Spaces:
Sleeping
Sleeping
Update alz_companion/agent.py
Browse files- alz_companion/agent.py +161 -232
alz_companion/agent.py
CHANGED
|
@@ -8,6 +8,7 @@ import re
|
|
| 8 |
import random # for random select songs
|
| 9 |
|
| 10 |
from typing import List, Dict, Any, Optional
|
|
|
|
| 11 |
|
| 12 |
try:
|
| 13 |
from openai import OpenAI
|
|
@@ -107,6 +108,25 @@ MULTI_HOP_KEYPHRASES = [
|
|
| 107 |
_MH_PATTERNS = [re.compile(p, re.IGNORECASE) for p in MULTI_HOP_KEYPHRASES]
|
| 108 |
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
# Add this near the top of agent.py with the other keyphrase lists
|
| 111 |
SUMMARIZATION_KEYPHRASES = [
|
| 112 |
r"^\b(summarize|summarise|recap)\b", r"^\b(give me a summary|create a short summary)\b"
|
|
@@ -259,11 +279,13 @@ def detect_tags_from_query(
|
|
| 259 |
print(f"ERROR parsing NLU Specialist JSON: {e}")
|
| 260 |
return result_dict
|
| 261 |
|
|
|
|
| 262 |
def _default_embeddings():
|
| 263 |
# This function remains unchanged from agent_work.py
|
| 264 |
model_name = os.getenv("EMBEDDINGS_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
| 265 |
return HuggingFaceEmbeddings(model_name=model_name)
|
| 266 |
|
|
|
|
| 267 |
def build_or_load_vectorstore(docs: List[Document], index_path: str, is_personal: bool = False) -> FAISS:
|
| 268 |
# This function remains unchanged from agent_work.py
|
| 269 |
os.makedirs(os.path.dirname(index_path), exist_ok=True)
|
|
@@ -277,6 +299,23 @@ def build_or_load_vectorstore(docs: List[Document], index_path: str, is_personal
|
|
| 277 |
vs.save_local(index_path)
|
| 278 |
return vs
|
| 279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
def texts_from_jsonl(path: str) -> List[Document]:
|
| 281 |
# This function remains unchanged from agent_work.py
|
| 282 |
out: List[Document] = []
|
|
@@ -293,6 +332,36 @@ def texts_from_jsonl(path: str) -> List[Document]:
|
|
| 293 |
except Exception: return []
|
| 294 |
return out
|
| 295 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
# Some vectorstores might return duplicates.
|
| 297 |
# This is useful when top-k cutoff might otherwise include near-duplicates from query expansion
|
| 298 |
def dedup_docs(scored_docs):
|
|
@@ -305,21 +374,6 @@ def dedup_docs(scored_docs):
|
|
| 305 |
seen.add(uid)
|
| 306 |
return unique
|
| 307 |
|
| 308 |
-
|
| 309 |
-
def bootstrap_vectorstore(sample_paths: List[str] | None = None, index_path: str = "data/faiss_index") -> FAISS:
|
| 310 |
-
# This function remains unchanged from agent_work.py
|
| 311 |
-
docs: List[Document] = []
|
| 312 |
-
for p in (sample_paths or []):
|
| 313 |
-
try:
|
| 314 |
-
if p.lower().endswith(".jsonl"):
|
| 315 |
-
docs.extend(texts_from_jsonl(p))
|
| 316 |
-
else:
|
| 317 |
-
with open(p, "r", encoding="utf-8", errors="ignore") as fh:
|
| 318 |
-
docs.append(Document(page_content=fh.read(), metadata={"source": os.path.basename(p)}))
|
| 319 |
-
except Exception: continue
|
| 320 |
-
if not docs:
|
| 321 |
-
docs = [Document(page_content="(empty index)", metadata={"source": "placeholder"})]
|
| 322 |
-
return build_or_load_vectorstore(docs, index_path=index_path)
|
| 323 |
|
| 324 |
def call_llm(messages: List[Dict[str, str]], temperature: float = 0.6, stop: Optional[List[str]] = None, response_format: Optional[dict] = None) -> str:
|
| 325 |
# This function remains unchanged from agent_work.py
|
|
@@ -398,6 +452,7 @@ def route_query_type(query: str, severity: str = "Normal / Unspecified"):
|
|
| 398 |
print(f"Query classified as: {sum_hit} (summarization pre-router)")
