Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- alz_companion/agent.py +338 -0
- alz_companion/prompts.py +231 -0
alz_companion/agent.py
ADDED
|
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from __future__ import annotations
|
| 3 |
+
import os
|
| 4 |
+
import json
|
| 5 |
+
import base64
|
| 6 |
+
import time
|
| 7 |
+
import tempfile
|
| 8 |
+
import re
|
| 9 |
+
|
| 10 |
+
from typing import List, Dict, Any, Optional
|
| 11 |
+
|
| 12 |
+
try:
|
| 13 |
+
from openai import OpenAI
|
| 14 |
+
except Exception:
|
| 15 |
+
OpenAI = None
|
| 16 |
+
|
| 17 |
+
from langchain.schema import Document
|
| 18 |
+
from langchain_community.vectorstores import FAISS
|
| 19 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 20 |
+
|
| 21 |
+
try:
|
| 22 |
+
from gtts import gTTS
|
| 23 |
+
except Exception:
|
| 24 |
+
gTTS = None
|
| 25 |
+
|
| 26 |
+
from .prompts import (
|
| 27 |
+
SYSTEM_TEMPLATE, ANSWER_TEMPLATE_CALM, ANSWER_TEMPLATE_ADQ,
|
| 28 |
+
SAFETY_GUARDRAILS, RISK_FOOTER, render_emotion_guidelines,
|
| 29 |
+
NLU_ROUTER_PROMPT, SPECIALIST_CLASSIFIER_PROMPT,
|
| 30 |
+
ROUTER_PROMPT,
|
| 31 |
+
ANSWER_TEMPLATE_FACTUAL,
|
| 32 |
+
ANSWER_TEMPLATE_GENERAL_KNOWLEDGE,
|
| 33 |
+
ANSWER_TEMPLATE_GENERAL,
|
| 34 |
+
QUERY_EXPANSION_PROMPT
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# -----------------------------
|
| 38 |
+
# Multimodal Processing Functions
|
| 39 |
+
# -----------------------------
|
| 40 |
+
|
| 41 |
+
def _openai_client() -> Optional[OpenAI]:
|
| 42 |
+
api_key = os.getenv("OPENAI_API_KEY", "").strip()
|
| 43 |
+
return OpenAI(api_key=api_key) if api_key and OpenAI else None
|
| 44 |
+
|
| 45 |
+
def describe_image(image_path: str) -> str:
|
| 46 |
+
client = _openai_client()
|
| 47 |
+
if not client:
|
| 48 |
+
return "(Image description failed: OpenAI API key not configured.)"
|
| 49 |
+
try:
|
| 50 |
+
extension = os.path.splitext(image_path)[1].lower()
|
| 51 |
+
mime_type = f"image/{'jpeg' if extension in ['.jpg', '.jpeg'] else extension.strip('.')}"
|
| 52 |
+
with open(image_path, "rb") as image_file:
|
| 53 |
+
base64_image = base64.b64encode(image_file.read()).decode('utf-8')
|
| 54 |
+
response = client.chat.completions.create(
|
| 55 |
+
model="gpt-4o",
|
| 56 |
+
messages=[
|
| 57 |
+
{
|
| 58 |
+
"role": "user",
|
| 59 |
+
"content": [
|
| 60 |
+
{"type": "text", "text": "Describe this image concisely for a memory journal. Focus on people, places, and key objects. Example: 'A photo of John and Mary smiling on a bench at the park.'"},
|
| 61 |
+
{"type": "image_url", "image_url": {"url": f"data:{mime_type};base64,{base64_image}"}}
|
| 62 |
+
],
|
| 63 |
+
}
|
| 64 |
+
], max_tokens=100)
|
| 65 |
+
return response.choices[0].message.content or "No description available."
|
| 66 |
+
except Exception as e:
|
| 67 |
+
return f"[Image description error: {e}]"
|
| 68 |
+
|
| 69 |
+
# -----------------------------
|
| 70 |
+
# NLU Classification Function (Dynamic Version)
|
| 71 |
+
# -----------------------------
|
| 72 |
+
|
| 73 |
+
def detect_tags_from_query(
|
| 74 |
+
query: str,
|
| 75 |
+
nlu_vectorstore: FAISS,
|
| 76 |
+
behavior_options: list,
|
| 77 |
+
emotion_options: list,
|
| 78 |
+
topic_options: list,
|
| 79 |
+
context_options: list,
|
| 80 |
+
settings: dict = None
|
| 81 |
+
) -> Dict[str, Any]:
|
| 82 |
+
"""Uses a dynamic two-step NLU process: Route -> Retrieve Examples -> Classify."""
