Spaces:
Running
Running
File size: 11,694 Bytes
0d5add8 81fb8ba da5b602 81fb8ba da5b602 81fb8ba da5b602 81fb8ba da5b602 0d5add8 da5b602 0d5add8 da5b602 0d5add8 da5b602 0d5add8 da5b602 81fb8ba da5b602 0d5add8 da5b602 0d5add8 da5b602 0d5add8 da5b602 81fb8ba da5b602 81fb8ba da5b602 0d5add8 81fb8ba da5b602 0d5add8 da5b602 0d5add8 da5b602 0d5add8 da5b602 0d5add8 da5b602 0d5add8 da5b602 0d5add8 da5b602 0d5add8 da5b602 0d5add8 da5b602 0d5add8 da5b602 0d5add8 da5b602 81fb8ba da5b602 81fb8ba da5b602 0d5add8 da5b602 0d5add8 da5b602 0d5add8 da5b602 0d5add8 da5b602 0d5add8 da5b602 0d5add8 da5b602 0d5add8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoModel, BertConfig, BertModel
from encoder import SearchActivityEncoder
class EnhancedUserTower(nn.Module):
def __init__(
self,
input_dim=20,
hidden_dim=64,
out_dim=32,
search_emb_dim=32,
num_heads=4,
num_layers=2,
with_search=True,
):
super().__init__()
config = BertConfig(
hidden_size=hidden_dim,
num_hidden_layers=num_layers,
num_attention_heads=num_heads,
intermediate_size=hidden_dim * 4,
)
self.with_search = with_search
self.user_input_dim = input_dim - search_emb_dim
self.feature_proj = nn.Linear(
self.user_input_dim if with_search else input_dim,
hidden_dim,
)
self.transformer = BertModel(config)
self.pooler = nn.Linear(hidden_dim, out_dim)
self.search_fusion = nn.Sequential(
nn.Linear(out_dim + search_emb_dim, out_dim),
nn.ReLU(),
)
def forward(self, encoding):
if self.with_search:
feat = encoding[:, : self.user_input_dim]
search_emb = encoding[:, self.user_input_dim :]
else:
feat = encoding
x = self.feature_proj(feat)
out = self.transformer(inputs_embeds=x.unsqueeze(1)).last_hidden_state.squeeze(
1
)
user_emb = self.pooler(out)
if self.with_search:
user_emb = self.search_fusion(torch.cat([user_emb, search_emb], dim=-1))
return F.normalize(user_emb, dim=1)
class TextTower(nn.Module):
def __init__(
self,
model_name="huawei-noah/TinyBERT_General_6L_768D",
proj_hidden=256,
out_dim=128,
):
super().__init__()
self.encoder = AutoModel.from_pretrained(model_name)
dim = self.encoder.config.hidden_size
self.proj = nn.Sequential(
nn.Linear(dim, proj_hidden), nn.ReLU(), nn.Linear(proj_hidden, out_dim)
)
def forward(self, input_ids, attention_mask):
# CLS token pooling
outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
cls = outputs.last_hidden_state[:, 0]
return self.proj(cls)
class StructuredTower(nn.Module):
def __init__(self, input_dim, hidden_dim):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
)
def forward(self, x):
return self.mlp(x)
class MultiModalAttentionFusion(nn.Module):
"""
Fuse text, structured, and review embeddings via self-attention.