|
| 399 |
return sum_hit
|
| 400 |
|
|
|
|
| 401 |
# NEW Add Music Support before care_hit = _pre_router(query)
|
| 402 |
# the general "caregiving" keyword checker (_pre_router) is called before
|
| 403 |
# the specific "play music" checker (_pre_router_music).
|
|
@@ -405,8 +460,8 @@ def route_query_type(query: str, severity: str = "Normal / Unspecified"):
|
|
| 405 |
if music_hit:
|
| 406 |
print(f"Query classified as: {music_hit} (music re-router)")
|
| 407 |
return music_hit
|
| 408 |
-
|
| 409 |
-
# Priority
|
| 410 |
care_hit = _pre_router(query)
|
| 411 |
if care_hit:
|
| 412 |
print(f"Query classified as: {care_hit} (caregiving pre-router)")
|
|
@@ -421,7 +476,6 @@ def route_query_type(query: str, severity: str = "Normal / Unspecified"):
|
|
| 421 |
|
| 422 |
# helper: put near other small utils in agent.py
|
| 423 |
# In agent.py, replace the _source_ids_for_eval function
|
| 424 |
-
|
| 425 |
def _source_ids_for_eval(docs, cap=5):
|
| 426 |
"""
|
| 427 |
Return the source identifiers for evaluation.
|
|
@@ -584,15 +638,13 @@ def make_rag_chain(vs_general: FAISS, vs_personal: FAISS, *, for_evaluation: boo
|
|
| 584 |
# --- END OF REVISED MUSIC LOGIC ---
|
| 585 |
# END --- MUSIC PLAYBACK LOGIC ---
|
| 586 |
|
| 587 |
-
|
| 588 |
p_name = patient_name or "the patient"
|
| 589 |
c_name = caregiver_name or "the caregiver"
|
| 590 |
-
|
| 591 |
perspective_line = (f"You are speaking directly to {p_name}, who is the patient...") if role == "patient" else (f"You are communicating with {c_name}, the caregiver, about {p_name}.")
|
| 592 |
system_message = SYSTEM_TEMPLATE.format(tone=tone, language=language, perspective_line=perspective_line, guardrails=SAFETY_GUARDRAILS)
|
| 593 |
messages = [{"role": "system", "content": system_message}]
|
| 594 |
messages.extend(chat_history)
|
| 595 |
-
|
| 596 |
if "general_knowledge_question" in query_type or "general_conversation" in query_type:
|
| 597 |
template = ANSWER_TEMPLATE_GENERAL_KNOWLEDGE if "general_knowledge" in query_type else ANSWER_TEMPLATE_GENERAL
|
| 598 |
user_prompt = template.format(question=query, language=language)
|
|
@@ -601,232 +653,109 @@ def make_rag_chain(vs_general: FAISS, vs_personal: FAISS, *, for_evaluation: boo
|
|
| 601 |
answer = _clean_surface_text(raw_answer)
|
| 602 |
sources = ["General Knowledge"] if "general_knowledge" in query_type else []
|
| 603 |
return {"answer": answer, "sources": sources, "source_documents": []}
|
|
|
|
| 604 |
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
try:
|
| 608 |
-
search_queries = [query] + json.loads(expansion_response.strip().replace("```json", "").replace("```", ""))
|
| 609 |
-
except json.JSONDecodeError:
|
| 610 |
-
search_queries = [query]
|
| 611 |
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
]
|
| 624 |
-
general_results_with_scores = [
|
| 625 |
-
result for q in search_queries for result in vs_general.similarity_search_with_score(q, k=top_k_general)
|
| 626 |
-
]
|
| 627 |
-
|
| 628 |
-
# NEW: Remove duplicates
|
| 629 |
-
personal_results_with_scores = dedup_docs(personal_results_with_scores)
|
| 630 |
-
general_results_with_scores = dedup_docs(general_results_with_scores)
|
| 631 |
-
|
| 632 |
-
## BEGIN DEBUGGING
|
| 633 |
-
print(f"[DEBUG] Retrieved {len(personal_results_with_scores)} personal, {len(general_results_with_scores)} general results")
|
| 634 |
-
if personal_results_with_scores:
|
| 635 |
-
print(f"Top personal score: {max([s for _, s in personal_results_with_scores]):.3f}")
|
| 636 |
-
if general_results_with_scores:
|
| 637 |
-
print(f"Top general score: {max([s for _, s in general_results_with_scores]):.3f}")
|
| 638 |
-
|
| 639 |
-
print("\n--- DEBUG: Personal Search Results with Scores (Before Filtering) ---")
|
| 640 |
-
if personal_results_with_scores:
|
| 641 |
-
for doc, score in personal_results_with_scores:
|
| 642 |
-
print(f" - Score: {score:.4f} | Source: {doc.metadata.get('source', 'N/A')}")
|
| 643 |
-
else:
|
| 644 |
-
print(" - No results found.")