|
| 83 |
+
|
| 84 |
+
# --- STEP 1: Route the query to determine the primary goal ---
|
| 85 |
+
router_prompt = NLU_ROUTER_PROMPT.format(query=query)
|
| 86 |
+
primary_goal_raw = call_llm([{"role": "user", "content": router_prompt}], temperature=0.0).strip().lower()
|
| 87 |
+
|
| 88 |
+
# --- FIX START: Use separate variables for the filter (lowercase) and the prompt (Title Case) ---
|
| 89 |
+
goal_for_filter = "practical_planning" if "practical" in primary_goal_raw else "emotional_support"
|
| 90 |
+
goal_for_prompt = "Practical Planning" if "practical" in primary_goal_raw else "Emotional Support"
|
| 91 |
+
# --- FIX END ---
|
| 92 |
+
|
| 93 |
+
if settings and settings.get("debug_mode"):
|
| 94 |
+
print(f"\n--- NLU Router ---\nGoal: {goal_for_prompt} (Filter: '{goal_for_filter}')\n------------------\n")
|
| 95 |
+
|
| 96 |
+
# --- STEP 2: Retrieve relevant examples from the NLU vector store ---
|
| 97 |
+
retriever = nlu_vectorstore.as_retriever(
|
| 98 |
+
search_kwargs={"k": 2, "filter": {"primary_goal": goal_for_filter}} # <-- Use the correct lowercase filter
|
| 99 |
+
)
|
| 100 |
+
retrieved_docs = retriever.invoke(query)
|
| 101 |
+
|
| 102 |
+
# Format the retrieved examples for the prompt
|
| 103 |
+
selected_examples = "\n".join(
|
| 104 |
+
f"User Query: \"{doc.page_content}\"\n{json.dumps(doc.metadata['classification'], indent=4)}"
|
| 105 |
+
for doc in retrieved_docs
|
| 106 |
+
)
|
| 107 |
+
if not selected_examples:
|
| 108 |
+
selected_examples = "(No relevant examples found)"
|
| 109 |
+
if settings and settings.get("debug_mode"):
|
| 110 |
+
print("WARNING: NLU retriever found no examples for this query.")
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# --- STEP 3: Use the Specialist Classifier with retrieved examples ---
|
| 114 |
+
behavior_str = ", ".join(f'"{opt}"' for opt in behavior_options if opt != "None")
|
| 115 |
+
emotion_str = ", ".join(f'"{opt}"' for opt in emotion_options if opt != "None")
|
| 116 |
+
topic_str = ", ".join(f'"{opt}"' for opt in topic_options if opt != "None")
|
| 117 |
+
context_str = ", ".join(f'"{opt}"' for opt in context_options if opt != "None")
|
| 118 |
+
|
| 119 |
+
prompt = SPECIALIST_CLASSIFIER_PROMPT.format(
|
| 120 |
+
primary_goal=goal_for_prompt, # Use Title Case for the prompt text
|
| 121 |
+
examples=selected_examples,
|
| 122 |
+
behavior_options=behavior_str,
|
| 123 |
+
emotion_options=emotion_str,
|
| 124 |
+
topic_options=topic_str,
|
| 125 |
+
context_options=context_str,
|
| 126 |
+
query=query
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
messages = [{"role": "system", "content": "You are a helpful NLU classification assistant."}, {"role": "user", "content": prompt}]
|
| 130 |
+
response_str = call_llm(messages, temperature=0.1)
|
| 131 |
+
|
| 132 |
+
if settings and settings.get("debug_mode"):
|
| 133 |
+
print(f"\n--- NLU Specialist Full Response ---\n{response_str}\n----------------------------------\n")
|
| 134 |
+
|
| 135 |
+
# --- STEP 4: Parse the final result ---
|
| 136 |
+
result_dict = {"detected_behaviors": [], "detected_emotion": "None", "detected_topic": "None", "detected_contexts": []}
|
| 137 |
+
try:
|
| 138 |
+
start_brace = response_str.find('{')
|
| 139 |
+
end_brace = response_str.rfind('}')
|
| 140 |
+
if start_brace != -1 and end_brace > start_brace:
|
| 141 |
+
json_str = response_str[start_brace : end_brace + 1]
|
| 142 |
+
result = json.loads(json_str)
|
| 143 |
+
result_dict["detected_behaviors"] = [b for b in result.get("detected_behaviors", []) if b in behavior_options]
|
| 144 |
+
result_dict["detected_emotion"] = result.get("detected_emotion", "None")
|
| 145 |
+
result_dict["detected_topic"] = result.get("detected_topic", "None")
|
| 146 |
+
result_dict["detected_contexts"] = [c for c in result.get("detected_contexts", []) if c in context_options]
|
| 147 |
+
return result_dict
|
| 148 |
+
except (json.JSONDecodeError, AttributeError) as e:
|
| 149 |
+
print(f"ERROR parsing NLU Specialist JSON: {e}")
