File size: 11,694 Bytes
0d5add8
81fb8ba
 
da5b602
 
 
81fb8ba
da5b602
 
 
 
 
 
 
 
 
 
 
 
81fb8ba
da5b602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81fb8ba
 
da5b602
 
 
 
 
 
 
 
0d5add8
 
 
da5b602
 
 
 
 
 
 
0d5add8
 
 
 
 
 
da5b602
 
 
 
0d5add8
da5b602
 
 
 
 
 
 
 
 
 
 
 
 
0d5add8
 
 
da5b602
 
81fb8ba
da5b602
 
 
 
 
 
 
0d5add8
da5b602
 
0d5add8
 
 
da5b602
0d5add8
da5b602
 
 
 
 
 
 
 
 
 
81fb8ba
da5b602
 
 
 
 
 
 
 
 
 
 
 
 
81fb8ba
da5b602
 
 
 
0d5add8
 
 
81fb8ba
da5b602
0d5add8
 
 
da5b602
 
 
 
 
 
0d5add8
 
 
 
 
 
 
 
 
 
da5b602
0d5add8
da5b602
0d5add8
da5b602
0d5add8
da5b602
 
0d5add8
 
 
da5b602
0d5add8
da5b602
 
 
 
 
0d5add8
 
 
da5b602
 
 
 
 
 
 
 
 
0d5add8
 
 
da5b602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d5add8
 
 
da5b602
 
81fb8ba
da5b602
 
 
 
 
 
81fb8ba
da5b602
 
 
 
 
 
 
 
 
 
 
 
 
0d5add8
da5b602
 
 
 
 
0d5add8
da5b602
 
 
 
 
 
 
0d5add8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da5b602
 
0d5add8
 
 
 
 
 
 
 
da5b602
 
 
 
0d5add8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da5b602
0d5add8
 
 
 
da5b602
 
0d5add8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoModel, BertConfig, BertModel
from encoder import SearchActivityEncoder


class EnhancedUserTower(nn.Module):
    def __init__(
        self,
        input_dim=20,
        hidden_dim=64,
        out_dim=32,
        search_emb_dim=32,
        num_heads=4,
        num_layers=2,
        with_search=True,
    ):
        super().__init__()
        config = BertConfig(
            hidden_size=hidden_dim,
            num_hidden_layers=num_layers,
            num_attention_heads=num_heads,
            intermediate_size=hidden_dim * 4,
        )
        self.with_search = with_search
        self.user_input_dim = input_dim - search_emb_dim
        self.feature_proj = nn.Linear(
            self.user_input_dim if with_search else input_dim,
            hidden_dim,
        )
        self.transformer = BertModel(config)
        self.pooler = nn.Linear(hidden_dim, out_dim)
        self.search_fusion = nn.Sequential(
            nn.Linear(out_dim + search_emb_dim, out_dim),
            nn.ReLU(),
        )

    def forward(self, encoding):
        if self.with_search:
            feat = encoding[:, : self.user_input_dim]
            search_emb = encoding[:, self.user_input_dim :]
        else:
            feat = encoding
        x = self.feature_proj(feat)
        out = self.transformer(inputs_embeds=x.unsqueeze(1)).last_hidden_state.squeeze(
            1
        )
        user_emb = self.pooler(out)
        if self.with_search:
            user_emb = self.search_fusion(torch.cat([user_emb, search_emb], dim=-1))
        return F.normalize(user_emb, dim=1)


class TextTower(nn.Module):
    def __init__(
        self,
        model_name="huawei-noah/TinyBERT_General_6L_768D",
        proj_hidden=256,
        out_dim=128,
    ):
        super().__init__()
        self.encoder = AutoModel.from_pretrained(model_name)
        dim = self.encoder.config.hidden_size
        self.proj = nn.Sequential(
            nn.Linear(dim, proj_hidden), nn.ReLU(), nn.Linear(proj_hidden, out_dim)
        )

    def forward(self, input_ids, attention_mask):
        # CLS token pooling
        outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
        cls = outputs.last_hidden_state[:, 0]
        return self.proj(cls)


class StructuredTower(nn.Module):
    def __init__(self, input_dim, hidden_dim):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(input_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim),
        )

    def forward(self, x):
        return self.mlp(x)


class MultiModalAttentionFusion(nn.Module):
    """
    Fuse text, structured, and review embeddings via self-attention.
    """

    def __init__(self, dim, fusion_dim, num_heads=4):
        super().__init__()
        self.mha = nn.MultiheadAttention(
            embed_dim=dim, num_heads=num_heads, batch_first=True
        )
        self.proj = nn.Sequential(
            nn.Linear(dim, fusion_dim), nn.ReLU(), nn.Linear(fusion_dim, fusion_dim)
        )