|
| 645 |
-
print("-----------------------------------------------------------------")
|
| 646 |
-
|
| 647 |
-
print("\n--- DEBUG: General Search Results with Scores (Before Filtering) ----")
|
| 648 |
-
if general_results_with_scores:
|
| 649 |
-
for doc, score in general_results_with_scores:
|
| 650 |
-
print(f" - Score: {score:.4f} | Source: {doc.metadata.get('source', 'N/A')}")
|
| 651 |
else:
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 664 |
|
| 665 |
-
|
| 666 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 667 |
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
best_personal_score = personal_results_with_scores[0][1] if personal_results_with_scores else 0.0
|
| 678 |
-
else:
|
| 679 |
-
# Use standard fallback-based scoring
|
| 680 |
-
filtered_personal_docs, best_personal_score = get_best_docs_with_fallback(personal_results_with_scores)
|
| 681 |
-
filtered_general_docs, best_general_score = get_best_docs_with_fallback(general_results_with_scores)
|
| 682 |
-
|
| 683 |
-
print("\n--- DEBUG: Filtered Personal Docs (After Threshold/Fallback) ---")
|
| 684 |
-
if filtered_personal_docs:
|
| 685 |
-
for doc in filtered_personal_docs:
|
| 686 |
-
print(f" - Source: {doc.metadata.get('source', 'N/A')}")
|
| 687 |
-
else:
|
| 688 |
-
print(" - No documents met the criteria.")
|
| 689 |
print("----------------------------------------------------------------")
|
| 690 |
|
| 691 |
-
|
| 692 |
-
if
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
else:
|
| 696 |
-
print(" - No documents met the criteria.")
|
| 697 |
-
print("----------------------------------------------------------------")
|
| 698 |
-
|
| 699 |
-
personal_memory_routes = ["factual", "multi_hop", "summarization"]
|
| 700 |
-
is_personal_route = any(route_keyword in query_type for route_keyword in personal_memory_routes)
|
| 701 |
-
|
| 702 |
-
all_retrieved_docs = []
|
| 703 |
if is_personal_route:
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
if filtered_personal_docs:
|
| 708 |
-
print("[DEBUG] Factual/Sum/Multi: Prioritizing personal docs.")
|
| 709 |
-
all_retrieved_docs = filtered_personal_docs
|
| 710 |
-
else:
|
| 711 |
-
print("[DEBUG] Factual/Sum/Multi: Prioritizing general docs.")
|
| 712 |
-
all_retrieved_docs = filtered_general_docs
|
| 713 |
-
# --- END OF MODIFICATION ---
|
| 714 |
else: # caregiving_scenario
|
| 715 |
-
if disease_stage
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
all_retrieved_docs = filtered_personal_docs
|
| 723 |
-
else:
|
| 724 |
-
print("[DEBUG] Moderate / Advanced: No relevant documents found.")
|
| 725 |
-
all_retrieved_docs = []
|
| 726 |
-
# --- END STAGE-AWARE BLOCK ---
|
| 727 |
-
else:
|
| 728 |
-
# --- NORMAL ROUTING LOGIC ---
|
| 729 |
-
# Conditional Blending logic for caregiving remains.
|
| 730 |
-
if abs(best_personal_score - best_general_score) <= SCORE_MARGIN:
|
| 731 |
-
print("[DEBUG] Caregiving Case: Blending personal and general docs (scores are close).")
|
| 732 |
-
all_retrieved_docs = list({doc.page_content: doc for doc in filtered_personal_docs + filtered_general_docs}.values())[:4]
|
| 733 |
-
elif best_personal_score < best_general_score:
|
| 734 |
-
print("[DEBUG] Caregiving Case: Prioritizing personal docs (better score).")
|
| 735 |
-
all_retrieved_docs = filtered_personal_docs
|
| 736 |
-
else:
|
| 737 |
-
print("[DEBUG] Caregiving Case: Prioritizing general docs (better score).")
|
| 738 |
-
all_retrieved_docs = filtered_general_docs
|
| 739 |
|
| 740 |
-
|
| 741 |
-
answer = ""
|
| 742 |
-
if is_personal_route:
|
| 743 |
-
personal_context = _format_docs(all_retrieved_docs, "(No relevant personal memories found.)")
|
| 744 |
-
# New modify for test evaluation, general_context is empty but use general context in live chat
|
| 745 |
-
general_context = _format_docs([], "") if for_evaluation else _format_docs(filtered_general_docs, "(No general information found.)")