|
| 150 |
+
return result_dict
|
| 151 |
+
|
| 152 |
+
# -----------------------------
|
| 153 |
+
# Embeddings & VectorStore
|
| 154 |
+
# -----------------------------
|
| 155 |
+
|
| 156 |
+
def _default_embeddings():
|
| 157 |
+
model_name = os.getenv("EMBEDDINGS_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
| 158 |
+
return HuggingFaceEmbeddings(model_name=model_name)
|
| 159 |
+
|
| 160 |
+
def build_or_load_vectorstore(docs: List[Document], index_path: str, is_personal: bool = False) -> FAISS:
|
| 161 |
+
os.makedirs(os.path.dirname(index_path), exist_ok=True)
|
| 162 |
+
if os.path.isdir(index_path) and os.path.exists(os.path.join(index_path, "index.faiss")):
|
| 163 |
+
try:
|
| 164 |
+
return FAISS.load_local(index_path, _default_embeddings(), allow_dangerous_deserialization=True)
|
| 165 |
+
except Exception: pass
|
| 166 |
+
if is_personal and not docs:
|
| 167 |
+
docs = [Document(page_content="(This is the start of the personal memory journal.)", metadata={"source": "placeholder"})]
|
| 168 |
+
vs = FAISS.from_documents(docs, _default_embeddings())
|
| 169 |
+
vs.save_local(index_path)
|
| 170 |
+
return vs
|
| 171 |
+
|
| 172 |
+
def texts_from_jsonl(path: str) -> List[Document]:
|
| 173 |
+
out: List[Document] = []
|
| 174 |
+
try:
|
| 175 |
+
with open(path, "r", encoding="utf-8") as f:
|
| 176 |
+
for i, line in enumerate(f):
|
| 177 |
+
obj = json.loads(line.strip())
|
| 178 |
+
txt = obj.get("text") or ""
|
| 179 |
+
if not txt.strip(): continue
|
| 180 |
+
md = {"source": os.path.basename(path), "chunk": i}
|
| 181 |
+
for k in ("behaviors", "emotion", "topic_tags", "context_tags"):
|
| 182 |
+
if k in obj and obj[k]: md[k] = obj[k]
|
| 183 |
+
out.append(Document(page_content=txt, metadata=md))
|
| 184 |
+
except Exception: return []
|
| 185 |
+
return out
|
| 186 |
+
|
| 187 |
+
def bootstrap_vectorstore(sample_paths: List[str] | None = None, index_path: str = "data/faiss_index") -> FAISS:
|
| 188 |
+
docs: List[Document] = []
|
| 189 |
+
for p in (sample_paths or []):
|
| 190 |
+
try:
|
| 191 |
+
if p.lower().endswith(".jsonl"):
|
| 192 |
+
docs.extend(texts_from_jsonl(p))
|
| 193 |
+
else:
|
| 194 |
+
with open(p, "r", encoding="utf-8", errors="ignore") as fh:
|
| 195 |
+
docs.append(Document(page_content=fh.read(), metadata={"source": os.path.basename(p)}))
|
| 196 |
+
except Exception: continue
|
| 197 |
+
if not docs:
|
| 198 |
+
docs = [Document(page_content="(empty index)", metadata={"source": "placeholder"})]
|
| 199 |
+
return build_or_load_vectorstore(docs, index_path=index_path)
|
| 200 |
+
|
| 201 |
+
# -----------------------------
|
| 202 |
+
# LLM Call
|
| 203 |
+
# -----------------------------
|
| 204 |
+
def call_llm(messages: List[Dict[str, str]], temperature: float = 0.6, stop: Optional[List[str]] = None) -> str:
|
| 205 |
+
client = _openai_client()
|
| 206 |
+
model = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
|
| 207 |
+
if not client:
|
| 208 |
+
return "(Offline Mode: OpenAI API key not configured.)"
|
| 209 |
+
try:
|
| 210 |
+
api_args = {"model": model, "messages": messages, "temperature": float(temperature if temperature is not None else 0.6)}
|
| 211 |
+
if stop: api_args["stop"] = stop
|
| 212 |
+
resp = client.chat.completions.create(**api_args)
|
| 213 |
+
return (resp.choices[0].message.content or "").strip()
|
| 214 |
+
except Exception as e:
|
| 215 |
+
return f"[LLM API Error: {e}]"
|
| 216 |
+
|
| 217 |
+
# -----------------------------
|
| 218 |
+
# Prompting & RAG Chain
|
| 219 |
+
# -----------------------------
|
| 220 |
+
|
| 221 |
+
def make_rag_chain(
|
| 222 |
+
vs_general: FAISS,
|
| 223 |
+
vs_personal: FAISS,
|
| 224 |
+
*,
|
| 225 |
+
role: str = "patient",
|
| 226 |
+
temperature: float = 0.6,
|
| 227 |
+
language: str = "English",
|
| 228 |
+
patient_name: str = "the patient",
|
| 229 |
+
caregiver_name: str = "the caregiver",
|
| 230 |
+
tone: str = "warm",
|
| 231 |
+
):
|
| 232 |
+
def _format_docs(docs: List[Document], default_msg: str) -> str:
