Spaces:
Running
Running
| from dataclasses import dataclass | |
| class MelConfig: | |
| sample_rate: int = 44100 | |
| n_fft: int = 2048 | |
| win_length: int = 2048 | |
| hop_length: int = 512 | |
| f_min: float = 0.0 | |
| f_max: float = None | |
| pad: int = 0 | |
| n_mels: int = 128 | |
| center: bool = False | |
| pad_mode: str = "reflect" | |
| mel_scale: str = "slaney" | |
| def __post_init__(self): | |
| if self.pad == 0: | |
| self.pad = (self.n_fft - self.hop_length) // 2 | |
| class ModelConfig: | |
| hidden_channels: int = 256 | |
| filter_channels: int = 1024 | |
| n_heads: int = 4 | |
| n_enc_layers: int = 3 | |
| n_dec_layers: int = 6 | |
| kernel_size: int = 3 | |
| p_dropout: int = 0.1 | |
| gin_channels: int = 256 | |
| class TrainConfig: | |
| train_dataset_path: str = 'filelists/filelist.json' | |
| test_dataset_path: str = 'filelists/filelist.json' # not used | |
| batch_size: int = 32 | |
| learning_rate: float = 1e-4 | |
| num_epochs: int = 10000 | |
| model_save_path: str = './checkpoints' | |
| log_dir: str = './runs' | |
| log_interval: int = 16 | |
| save_interval: int = 1 | |
| warmup_steps: int = 200 | |
| class VocosConfig: | |
| input_channels: int = 128 | |
| dim: int = 512 | |
| intermediate_dim: int = 1536 | |
| num_layers: int = 8 |