|
| 746 |
-
# End
|
| 747 |
-
|
| 748 |
-
print(f"[DEBUG] Personal Context: {personal_context}")
|
| 749 |
-
print(f"[DEBUG] General Context: {general_context}")
|
| 750 |
-
|
| 751 |
-
template = ANSWER_TEMPLATE_SUMMARIZE if "summarization" in query_type else ANSWER_TEMPLATE_FACTUAL
|
| 752 |
-
user_prompt = ""
|
| 753 |
-
if "summarization" in query_type:
|
| 754 |
-
if for_evaluation: # for evaluation, use only personal
|
| 755 |
-
user_prompt = template.format(context=personal_context, question=query, language=language, patient_name=p_name, caregiver_name=c_name, role=role)
|
| 756 |
-
else: # for live chat, use more context
|
| 757 |
-
combined_context = f"{personal_context}\n{general_context}".strip()
|
| 758 |
-
user_prompt = template.format(context=combined_context, question=query, language=language, patient_name=p_name, caregiver_name=c_name, role=role)
|
| 759 |
-
|
| 760 |
-
else: # ANSWER_TEMPLATE_FACTUAL
|
| 761 |
-
user_prompt = template.format(personal_context=personal_context, general_context=general_context, question=query, language=language, patient_name=p_name, caregiver_name=c_name)
|
| 762 |
-
|
| 763 |
-
messages.append({"role": "user", "content": user_prompt})
|
| 764 |
-
if for_evaluation: # if evaluation test, set temperature (creativity) low from 0.6 input
|
| 765 |
-
test_temperature = 0.0 # Modify the local variable
|
| 766 |
-
raw_answer = call_llm(messages, temperature=test_temperature)
|
| 767 |
-
answer = _clean_surface_text(raw_answer)
|
| 768 |
-
print("[DEBUG] Factual / Sum / Multi LLM Answer: ", {answer})
|
| 769 |
|
| 770 |
-
else
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
template = ANSWER_TEMPLATE_ADQ_ADVANCED
|
| 777 |
-
elif disease_stage == "Moderate Stage":
|
| 778 |
-
template = ANSWER_TEMPLATE_ADQ_MODERATE
|
| 779 |
-
else: # Normal / Unspecified or Mild Stage
|
| 780 |
-
template = ANSWER_TEMPLATE_ADQ
|
| 781 |
-
|
| 782 |
-
# 2. The rest of the logic remains the same. It will use the 'template' variable
|
| 783 |
-
# that was just selected above.
|
| 784 |
-
personal_sources = {'1 Complaints of a Dutiful Daughter.txt', 'Saved Chat', 'Text Input'}
|
| 785 |
-
personal_context = _format_docs([d for d in all_retrieved_docs if d.metadata.get('source') in personal_sources], "(No relevant personal memories found.)")
|
| 786 |
-
general_context = _format_docs([d for d in all_retrieved_docs if d.metadata.get('source') not in personal_sources], "(No general guidance found.)")
|
| 787 |
-
|
| 788 |
-
print(f"[DEBUG] Personal Context: {personal_context}")
|
| 789 |
-
print(f"[DEBUG] General Context: {general_context}")
|
| 790 |
-
|
| 791 |
-
first_emotion = next((d.metadata.get("emotion") for d in all_retrieved_docs if d.metadata.get("emotion")), None)
|
| 792 |
-
emotions_context = render_emotion_guidelines(first_emotion or kwargs.get("emotion_tag"))
|
| 793 |
-
|
| 794 |
-
# NEW: Add Emotion Tag
|
| 795 |
-
user_prompt = template.format(general_context=general_context, personal_context=personal_context,
|
| 796 |
-
question=query, scenario_tag=kwargs.get("scenario_tag"),
|
| 797 |
-
emotions_context=emotions_context, role=role, language=language,
|
| 798 |
-
patient_name=p_name, caregiver_name=c_name,
|
| 799 |
-
emotion_tag=kwargs.get("emotion_tag"))
|
| 800 |
-
messages.append({"role": "user", "content": user_prompt})
|
| 801 |
-
# --- MODIFICATION END ---
|
| 802 |
-
|
| 803 |
-
# OLD
|
| 804 |
-
# template = ANSWER_TEMPLATE_ADQ
|
| 805 |
-
# user_prompt = template.format(general_context=general_context, personal_context=personal_context,
|
| 806 |
-
# question=query, scenario_tag=kwargs.get("scenario_tag"),
|
| 807 |
-
# emotions_context=emotions_context, role=role, language=language,
|
| 808 |
-
# patient_name=p_name, caregiver_name=c_name)
|
| 809 |
-
# messages.append({"role": "user", "content": user_prompt})
|
| 810 |
-
|
| 811 |
-
if for_evaluation: # if evaluation test, set temperature (creativity) low from 0.6 input
|
| 812 |
-
test_temperature = 0.0 # Modify the local variable
|
| 813 |
-
raw_answer = call_llm(messages, temperature=test_temperature)
|
| 814 |
-
answer = _clean_surface_text(raw_answer)
|
| 815 |
-
print("[DEBUG] Caregiving Case LLM Answer: ", {answer})