|
| 233 |
+
if not docs: return default_msg
|
| 234 |
+
unique_docs = {doc.page_content: doc for doc in docs}.values()
|
| 235 |
+
return "\n".join([f"- {d.page_content.strip()}" for d in unique_docs])
|
| 236 |
+
|
| 237 |
+
def _answer_fn(query: str, chat_history: List[Dict[str, str]], scenario_tag: Optional[str] = None, emotion_tag: Optional[str] = None, topic_tag: Optional[str] = None, context_tags: Optional[List[str]] = None) -> Dict[str, Any]:
|
| 238 |
+
router_messages = [{"role": "user", "content": ROUTER_PROMPT.format(query=query)}]
|
| 239 |
+
query_type = call_llm(router_messages, temperature=0.0).strip().lower()
|
| 240 |
+
print(f"Query classified as: {query_type}")
|
| 241 |
+
|
| 242 |
+
system_message = SYSTEM_TEMPLATE.format(tone=tone, language=language, patient_name=patient_name or "the patient", caregiver_name=caregiver_name or "the caregiver", guardrails=SAFETY_GUARDRAILS)
|
| 243 |
+
messages = [{"role": "system", "content": system_message}, *chat_history]
|
| 244 |
+
|
| 245 |
+
if "general_knowledge_question" in query_type:
|
| 246 |
+
user_prompt = ANSWER_TEMPLATE_GENERAL_KNOWLEDGE.format(question=query, language=language)
|
| 247 |
+
messages.append({"role": "user", "content": user_prompt})
|
| 248 |
+
return {"answer": call_llm(messages, temperature=temperature), "sources": ["General Knowledge"]}
|
| 249 |
+
|
| 250 |
+
elif "factual_question" in query_type:
|
| 251 |
+
expansion_prompt = QUERY_EXPANSION_PROMPT.format(question=query)
|
| 252 |
+
expansion_response = call_llm([{"role": "user", "content": expansion_prompt}], temperature=0.1)
|
| 253 |
+
try:
|
| 254 |
+
expanded_queries = json.loads(expansion_response.strip().replace("```json", "").replace("```", ""))
|
| 255 |
+
search_queries = [query] + expanded_queries
|
| 256 |
+
except json.JSONDecodeError:
|
| 257 |
+
search_queries = [query]
|
| 258 |
+
|
| 259 |
+
all_docs = []
|
| 260 |
+
for q in search_queries:
|
| 261 |
+
all_docs.extend(vs_personal.similarity_search(q, k=2))
|
| 262 |
+
all_docs.extend(vs_general.similarity_search(q, k=2))
|
| 263 |
+
context = _format_docs(all_docs, "(No relevant information found.)")
|
| 264 |
+
user_prompt = ANSWER_TEMPLATE_FACTUAL.format(context=context, question=query, language=language)
|
| 265 |
+
messages.append({"role": "user", "content": user_prompt})
|
| 266 |
+
return {"answer": call_llm(messages, temperature=temperature), "sources": list(set(d.metadata.get("source", "unknown") for d in all_docs))}
|
| 267 |
+
|
| 268 |
+
elif "general_conversation" in query_type:
|
| 269 |
+
user_prompt = ANSWER_TEMPLATE_GENERAL.format(question=query, language=language)
|
| 270 |
+
messages.append({"role": "user", "content": user_prompt})
|
| 271 |
+
return {"answer": call_llm(messages, temperature=temperature), "sources": []}
|
| 272 |
+
|
| 273 |
+
else: # Default to caregiving logic
|
| 274 |
+
search_filter = {}
|
| 275 |
+
if scenario_tag: search_filter["behaviors"] = scenario_tag.lower()
|
| 276 |
+
if emotion_tag: search_filter["emotion"] = emotion_tag.lower()
|
| 277 |
+
if topic_tag: search_filter["topic_tags"] = topic_tag.lower()
|
| 278 |
+
if context_tags: search_filter["context_tags"] = {"in": [tag.lower() for tag in context_tags]}
|
| 279 |
+
|
| 280 |
+
personal_docs = vs_personal.similarity_search(query, k=3)
|
| 281 |
+
general_docs = vs_general.similarity_search(query, k=3)
|
| 282 |
+
if search_filter:
|
| 283 |
+
personal_docs.extend(vs_personal.similarity_search(query, k=3, filter=search_filter))
|
| 284 |
+
general_docs.extend(vs_general.similarity_search(query, k=3, filter=search_filter))
|
| 285 |
+
|
| 286 |
+
all_docs_care = list({doc.page_content: doc for doc in personal_docs + general_docs}.values())
|
| 287 |
+
personal_context = _format_docs([d for d in all_docs_care if d in personal_docs], "(No relevant personal memories found.)")
|
| 288 |
+
general_context = _format_docs([d for d in all_docs_care if d in general_docs], "(No general guidance found.)")