    def forward(self, text_emb, struct_emb, review_emb):
        # stack modalities as sequence length=3
        x = torch.stack([text_emb, struct_emb, review_emb], dim=1)
        attn_out, _ = self.mha(x, x, x)
        pooled = attn_out.mean(dim=1)
        return self.proj(pooled)


class PropertyTower(nn.Module):
    def __init__(
        self,
        struct_dim,
        text_hidden_dim,
        fusion_dim,
        out_dim,
        num_views=3,
        dropout=0.2,
        noise_std=0.01,
        review_model="huawei-noah/TinyBERT_General_6L_768D",
        review_proj=128,
        review_out=64,
    ):
        super().__init__()
        # shared encoder for text & reviews
        self.base_text = AutoModel.from_pretrained(review_model)
        # separate projection heads
        self.text_proj = nn.Sequential(
            nn.Linear(self.base_text.config.hidden_size, text_hidden_dim),
            nn.ReLU(),
            nn.Linear(text_hidden_dim, fusion_dim),
        )
        self.review_proj = nn.Sequential(
            nn.Linear(self.base_text.config.hidden_size, review_proj),
            nn.ReLU(),
            nn.Linear(review_proj, fusion_dim),
        )
        self.structured_tower = StructuredTower(struct_dim, fusion_dim)
        self.fusion = MultiModalAttentionFusion(fusion_dim, fusion_dim)

        self.dropout = nn.Dropout(dropout)
        self.noise_std = noise_std
        self.views = nn.ModuleList(
            [
                nn.Sequential(
                    nn.Linear(fusion_dim, fusion_dim // 2),
                    nn.ReLU(),
                    nn.Linear(fusion_dim // 2, out_dim),
                )
                for _ in range(num_views)
            ]
        )
        self.contrastive = nn.Linear(out_dim, out_dim)

    def _encode_reviews(self, review_seq):
        ids, mask = review_seq["input_ids"], review_seq["attention_mask"]
        B, R, L = ids.size()

        if R == 0:
            # Return a zero tensor with expected output shape: (B, D)
            out_dim = self.review_proj[
                -1
            ].out_features  # get the output dimension of the last layer in review_proj
            return torch.zeros(B, out_dim, device=ids.device)

        # Flatten to (B*R, L)
        flat_ids = ids.view(-1, L)
        flat_mask = mask.view(-1, L)

        # Forward through base text encoder
        out = self.base_text(
            input_ids=flat_ids, attention_mask=flat_mask
        ).last_hidden_state[:, 0]

        # Project and reshape
        proj = self.review_proj(out).view(B, R, -1)

        # Average over reviews
        return proj.mean(dim=1)

    def forward(self, struct_feat, text_seq, review_seq=None):
        # text
        t = self.base_text(
            input_ids=text_seq["input_ids"], attention_mask=text_seq["attention_mask"]
        ).last_hidden_state[:, 0]
        text_emb = self.text_proj(t)
        # struct
        s = self.structured_tower(struct_feat)
        # review
        if review_seq is not None:
            r = self._encode_reviews(review_seq)
        else:
            # zero vector fallback
            r = torch.zeros_like(text_emb)

        fused = self.fusion(text_emb, s, r)
        # multi-view
        vs = []
        for m in self.views:
            x = self.dropout(fused)
            x = x + torch.randn_like(x) * self.noise_std
            vs.append(m(x))
        avg = torch.stack(vs).mean(dim=0)
        return F.normalize(avg, dim=1), [
            F.normalize(self.contrastive(v), dim=1) for v in vs
        ]


class TwoTowerRec(nn.Module):
    def __init__(
        self,
        search_args: dict,
        user_input_dim: int,
        prop_args: dict,
    ):
        super().__init__()
        self.search_enc = SearchActivityEncoder(**search_args)
        self.user_tower = EnhancedUserTower(input_dim=user_input_dim, with_search=False)
        self.prop_tower = PropertyTower(**prop_args)

    def forward(self, user_feat, prop_text, prop_struct, review_text=None, search=None):
        if search is not None:
            s_emb = self.search_enc(search)
            u_emb = self.user_tower(torch.cat([user_feat, s_emb], dim=-1))
        else:
            u_emb = self.user_tower(user_feat)
        p_emb, p_views = self.prop_tower(prop_text, prop_struct, review_text)
        return u_emb, p_emb, p_views


def cross_view_contrastive_loss(views, temp=0.07):
    loss = 0.0
    count = 0
    B = views[0].size(0)
    for i in range(len(views)):
        for j in range(i + 1, len(views)):
            l = torch.matmul(views[i], views[j].T) / temp
            tgt = torch.arange(B, device=l.device)
            loss += (F.cross_entropy(l, tgt) + F.cross_entropy(l.T, tgt)) / 2
            count += 1
    return loss / count