|
| 816 |
-
high_risk_scenarios = ["exit_seeking", "wandering", "elopement"]
|
| 817 |
-
if kwargs.get("scenario_tag") and kwargs["scenario_tag"].lower() in high_risk_scenarios:
|
| 818 |
-
answer += f"\n\n---\n{RISK_FOOTER}"
|
| 819 |
-
|
| 820 |
-
if for_evaluation:
|
| 821 |
-
sources = _source_ids_for_eval(all_retrieved_docs)
|
| 822 |
-
else:
|
| 823 |
-
sources = sorted(list(set(d.metadata.get("source", "unknown") for d in all_retrieved_docs if d.metadata.get("source") != "placeholder")))
|
| 824 |
|
|
|
|
| 825 |
print("DEBUG Sources (After Filtering):", sources)
|
| 826 |
return {"answer": answer, "sources": sources, "source_documents": all_retrieved_docs}
|
| 827 |
|
| 828 |
-
return _answer_fn
|
| 829 |
-
|
| 830 |
# END of make_rag_chain
|
| 831 |
|
| 832 |
def answer_query(chain, question: str, **kwargs) -> Dict[str, Any]:
|
|
|
|
| 8 |
import random # for random select songs
|
| 9 |
|
| 10 |
from typing import List, Dict, Any, Optional
|
| 11 |
+
from sentence_transformers import CrossEncoder
|
| 12 |
|
| 13 |
try:
|
| 14 |
from openai import OpenAI
|
|
|
|
| 108 |
_MH_PATTERNS = [re.compile(p, re.IGNORECASE) for p in MULTI_HOP_KEYPHRASES]
|
| 109 |
|
| 110 |
|
| 111 |
+
|
| 112 |
+
FACTUAL_KEYPHRASES = [
|
| 113 |
+
r"\b(what is|what was) my\b",
|
| 114 |
+
r"\b(who is|who was) my\b",
|
| 115 |
+
r"\b(where is|where was) my\b",
|
| 116 |
+
r"\b(how old am i)\b",
|
| 117 |
+
# r"\b(when did|what did) the journal say\b"
|
| 118 |
+
]
|
| 119 |
+
_FQ_PATTERNS = [re.compile(p, re.IGNORECASE) for p in FACTUAL_KEYPHRASES]
|
| 120 |
+
|
| 121 |
+
def _pre_router_factual(query: str) -> str | None:
|
| 122 |
+
"""Checks for patterns common in direct factual questions about personal memory."""
|
| 123 |
+
q = (query or "")
|
| 124 |
+
for pat in _FQ_PATTERNS:
|
| 125 |
+
if re.search(pat, q):
|
| 126 |
+
return "factual_question"
|
| 127 |
+
return None
|
| 128 |
+
|
| 129 |
+
|
| 130 |
# Add this near the top of agent.py with the other keyphrase lists
|
| 131 |
SUMMARIZATION_KEYPHRASES = [
|
| 132 |
r"^\b(summarize|summarise|recap)\b", r"^\b(give me a summary|create a short summary)\b"
|
|
|
|
| 279 |
print(f"ERROR parsing NLU Specialist JSON: {e}")
|
| 280 |
return result_dict
|
| 281 |
|
| 282 |
+
|
| 283 |
def _default_embeddings():
|
| 284 |
# This function remains unchanged from agent_work.py
|
| 285 |
model_name = os.getenv("EMBEDDINGS_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
| 286 |
return HuggingFaceEmbeddings(model_name=model_name)
|
| 287 |
|
| 288 |
+
|
| 289 |
def build_or_load_vectorstore(docs: List[Document], index_path: str, is_personal: bool = False) -> FAISS:
|
| 290 |
# This function remains unchanged from agent_work.py
|
| 291 |
os.makedirs(os.path.dirname(index_path), exist_ok=True)
|
|
|
|
| 299 |
vs.save_local(index_path)
|
| 300 |
return vs
|
| 301 |
|
| 302 |
+
|
| 303 |
+
def bootstrap_vectorstore(sample_paths: List[str] | None = None, index_path: str = "data/faiss_index") -> FAISS:
|
| 304 |
+
# This function remains unchanged from agent_work.py
|
| 305 |
+
docs: List[Document] = []
|
| 306 |
+
for p in (sample_paths or []):
|
| 307 |
+
try:
|
| 308 |
+
if p.lower().endswith(".jsonl"):
|
| 309 |
+
docs.extend(texts_from_jsonl(p))
|
| 310 |
+
else:
|
| 311 |
+
with open(p, "r", encoding="utf-8", errors="ignore") as fh:
|
| 312 |
+
docs.append(Document(page_content=fh.read(), metadata={"source": os.path.basename(p)}))
|
| 313 |
+
except Exception: continue
|
| 314 |
+
if not docs:
|
| 315 |
+
docs = [Document(page_content="(empty index)", metadata={"source": "placeholder"})]
|
| 316 |
+
return build_or_load_vectorstore(docs, index_path=index_path)
|
| 317 |
+
|
| 318 |
+
|
| 319 |
def texts_from_jsonl(path: str) -> List[Document]:
|
| 320 |
# This function remains unchanged from agent_work.py
|
| 321 |
out: List[Document] = []
|
|
|
|
| 332 |
except Exception: return []
|
| 333 |
return out
|
| 334 |
|
| 335 |
+
|
| 336 |
+
def rerank_documents(query: str, documents: list[tuple[Document, float]]) -> list[tuple[tuple[Document, float], float]]:
|
| 337 |
+
"""
|
| 338 |
+
Re-ranks a list of retrieved documents against a query using a CrossEncoder model.