|
| 289 |
+
|
| 290 |
+
first_emotion = next((d.metadata.get("emotion") for d in all_docs_care if d.metadata.get("emotion")), None)
|
| 291 |
+
emotions_context = render_emotion_guidelines(first_emotion or emotion_tag)
|
| 292 |
+
|
| 293 |
+
template = ANSWER_TEMPLATE_ADQ if any([scenario_tag, emotion_tag, first_emotion]) else ANSWER_TEMPLATE_CALM
|
| 294 |
+
if template == ANSWER_TEMPLATE_ADQ:
|
| 295 |
+
user_prompt = template.format(general_context=general_context, personal_context=personal_context, question=query, scenario_tag=scenario_tag, emotions_context=emotions_context, role=role, language=language)
|
| 296 |
+
else:
|
| 297 |
+
combined_context = f"General Guidance:\n{general_context}\n\nPersonal Memories:\n{personal_context}"
|
| 298 |
+
user_prompt = template.format(context=combined_context, question=query, language=language)
|
| 299 |
+
|
| 300 |
+
messages.append({"role": "user", "content": user_prompt})
|
| 301 |
+
answer = call_llm(messages, temperature=temperature)
|
| 302 |
+
|
| 303 |
+
if scenario_tag and scenario_tag.lower() in ["exit_seeking", "wandering"]:
|
| 304 |
+
answer += f"\n\n---\n{RISK_FOOTER}"
|
| 305 |
+
|
| 306 |
+
return {"answer": answer, "sources": list(set(d.metadata.get("source", "unknown") for d in all_docs_care))}
|
| 307 |
+
return _answer_fn
|
| 308 |
+
|
| 309 |
+
def answer_query(chain, question: str, **kwargs) -> Dict[str, Any]:
|
| 310 |
+
if not callable(chain): return {"answer": "[Error: RAG chain is not callable]", "sources": []}
|
| 311 |
+
try:
|
| 312 |
+
return chain(question, **kwargs)
|
| 313 |
+
except Exception as e:
|
| 314 |
+
print(f"ERROR in answer_query: {e}")
|
| 315 |
+
return {"answer": f"[Error executing chain: {e}]", "sources": []}
|
| 316 |
+
|
| 317 |
+
# -----------------------------
|
| 318 |
+
# TTS & Transcription
|
| 319 |
+
# -----------------------------
|
| 320 |
+
def synthesize_tts(text: str, lang: str = "en"):
|
| 321 |
+
if not text or gTTS is None: return None
|
| 322 |
+
try:
|
| 323 |
+
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as fp:
|
| 324 |
+
tts = gTTS(text=text, lang=(lang or "en"))
|
| 325 |
+
tts.save(fp.name)
|
| 326 |
+
return fp.name
|
| 327 |
+
except Exception:
|
| 328 |
+
return None
|
| 329 |
+
|
| 330 |
+
def transcribe_audio(filepath: str, lang: str = "en"):
|
| 331 |
+
client = _openai_client()
|
| 332 |
+
if not client: return "[Transcription failed: API key not configured]"
|
| 333 |
+
api_args = {"model": "whisper-1"}
|
| 334 |
+
if lang and lang != "auto": api_args["language"] = lang
|
| 335 |
+
with open(filepath, "rb") as audio_file:
|
| 336 |
+
transcription = client.audio.transcriptions.create(file=audio_file, **api_args)
|
| 337 |
+
return transcription.text
|
| 338 |
+
|
alz_companion/prompts.py
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Prompts for the Alzheimer’s AI Companion.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
# ------------------------ Behaviour‑level tags ------------------------
|
| 6 |
+
BEHAVIOUR_TAGS = {
|
| 7 |
+
# Tags from "The Father"
|
| 8 |
+
"repetitive_questioning": ["validation", "gentle_redirection", "offer_distraction"],
|
| 9 |
+
"confusion": ["reassurance", "time_place_orientation", "photo_anchors"],
|
| 10 |
+
"wandering": ["walk_along_support", "simple_landmarks", "visual_cues", "safe_wandering_space"],
|
| 11 |
+
"agitation": ["de-escalating_tone", "validate_feelings", "reduce_stimulation", "simple_choices"],
|
| 12 |
+
"false_accusations": ["reassure_no_blame", "avoid_arguing", "redirect_activity"],
|
| 13 |
+
"address_memory_loss": ["encourage_ID_bracelet_or_GPS", "place_contact_info_in_wallet", "inform_trusted_neighbors", "avoid_quizzing_on_address"],
|
| 14 |
+
"hallucinations_delusions": ["avoid_arguing_or_correcting", "validate_the_underlying_emotion", "offer_reassurance_of_safety", "gently_redirect_to_real_activity", "check_for_physical_triggers"],
|
| 15 |
+
|
| 16 |
+
# Tags from "Still Alice" (and others for future use)
|
| 17 |
+
"exit_seeking": ["validation", "calm_presence", "safe_wandering_space", "environmental_cues"],
|
| 18 |
+
"aphasia": ["patience", "simple_language", "nonverbal_cues", "validation"],
|
| 19 |
+
"withdrawal": ["gentle_invitation", "calm_presence", "offer_familiar_comforts", "no_pressure"],
|
| 20 |
+
"affection": ["reciprocate_warmth", "positive_reinforcement", "simple_shared_activity"],
|
| 21 |
+
"sleep_disturbance": ["establish_calm_bedtime_routine", "limit_daytime_naps", "check_for_discomfort_or_pain"],
|
| 22 |
+
"anxiety": ["calm_reassurance", "simple_breathing_exercise", "reduce_environmental_stimuli"],
|
| 23 |
+