def multi_pos_info_nce(
    dist_matrix: torch.Tensor,
    label_matrix: torch.Tensor,
    w_neg: float = 1.5,
    w_unl: float = 0.3,
    tau: float = 0.07,
    eps: float = 1e-8,
) -> torch.Tensor:
    """
    dist_matrix: [U, P] distances (>=0)
    label_matrix: [U, P] binary (1=positive, 0=negative)
    tau: temperature for softmax
    w_neg, w_unl: weighting for explicit vs. unlabeled negatives
    returns: scalar loss
    """
    sim = -dist_matrix
    pos_mask = label_matrix == 1
    neg_mask = label_matrix == -1
    unl_mask = label_matrix == 0
    W = torch.zeros_like(sim)
    W[pos_mask] = 1.0
    W[neg_mask] = w_neg
    W[unl_mask] = w_unl
    exp_sim = torch.exp(sim / tau)  # [U, P]
    weighted = W * exp_sim
    num = (weighted * pos_mask).sum(dim=1)  # [U]
    denom = weighted.sum(dim=1) + eps  # [U]
    valid = pos_mask.sum(dim=1) > 0  # [U]
    if valid.sum() == 0:
        return torch.tensor(0.0, device=dist_matrix.device)
    loss_per_user = -torch.log(num[valid] / denom[valid])
    return loss_per_user.mean()


def float_to_sign(tensor: torch.Tensor, low_thresh: float, high_thresh: float):
    result = torch.zeros_like(tensor)
    result[tensor > high_thresh] = 1
    result[tensor < low_thresh] = -1
    return result


def pairwise_positive_ranking_loss(dist_matrix, score_matrix, margin=0.1):
    """
    dist_matrix: Tensor [U, P], pairwise distances between user and items
    score_matrix: Tensor [U, P], scores or labels (higher = more relevant)
    """
    loss = 0.0
    num_users = dist_matrix.size(0)

    for u in range(num_users):
        pos_idx = (score_matrix[u] > 0).nonzero(as_tuple=True)[0]
        if pos_idx.numel() < 2:
            continue

        pos_scores = score_matrix[u, pos_idx]
        pos_dists = dist_matrix[u, pos_idx]

        for i in range(len(pos_idx)):
            for j in range(i + 1, len(pos_idx)):
                s_i, s_j = pos_scores[i], pos_scores[j]
                d_i, d_j = pos_dists[i], pos_dists[j]

                if s_i == s_j:
                    continue

                sign = torch.sign(s_j - s_i)
                loss += torch.relu(sign * (d_i - d_j) + margin)

    return loss / num_users


class SoftContrastiveLoss(torch.nn.Module):
    def __init__(
        self,
        margin: float = 1.0,
        temp: float = 0.3,
        lambda_ortho: float = 0.1,
        low_thresh: float = 0.4,
        high_thresh: float = 0.7,
    ):
        super().__init__()
        self.margin = margin
        self.temp = temp
        self.lambda_ortho = lambda_ortho
        self.low_thresh = low_thresh
        self.high_thresh = high_thresh

    def forward(self, u_emb, p_emb, p_views, t, user_ids, prop_ids):
        # Create matrix
        uniq_u, inv_u = torch.unique(user_ids, return_inverse=True)
        uniq_p, inv_p = torch.unique(prop_ids, return_inverse=True)

        U, P = uniq_u.size(0), uniq_p.size(0)
        M = torch.zeros(U, P, device=user_ids.device)
        M[inv_u, inv_p] = t
        T = torch.zeros(U, P, device=user_ids.device)
        T[inv_u, inv_p] = float_to_sign(t, self.low_thresh, self.high_thresh)
        dir_matrix = torch.zeros(U, P, device=user_ids.device)

        # scatter the scores
        dir_matrix[inv_u, inv_p] = torch.sign(t - 0.5)
        # Calculate distance
        dist = F.pairwise_distance(u_emb, p_emb)  # [batch]
        dist_matrix = torch.zeros(U, P, device=user_ids.device)
        dist_matrix[inv_u, inv_p] = dist
        info_nce_loss = multi_pos_info_nce(dist_matrix, T, t=self.temp)
        hinge_loss = pairwise_positive_ranking_loss(dist_matrix, M)
        # Multi-view contrastive loss
        ortho_loss = torch.mean(torch.abs(torch.matmul(u_emb.T, p_emb)))
        return info_nce_loss + hinge_loss + ortho_loss * self.lambda_ortho