|
| 339 |
+
Returns the original document tuples along with their new re-ranker score.
|
| 340 |
+
"""
|
| 341 |
+
if not documents or not query:
|
| 342 |
+
return []
|
| 343 |
+
|
| 344 |
+
model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
| 345 |
+
|
| 346 |
+
doc_contents = [doc.page_content for doc, score in documents]
|
| 347 |
+
query_doc_pairs = [[query, doc_content] for doc_content in doc_contents]
|
| 348 |
+
|
| 349 |
+
scores = model.predict(query_doc_pairs)
|
| 350 |
+
|
| 351 |
+
reranked_results = list(zip(documents, scores))
|
| 352 |
+
reranked_results.sort(key=lambda x: x[1], reverse=True)
|
| 353 |
+
|
| 354 |
+
print(f"\n[DEBUG] Re-ranked Top 3 Sources:")
|
| 355 |
+
for doc_tuple, score in reranked_results[:3]:
|
| 356 |
+
doc, _ = doc_tuple
|
| 357 |
+
# --- MODIFICATION: Add score to debug log ---
|
| 358 |
+
print(f" - New Rank | Source: {doc.metadata.get('source')} | Score: {score:.4f}")
|
| 359 |
+
|
| 360 |
+
# --- MODIFICATION: Return the results with scores ---
|
| 361 |
+
return reranked_results
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
|
| 365 |
# Some vectorstores might return duplicates.
|
| 366 |
# This is useful when top-k cutoff might otherwise include near-duplicates from query expansion
|
| 367 |
def dedup_docs(scored_docs):
|
|
|
|
| 374 |
seen.add(uid)
|
| 375 |
return unique
|
| 376 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
|
| 378 |
def call_llm(messages: List[Dict[str, str]], temperature: float = 0.6, stop: Optional[List[str]] = None, response_format: Optional[dict] = None) -> str:
|
| 379 |
# This function remains unchanged from agent_work.py
|
|
|
|
| 452 |
print(f"Query classified as: {sum_hit} (summarization pre-router)")
|
| 453 |
return sum_hit
|
| 454 |
|
| 455 |
+
# Priority 4: Check for music requests.
|
| 456 |
# NEW Add Music Support before care_hit = _pre_router(query)
|
| 457 |
# the general "caregiving" keyword checker (_pre_router) is called before
|
| 458 |
# the specific "play music" checker (_pre_router_music).
|
|
|
|
| 460 |
if music_hit:
|
| 461 |
print(f"Query classified as: {music_hit} (music re-router)")
|
| 462 |
return music_hit
|
| 463 |
+
|
| 464 |
+
# Priority 5: Check for general caregiving keywords.
|
| 465 |
care_hit = _pre_router(query)
|
| 466 |
if care_hit:
|
| 467 |
print(f"Query classified as: {care_hit} (caregiving pre-router)")
|
|
|
|
| 476 |
|
| 477 |
# helper: put near other small utils in agent.py
|
| 478 |
# In agent.py, replace the _source_ids_for_eval function
|
|
|
|
| 479 |
def _source_ids_for_eval(docs, cap=5):
|
| 480 |
"""
|
| 481 |
Return the source identifiers for evaluation.
|
|
|
|
| 638 |
# --- END OF REVISED MUSIC LOGIC ---
|
| 639 |
# END --- MUSIC PLAYBACK LOGIC ---
|
| 640 |
|
|
|
|
| 641 |
p_name = patient_name or "the patient"
|
| 642 |
c_name = caregiver_name or "the caregiver"
|
|
|
|
| 643 |
perspective_line = (f"You are speaking directly to {p_name}, who is the patient...") if role == "patient" else (f"You are communicating with {c_name}, the caregiver, about {p_name}.")