"depression_sadness": ["validate_feelings_of_sadness", "encourage_simple_pleasant_activity", "ensure_social_connection"],
|
| 24 |
+
"orientation_check": ["gentle_orientation_cues", "use_familiar_landmarks", "avoid_quizzing"],
|
| 25 |
+
|
| 26 |
+
# Tags from "Away from Her"
|
| 27 |
+
"misidentification": ["gently_correct_with_context", "use_photos_as_anchors", "respond_to_underlying_emotion", "avoid_insistent_correction"],
|
| 28 |
+
|
| 29 |
+
# Other useful tags
|
| 30 |
+
"sundowning_restlessness": ["predictable_routine", "soft_lighting", "low_stimulation", "familiar_music"],
|
| 31 |
+
"object_misplacement": ["nonconfrontational_search", "fixed_storage_spots"],
|
| 32 |
+
|
| 33 |
+
# --- New Tags from Test Fixtures ---
|
| 34 |
+
"validation": [],
|
| 35 |
+
"gentle_reorientation": [],
|
| 36 |
+
"de-escalation": [],
|
| 37 |
+
"distraction": [],
|
| 38 |
+
"spaced_cueing": [],
|
| 39 |
+
"reassurance": [],
|
| 40 |
+
"psychoeducation": [],
|
| 41 |
+
"goal_breakdown": [],
|
| 42 |
+
"routine_structuring": [],
|
| 43 |
+
"reminiscence_prompting": [],
|
| 44 |
+
"reframing": [],
|
| 45 |
+
"distress_tolerance": [],
|
| 46 |
+
"caregiver_communication_template": [],
|
| 47 |
+
"personalised_music_activation": [],
|
| 48 |
+
"memory_probe": [],
|
| 49 |
+
"safety_brief": [],
|
| 50 |
+
"follow_up_prompt": []
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
# ------------------------ Emotion styles & helpers ------------------------
|
| 54 |
+
EMOTION_STYLES = {
|
| 55 |
+
"confusion": {"tone": "calm, orienting, concrete", "playbook": ["Offer a simple time/place orientation cue (who/where/when).", "Reference one familiar anchor (photo/object/person).", "Use short sentences and one step at a time."]},
|
| 56 |
+
"fear": {"tone": "reassuring, safety-forward, gentle", "playbook": ["Acknowledge fear without contradiction.", "Provide a clear safety cue (e.g., 'You’re safe here with me').", "Reduce novelty and stimulation; suggest one safe action."]},
|
| 57 |
+
"anger": {"tone": "de-escalating, validating, low-arousal", "playbook": ["Validate the feeling; avoid arguing/correcting.", "Keep voice low and sentences short.", "Offer a simple choice to restore control (e.g., 'tea or water?')."]},
|
| 58 |
+
"sadness": {"tone": "warm, empathetic, gentle reminiscence", "playbook": ["Acknowledge loss/longing.", "Invite one comforting memory or familiar song.", "Keep pace slow; avoid tasking."]},
|
| 59 |
+
"warmth": {"tone": "affirming, appreciative", "playbook": ["Reflect gratitude and positive connection.", "Reinforce what’s going well.", "Keep it light; don’t overload with new info."]},
|
| 60 |
+
"joy": {"tone": "supportive, celebratory (but not overstimulating)", "playbook": ["Share the joy briefly; match energy gently.", "Offer a simple, pleasant follow-up activity.", "Avoid adding complex tasks."]},
|
| 61 |
+
"calm": {"tone": "matter-of-fact, concise, steady", "playbook": ["Keep instructions simple.", "Maintain steady pace.", "No extra soothing needed."]},
|
| 62 |
+
}
|
| 63 |
+
|
| 64 |
+
def render_emotion_guidelines(emotion: str | None) -> str:
|
| 65 |
+
e = (emotion or "").strip().lower()
|
| 66 |
+
if e not in EMOTION_STYLES:
|
| 67 |
+
return "Emotion: (auto)\nDesired tone: calm, clear.\nWhen replying, reassure if distress is apparent; prioritise validation and simple choices."
|
| 68 |
+
style = EMOTION_STYLES[e]
|
| 69 |
+
bullet = "\n".join([f"- {x}" for x in style["playbook"]])
|
| 70 |
+
return f"Emotion: {e}\nDesired tone: {style['tone']}\nWhen replying, follow:\n{bullet}"
|
| 71 |
+
|
| 72 |
+
# ------------------------ NLU Classification (Dynamic Pipeline) ------------------------
|
| 73 |
+
|
| 74 |
+
# --- STEP 1: Router for Primary Goal ---
|
| 75 |
+
NLU_ROUTER_PROMPT = """You are an expert NLU router. Your task is to classify the user's primary goal into one of two categories:
|
| 76 |
+
1. `practical_planning`: The user is seeking a plan, strategy, "how-to" advice, or a solution to a problem.
|
| 77 |
+
2. `emotional_support`: The user is expressing feelings, seeking comfort, validation, or reassurance.
|
| 78 |
+
|
| 79 |
+
User Query: "{query}"
|
| 80 |
+
|
| 81 |
+
Respond with ONLY a single category name from the list above.
|
| 82 |
+
Category: """
|
| 83 |
+
|
| 84 |
+
# --- STEP 2: Specialist Classifier (Examples are now injected dynamically) ---
|
| 85 |
+
SPECIALIST_CLASSIFIER_PROMPT = """You are an expert NLU engine. Your task is to analyze the user's query to deeply understand their underlying intent and classify it correctly. You will be given a few examples that are highly relevant to the user's query.
