gr.Textbox(label="Text 2", lines=5, placeholder="Enter second text..."),
|
| 982 |
-
gr.Slider(0.2, 0.8, 0.4, step=0.01, label="Similarity Threshold")
|
| 983 |
-
],
|
| 984 |
-
outputs=[
|
| 985 |
-
gr.JSON(label="Detailed Results"),
|
| 986 |
-
gr.Markdown(label="Analysis"),
|
| 987 |
-
gr.Plot(label="Visualization")
|
| 988 |
-
],
|
| 989 |
-
title="π Enhanced Semantic Similarity Detector with Antonym Detection",
|
| 990 |
-
description="Advanced multi-model ensemble similarity detection with context-aware antonym penalty system",
|
| 991 |
-
examples=[
|
| 992 |
-
["The customer service was excellent and efficient.", "The customer service was terrible and slow.", 0.4],
|
| 993 |
-
["The quick brown fox jumps over the lazy dog.", "A fast brown fox leaps over a sleepy dog.", 0.4],
|
| 994 |
-
["Machine learning is transforming industries.", "AI technology is revolutionizing business sectors.", 0.4],
|
| 995 |
-
["The weather is beautiful today.", "The weather is horrible today.", 0.4]
|
| 996 |
-
]
|
| 997 |
-
)
|
| 998 |
-
|
| 999 |
-
ai_detection_interface = gr.Interface(
|
| 1000 |
-
fn=enhanced_ai_detection,
|
| 1001 |
-
inputs=gr.Textbox(label="Text to Analyze", lines=8, placeholder="Enter text to check for AI generation..."),
|
| 1002 |
-
outputs=[
|
| 1003 |
-
gr.JSON(label="Detailed Results"),
|
| 1004 |
-
gr.Markdown(label="Analysis"),
|
| 1005 |
-
gr.Plot(label="Visualization")
|
| 1006 |
-
],
|
| 1007 |
-
title="π€ Professional AI Text Detector with Enhanced Confidence",
|
| 1008 |
-
description="Advanced ensemble system with trained classifier, calibrated perplexity, and enhanced feature analysis",
|
| 1009 |
-
examples=[
|
| 1010 |
-
["The implementation of artificial intelligence in modern business processes has significantly enhanced operational efficiency and decision-making capabilities across various industry sectors."],
|
| 1011 |
-
["I love pizza! It's my favorite food ever. Yesterday I went to this amazing Italian restaurant downtown and had the best margherita pizza of my life."],
|
| 1012 |
-
["According to recent studies, machine learning algorithms have demonstrated remarkable performance improvements in natural language processing tasks, particularly in the areas of sentiment analysis and text classification."],
|
| 1013 |
-
["Honestly, I can't believe how good this movie was! The acting was incredible, the plot had so many unexpected twists, and don't even get me started on the cinematography - absolutely stunning!"]
|
| 1014 |
-
]
|
| 1015 |
-
)
|
| 1016 |
|
| 1017 |
-
#
|
| 1018 |
app = gr.TabbedInterface(
|
| 1019 |
[similarity_interface, ai_detection_interface],
|
| 1020 |
["Enhanced Similarity Detection", "Enhanced AI Detection"],
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
# Import the individual interfaces
|
| 4 |
+
from semantic_similarity_app import similarity_interface
|
| 5 |
+
from ai_detection_app import ai_detection_interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# Create the combined tabbed interface
|
| 8 |
app = gr.TabbedInterface(
|
| 9 |
[similarity_interface, ai_detection_interface],
|
| 10 |
["Enhanced Similarity Detection", "Enhanced AI Detection"],
|