|
| 644 |
system_message = SYSTEM_TEMPLATE.format(tone=tone, language=language, perspective_line=perspective_line, guardrails=SAFETY_GUARDRAILS)
|
| 645 |
messages = [{"role": "system", "content": system_message}]
|
| 646 |
messages.extend(chat_history)
|
| 647 |
+
|
| 648 |
if "general_knowledge_question" in query_type or "general_conversation" in query_type:
|
| 649 |
template = ANSWER_TEMPLATE_GENERAL_KNOWLEDGE if "general_knowledge" in query_type else ANSWER_TEMPLATE_GENERAL
|
| 650 |
user_prompt = template.format(question=query, language=language)
|
|
|
|
| 653 |
answer = _clean_surface_text(raw_answer)
|
| 654 |
sources = ["General Knowledge"] if "general_knowledge" in query_type else []
|
| 655 |
return {"answer": answer, "sources": sources, "source_documents": []}
|
| 656 |
+
# --- END: Non-RAG Route Handling ---
|
| 657 |
|
| 658 |
+
all_retrieved_docs = []
|
| 659 |
+
is_personal_route = "factual" in query_type or "summarization" in query_type or "multi_hop" in query_type
|
|
|
|
|
|
|
|
|
|
|
|
|
| 660 |
|
| 661 |
+
|
| 662 |
+
# --- NEW: DEDICATED LOGIC PATHS FOR RETRIEVAL ---
|
| 663 |
+
if is_personal_route:
|
| 664 |
+
# For personal queries, semantic search is unreliable. We retrieve ALL personal documents.
|
| 665 |
+
print("[DEBUG] Personal Memory Route Activated. Retrieving all personal documents.")
|
| 666 |
+
if vs_personal and vs_personal._collection.count() > 0:
|
| 667 |
+
personal_docs_data = vs_personal.get(include=["metadatas", "documents"])
|
| 668 |
+
all_retrieved_docs.extend([
|
| 669 |
+
Document(page_content=doc_content, metadata=metadata)
|
| 670 |
+
for doc_content, metadata in zip(personal_docs_data['documents'], personal_docs_data['metadatas'])
|
| 671 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 672 |
else:
|
| 673 |
+
# For caregiving scenarios, use our powerful Multi-Stage Retrieval algorithm.
|
| 674 |
+
print("[DEBUG] Using Multi-Stage Retrieval for caregiving scenario...")
|
| 675 |
+
print("[DEBUG] Expanding query...")
|
| 676 |
+
search_queries = [query]
|
| 677 |
+
try:
|
| 678 |
+
expansion_prompt = QUERY_EXPANSION_PROMPT.format(question=query)
|
| 679 |
+
expansion_messages = [{"role": "user", "content": expansion_prompt}]
|
| 680 |
+
raw_expansion = call_llm(expansion_messages, temperature=0.0)
|
| 681 |
+
expanded = json.loads(raw_expansion)
|
| 682 |
+
if isinstance(expanded, list):
|
| 683 |
+
search_queries.extend(expanded)
|
| 684 |
+
except Exception as e:
|
| 685 |
+
print(f"[DEBUG] Query expansion failed: {e}")
|
| 686 |
+
|
| 687 |
+
scenario_tags = kwargs.get("scenario_tag")
|
| 688 |
+
if isinstance(scenario_tags, str): scenario_tags = [scenario_tags]
|
| 689 |
+
primary_behavior = (scenario_tags or [None])[0]
|
| 690 |
|
| 691 |
+
candidate_docs = []
|
| 692 |
+
if primary_behavior and primary_behavior != "None":
|
| 693 |
+
print(f" - Stage 1a: High-precision search for behavior: '{primary_behavior}'")
|
| 694 |
+
for q in search_queries:
|
| 695 |
+
candidate_docs.extend(vs_general.similarity_search_with_score(q, k=10, filter={"behaviors": primary_behavior}))
|
| 696 |
+
|
| 697 |
+
print(" - Stage 1b: High-recall semantic search (k=20)")
|
| 698 |
+
for q in search_queries:
|
| 699 |
+
candidate_docs.extend(vs_general.similarity_search_with_score(q, k=20))
|
| 700 |
+
|
| 701 |
+
all_candidate_docs = dedup_docs(candidate_docs)
|
| 702 |
+
print(f"[DEBUG] Total unique candidates for re-ranking: {len(all_candidate_docs)}")
|
| 703 |
+
reranked_docs_with_scores = rerank_documents(query, all_candidate_docs) if all_candidate_docs else []
|
| 704 |
+
|
| 705 |
+
|
| 706 |
+
# --- BEST method code: Recall 90% and Precision 73%
|
| 707 |
+
final_docs_with_scores = []
|
| 708 |
+
if reranked_docs_with_scores:
|
| 709 |
+
RELATIVE_SCORE_MARGIN = 3.0
|
| 710 |
+
top_doc_tuple, top_score = reranked_docs_with_scores[0]
|
| 711 |
+