|
| 86 |
+
|
| 87 |
+
--- INSTRUCTIONS ---
|
| 88 |
+
First, in a <thinking> block, you must reason step-by-step about the user's query by following these points:
|
| 89 |
+
- **Literal Meaning:** What is the user literally asking or stating?
|
| 90 |
+
- **Underlying Situation:** What is the deeper emotional state or situation being described?
|
| 91 |
+
- **User's Primary Goal:** You have been told the user's goal is `{primary_goal}`. Briefly confirm if the query aligns with this goal.
|
| 92 |
+
- **Tag Selection:** Based on the primary goal and the provided examples, explain which tags from the provided lists are the most appropriate and why.
|
| 93 |
+
|
| 94 |
+
Second, after your reasoning, provide a single, valid JSON object with the final classification.
|
| 95 |
+
|
| 96 |
+
--- PROVIDED TAGS ---
|
| 97 |
+
Behaviors: {behavior_options}
|
| 98 |
+
Emotions: {emotion_options}
|
| 99 |
+
Topics: {topic_options}
|
| 100 |
+
Contexts: {context_options}
|
| 101 |
+
|
| 102 |
+
--- RELEVANT EXAMPLES ---
|
| 103 |
+
{examples}
|
| 104 |
+
---
|
| 105 |
+
|
| 106 |
+
User Query: "{query}"
|
| 107 |
+
|
| 108 |
+
<thinking>
|
| 109 |
+
"""
|
| 110 |
+
|
| 111 |
+
# ------------------------ Guardrails ------------------------
|
| 112 |
+
SAFETY_GUARDRAILS = """Never provide medical diagnoses or dosing. If a situation implies imminent risk (e.g., wandering/elopement, severe agitation, choking, falls), signpost immediate support from onsite staff or emergency services. Use respectful, person‑centred language. Keep guidance concrete and stepwise."""
|
| 113 |
+
|
| 114 |
+
# ------------------------ System & Answer Templates ------------------------
|
| 115 |
+
SYSTEM_TEMPLATE = """You are an Alzheimer’s caregiving companion. Address the patient as {patient_name} and the caregiver as {caregiver_name}. Ground every suggestion in retrieved evidence when possible. If unsure, say so plainly.
|
| 116 |
+
{guardrails}
|
| 117 |
+
--- IMPORTANT RULE ---
|
| 118 |
+
You MUST write your entire response in {language} ONLY. This is a strict instruction. Do not use any other language, even if the user or the retrieved context uses a different language. Your final output must be in {language}."""
|
| 119 |
+
|
| 120 |
+
ANSWER_TEMPLATE_CALM = """Context:
|
| 121 |
+
{context}
|
| 122 |
+
|
| 123 |
+
---
|
| 124 |
+
Question from user: {question}
|
| 125 |
+
|
| 126 |
+
---
|
| 127 |
+
Instructions:
|
| 128 |
+
Based on the context, write a gentle and supportive response in a single, natural-sounding paragraph.
|
| 129 |
+
Your response should:
|
| 130 |
+
1. Start by briefly and calmly acknowledging the user's situation or feeling.
|
| 131 |
+
2. Weave 2-3 practical, compassionate suggestions from the context into your paragraph. Do not use a numbered or bulleted list.
|
| 132 |
+
3. Conclude with a short, reassuring phrase.
|
| 133 |
+
4. You MUST use the retrieved context to directly address the user's specific **Question**.
|
| 134 |
+
Your response in {language}:"""
|
| 135 |
+
|
| 136 |
+
# For scenarios tagged with a specific behavior (e.g., agitation, confusion)
|
| 137 |
+
ANSWER_TEMPLATE_ADQ = """--- General Guidance from Knowledge Base ---
|
| 138 |
+
{general_context}
|
| 139 |
+
|
| 140 |
+
--- Relevant Personal Memories ---
|
| 141 |
+
{personal_context}
|
| 142 |
+
|
| 143 |
+
---
|
| 144 |
+
Care scenario: {scenario_tag}
|
| 145 |
+
Response Guidelines:
|
| 146 |
+
{emotions_context}
|
| 147 |
+
Question from user: {question}
|
| 148 |
+
|
| 149 |
+
---
|
| 150 |
+
Instructions:
|
| 151 |
+
Based on ALL the information above, write a **concise, warm, and validating** response for the {role} in a single, natural-sounding paragraph. **Keep the total response to 2-4 sentences.**
|
| 152 |
+
If possible, weave details from the 'Relevant Personal Memories' into your suggestions to make the response feel more personal and familiar.
|
| 153 |
+
Pay close attention to the Response Guidelines to tailor your tone.
|
| 154 |
+
Your response should follow this pattern:
|
| 155 |
+
1. Start by validating the user's feeling or concern with a unique, empathetic opening. DO NOT USE THE SAME OPENING PHRASE REPEATEDLY. Choose from different styles of openers, such as:
|
| 156 |
+
- Acknowledging the difficulty: "That sounds like a very challenging situation..."
|
| 157 |
+
- Expressing understanding: "I can see why that would be worrying..."
|
| 158 |
+
- Stating a shared goal: "Let's walk through how we can handle that..."
|
| 159 |
+
- Directly validating the feeling: "It's completely understandable to feel frustrated when..."