"""
def __init__(self, dim, fusion_dim, num_heads=4):
super().__init__()
self.mha = nn.MultiheadAttention(
embed_dim=dim, num_heads=num_heads, batch_first=True
)
self.proj = nn.Sequential(
nn.Linear(dim, fusion_dim), nn.ReLU(), nn.Linear(fusion_dim, fusion_dim)
)
def forward(self, text_emb, struct_emb, review_emb):
# stack modalities as sequence length=3
x = torch.stack([text_emb, struct_emb, review_emb], dim=1)
attn_out, _ = self.mha(x, x, x)
pooled = attn_out.mean(dim=1)
return self.proj(pooled)
class PropertyTower(nn.Module):
def __init__(
self,
struct_dim,
text_hidden_dim,
fusion_dim,
out_dim,
num_views=3,
dropout=0.2,
noise_std=0.01,
review_model="huawei-noah/TinyBERT_General_6L_768D",
review_proj=128,
review_out=64,
):
super().__init__()
# shared encoder for text & reviews
self.base_text = AutoModel.from_pretrained(review_model)
# separate projection heads
self.text_proj = nn.Sequential(
nn.Linear(self.base_text.config.hidden_size, text_hidden_dim),
nn.ReLU(),
nn.Linear(text_hidden_dim, fusion_dim),
)
self.review_proj = nn.Sequential(
nn.Linear(self.base_text.config.hidden_size, review_proj),
nn.ReLU(),
nn.Linear(review_proj, fusion_dim),
)
self.structured_tower = StructuredTower(struct_dim, fusion_dim)
self.fusion = MultiModalAttentionFusion(fusion_dim, fusion_dim)
self.dropout = nn.Dropout(dropout)
self.noise_std = noise_std
self.views = nn.ModuleList(
[
nn.Sequential(
nn.Linear(fusion_dim, fusion_dim // 2),
nn.ReLU(),
nn.Linear(fusion_dim // 2, out_dim),
)
for _ in range(num_views)
]
)
self.contrastive = nn.Linear(out_dim, out_dim)
def _encode_reviews(self, review_seq):
ids, mask = review_seq["input_ids"], review_seq["attention_mask"]
B, R, L = ids.size()
if R == 0:
# Return a zero tensor with expected output shape: (B, D)
out_dim = self.review_proj[
-1
].out_features # get the output dimension of the last layer in review_proj
return torch.zeros(B, out_dim, device=ids.device)
# Flatten to (B*R, L)
flat_ids = ids.view(-1, L)
flat_mask = mask.view(-1, L)
# Forward through base text encoder
out = self.base_text(
input_ids=flat_ids, attention_mask=flat_mask
).last_hidden_state[:, 0]
# Project and reshape
proj = self.review_proj(out).view(B, R, -1)
# Average over reviews
return proj.mean(dim=1)
def forward(self, struct_feat, text_seq, review_seq=None):
# text
t = self.base_text(
input_ids=text_seq["input_ids"], attention_mask=text_seq["attention_mask"]
).last_hidden_state[:, 0]
text_emb = self.text_proj(t)
# struct
s = self.structured_tower(struct_feat)
# review
if review_seq is not None:
r = self._encode_reviews(review_seq)
else:
# zero vector fallback
r = torch.zeros_like(text_emb)
fused = self.fusion(text_emb, s, r)
# multi-view
vs = []
for m in self.views:
x = self.dropout(fused)
x = x + torch.randn_like(x) * self.noise_std
vs.append(m(x))
avg = torch.stack(vs).mean(dim=0)
return F.normalize(avg, dim=1), [
F.normalize(self.contrastive(v), dim=1) for v in vs
]
class TwoTowerRec(nn.Module):
def __init__(
self,
search_args: dict,
user_input_dim: int,
prop_args: dict,
):
super().__init__()
self.search_enc = SearchActivityEncoder(**search_args)
self.user_tower = EnhancedUserTower(input_dim=user_input_dim, with_search=False)
self.prop_tower = PropertyTower(**prop_args)
def forward(self, user_feat, prop_text, prop_struct, review_text=None, search=None):
if search is not None:
s_emb = self.search_enc(search)
u_emb = self.user_tower(torch.cat([user_feat, s_emb], dim=-1))
else:
u_emb = self.user_tower(user_feat)
p_emb, p_views = self.prop_tower(prop_text, prop_struct, review_text)