final_docs_with_scores.append(top_doc_tuple)
|
| 712 |
+
for doc_tuple, score in reranked_docs_with_scores[1:]:
|
| 713 |
+
if score > (top_score - RELATIVE_SCORE_MARGIN):
|
| 714 |
+
final_docs_with_scores.append(doc_tuple)
|
| 715 |
+
else: break
|
| 716 |
|
| 717 |
+
limit = 5 if disease_stage in ["Moderate Stage", "Advanced Stage"] else 3
|
| 718 |
+
final_docs_with_scores = final_docs_with_scores[:limit]
|
| 719 |
+
all_retrieved_docs = [doc for doc, score in final_docs_with_scores]
|
| 720 |
+
# BEFORE FINAL PROCESSING (Applies to all RAG routes)
|
| 721 |
+
|
| 722 |
+
# --- FINAL PROCESSING (Applies to all RAG routes) ---
|
| 723 |
+
print("\n--- DEBUG: Final Selected Docs ---")
|
| 724 |
+
for doc in all_retrieved_docs:
|
| 725 |
+
print(f" - Source: {doc.metadata.get('source', 'N/A')}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 726 |
print("----------------------------------------------------------------")
|
| 727 |
|
| 728 |
+
personal_sources_set = {'1 Complaints of a Dutiful Daughter.txt', 'Saved Chat', 'Text Input'}
|
| 729 |
+
personal_context = _format_docs([d for d in all_retrieved_docs if d.metadata.get('source') in personal_sources_set], "(No relevant personal memories found.)")
|
| 730 |
+
general_context = _format_docs([d for d in all_retrieved_docs if d.metadata.get('source') not in personal_sources_set], "(No general guidance found.)")
|
| 731 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 732 |
if is_personal_route:
|
| 733 |
+
template = ANSWER_TEMPLATE_SUMMARIZE if "summarization" in query_type else ANSWER_TEMPLATE_FACTUAL_MULTI if "multi_hop" in query_type else ANSWER_TEMPLATE_FACTUAL
|
| 734 |
+
user_prompt = template.format(personal_context=personal_context, general_context=general_context, question=query, language=language, patient_name=p_name, caregiver_name=c_name, context=personal_context, role=role)
|
| 735 |
+
print("[DEBUG] Personal Route Factual / Sum / Multi PROMPT")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 736 |
else: # caregiving_scenario
|
| 737 |
+
if disease_stage == "Advanced Stage": template = ANSWER_TEMPLATE_ADQ_ADVANCED
|
| 738 |
+
elif disease_stage == "Moderate Stage": template = ANSWER_TEMPLATE_ADQ_MODERATE
|
| 739 |
+
else: template = ANSWER_TEMPLATE_ADQ
|
| 740 |
+
emotions_context = render_emotion_guidelines(kwargs.get("emotion_tag"))
|
| 741 |
+
user_prompt = template.format(general_context=general_context, personal_context=personal_context, question=query, scenario_tag=kwargs.get("scenario_tag"), emotions_context=emotions_context, role=role, language=language, patient_name=p_name, caregiver_name=c_name, emotion_tag=kwargs.get("emotion_tag"))
|
| 742 |
+
print("[DEBUG] Caregiving Scenario PROMPT")
|
| 743 |
+
# end
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 744 |
|
| 745 |
+
messages.append({"role": "user", "content": user_prompt})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 746 |
|
| 747 |
+
raw_answer = call_llm(messages, temperature=0.0 if for_evaluation else temperature)
|
| 748 |
+
answer = _clean_surface_text(raw_answer)
|
| 749 |
+
print("[DEBUG] LLM Answer", {answer})
|
| 750 |
+
|
| 751 |
+
if (kwargs.get("scenario_tag") or "").lower() in ["exit_seeking", "wandering"]:
|
| 752 |
+
answer += f"\n\n---\n{RISK_FOOTER}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 753 |
|
| 754 |
+
sources = _source_ids_for_eval(all_retrieved_docs) if for_evaluation else sorted(list(set(d.metadata.get("source", "unknown") for d in all_retrieved_docs if d.metadata.get("source") != "placeholder")))
|
| 755 |
print("DEBUG Sources (After Filtering):", sources)
|
| 756 |
return {"answer": answer, "sources": sources, "source_documents": all_retrieved_docs}
|
| 757 |
|
| 758 |
+
return _answer_fn
|
|
|
|
| 759 |
# END of make_rag_chain
|
| 760 |
|
| 761 |
def answer_query(chain, question: str, **kwargs) -> Dict[str, Any]:
|