|
| 160 |
+
2. Gently offer **1-2 of the most important practical steps**, combining general guidance with personal memories where appropriate. Do not use a list.
|
| 161 |
+
3. If the scenario involves risk (like exit_seeking), subtly include a safety cue.
|
| 162 |
+
4. End with a compassionate, de-escalation phrase.
|
| 163 |
+
Your response in {language}:"""
|
| 164 |
+
|
| 165 |
+
RISK_FOOTER = """If safety is a concern right now, please seek immediate assistance from onsite staff or local emergency services."""
|
| 166 |
+
|
| 167 |
+
# ------------------------ Router & Specialized Templates ------------------------
|
| 168 |
+
|
| 169 |
+
QUERY_EXPANSION_PROMPT = """You are a helpful AI assistant. Your task is to rephrase a user's question into 3 different, semantically similar questions to improve document retrieval.
|
| 170 |
+
Provide the rephrased questions as a JSON list of strings.
|
| 171 |
+
|
| 172 |
+
User Question: "{question}"
|
| 173 |
+
|
| 174 |
+
JSON List:
|
| 175 |
+
"""
|
| 176 |
+
|
| 177 |
+
# Template for routing/classifying the user's intent
|
| 178 |
+
ROUTER_PROMPT = """You are an expert NLU router. Your task is to classify the user's query into one of four categories:
|
| 179 |
+
1. `caregiving_scenario`: The user is describing a situation, asking for advice, or expressing a concern related to Alzheimer's or caregiving.
|
| 180 |
+
2. `factual_question`: The user is asking a direct question about a personal memory, person, or event that would be stored in the memory journal.
|
| 181 |
+
3. `general_knowledge_question`: The user is asking a general knowledge question about the world, facts, or topics not related to personal memories or caregiving.
|
| 182 |
+
4. `general_conversation`: The user is making a general conversational remark, like a greeting, a thank you, or a simple statement that does not require a knowledge base lookup.
|
| 183 |
+
|
| 184 |
+
User Query: "{query}"
|
| 185 |
+
|
| 186 |
+
Respond with ONLY a single category name from the list above.
|
| 187 |
+
Category: """
|
| 188 |
+
|
| 189 |
+
ANSWER_TEMPLATE_FACTUAL = """Context:
|
| 190 |
+
{context}
|
| 191 |
+
|
| 192 |
+
---
|
| 193 |
+
Question from user: {question}
|
| 194 |
+
|
| 195 |
+
---
|
| 196 |
+
Instructions:
|
| 197 |
+
Based on the provided context, directly and concisely answer the user's question.
|
| 198 |
+
- If the context contains the answer, state it clearly and naturally. Keep your response to a maximum of 3 sentences.
|
| 199 |
+
- If the context does not contain the answer, respond in a warm and friendly tone that you couldn't find a memory of that topic and gently ask if the user would like to talk more about it or add it as a new memory.
|
| 200 |
+
- ABSOLUTELY DO NOT invent, create, or hallucinate any stories, characters, or details. Your knowledge is limited to the provided context ONLY.
|
| 201 |
+
|
| 202 |
+
Your response MUST be in {language}:"""
|
| 203 |
+
|
| 204 |
+
ANSWER_TEMPLATE_GENERAL_KNOWLEDGE = """You are a factual answering engine.
|
| 205 |
+
Your task is to directly answer the user's general knowledge question based on your training data.
|
| 206 |
+
|
| 207 |
+
Instructions:
|
| 208 |
+
- Be factual and concise. Go straight to the answer.
|
| 209 |
+
- Do NOT include apologies or disclaimers about your knowledge cutoff date.
|
| 210 |
+
User's Question: "{question}"
|
| 211 |
+
|
| 212 |
+
Your factual response in {language}:"""
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
ANSWER_TEMPLATE_GENERAL = """You are a warm and friendly AI companion. The user has just said: "{question}".
|
| 216 |
+
Respond in a brief, natural, and conversational way. Do not try to provide caregiving advice unless the user asks for it.
|
| 217 |
+
Your response MUST be in {language}:"""
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
# ------------------------ Convenience exports ------------------------
|
| 221 |
+
__all__ = [
|
| 222 |
+
"SYSTEM_TEMPLATE", "ANSWER_TEMPLATE_CALM", "ANSWER_TEMPLATE_ADQ",
|
| 223 |
+
"SAFETY_GUARDRAILS", "RISK_FOOTER", "BEHAVIOUR_TAGS", "EMOTION_STYLES",
|
| 224 |
+
"render_emotion_guidelines",
|
| 225 |
+
"NLU_ROUTER_PROMPT", "SPECIALIST_CLASSIFIER_PROMPT",
|
| 226 |
+
"QUERY_EXPANSION_PROMPT",
|
| 227 |
+
"ROUTER_PROMPT",
|
| 228 |
+
"ANSWER_TEMPLATE_FACTUAL",
|
| 229 |
+
"ANSWER_TEMPLATE_GENERAL_KNOWLEDGE",
|
| 230 |
+
"ANSWER_TEMPLATE_GENERAL"
|
| 231 |
+
]
|