return u_emb, p_emb, p_views
def cross_view_contrastive_loss(views, temp=0.07):
loss = 0.0
count = 0
B = views[0].size(0)
for i in range(len(views)):
for j in range(i + 1, len(views)):
l = torch.matmul(views[i], views[j].T) / temp
tgt = torch.arange(B, device=l.device)
loss += (F.cross_entropy(l, tgt) + F.cross_entropy(l.T, tgt)) / 2
count += 1
return loss / count
def multi_pos_info_nce(
dist_matrix: torch.Tensor,
label_matrix: torch.Tensor,
w_neg: float = 1.5,
w_unl: float = 0.3,
tau: float = 0.07,
eps: float = 1e-8,
) -> torch.Tensor:
"""
dist_matrix: [U, P] distances (>=0)
label_matrix: [U, P] binary (1=positive, 0=negative)
tau: temperature for softmax
w_neg, w_unl: weighting for explicit vs. unlabeled negatives
returns: scalar loss
"""
sim = -dist_matrix
pos_mask = label_matrix == 1
neg_mask = label_matrix == -1
unl_mask = label_matrix == 0
W = torch.zeros_like(sim)
W[pos_mask] = 1.0
W[neg_mask] = w_neg
W[unl_mask] = w_unl
exp_sim = torch.exp(sim / tau) # [U, P]
weighted = W * exp_sim
num = (weighted * pos_mask).sum(dim=1) # [U]
denom = weighted.sum(dim=1) + eps # [U]
valid = pos_mask.sum(dim=1) > 0 # [U]
if valid.sum() == 0:
return torch.tensor(0.0, device=dist_matrix.device)
loss_per_user = -torch.log(num[valid] / denom[valid])
return loss_per_user.mean()
def float_to_sign(tensor: torch.Tensor, low_thresh: float, high_thresh: float):
result = torch.zeros_like(tensor)
result[tensor > high_thresh] = 1
result[tensor < low_thresh] = -1
return result
def pairwise_positive_ranking_loss(dist_matrix, score_matrix, margin=0.1):
"""
dist_matrix: Tensor [U, P], pairwise distances between user and items
score_matrix: Tensor [U, P], scores or labels (higher = more relevant)
"""
loss = 0.0
num_users = dist_matrix.size(0)
for u in range(num_users):
pos_idx = (score_matrix[u] > 0).nonzero(as_tuple=True)[0]
if pos_idx.numel() < 2:
continue
pos_scores = score_matrix[u, pos_idx]
pos_dists = dist_matrix[u, pos_idx]
for i in range(len(pos_idx)):
for j in range(i + 1, len(pos_idx)):
s_i, s_j = pos_scores[i], pos_scores[j]
d_i, d_j = pos_dists[i], pos_dists[j]
if s_i == s_j:
continue
sign = torch.sign(s_j - s_i)
loss += torch.relu(sign * (d_i - d_j) + margin)
return loss / num_users
class SoftContrastiveLoss(torch.nn.Module):
def __init__(
self,
margin: float = 1.0,
temp: float = 0.3,
lambda_ortho: float = 0.1,
low_thresh: float = 0.4,
high_thresh: float = 0.7,
):
super().__init__()
self.margin = margin
self.temp = temp
self.lambda_ortho = lambda_ortho
self.low_thresh = low_thresh
self.high_thresh = high_thresh
def forward(self, u_emb, p_emb, p_views, t, user_ids, prop_ids):
# Create matrix
uniq_u, inv_u = torch.unique(user_ids, return_inverse=True)
uniq_p, inv_p = torch.unique(prop_ids, return_inverse=True)
U, P = uniq_u.size(0), uniq_p.size(0)
M = torch.zeros(U, P, device=user_ids.device)
M[inv_u, inv_p] = t
T = torch.zeros(U, P, device=user_ids.device)
T[inv_u, inv_p] = float_to_sign(t, self.low_thresh, self.high_thresh)
dir_matrix = torch.zeros(U, P, device=user_ids.device)
# scatter the scores
dir_matrix[inv_u, inv_p] = torch.sign(t - 0.5)
# Calculate distance
dist = F.pairwise_distance(u_emb, p_emb) # [batch]
dist_matrix = torch.zeros(U, P, device=user_ids.device)
dist_matrix[inv_u, inv_p] = dist
info_nce_loss = multi_pos_info_nce(dist_matrix, T, t=self.temp)
hinge_loss = pairwise_positive_ranking_loss(dist_matrix, M)
# Multi-view contrastive loss
ortho_loss = torch.mean(torch.abs(torch.matmul(u_emb.T, p_emb)))
return info_nce_loss + hinge_loss + ortho_loss * self.lambda_ortho
|