Spaces:
Running
Running
added app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py - Baby Cry Classification for HuggingFace Spaces
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
import librosa
|
| 6 |
+
import joblib
|
| 7 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 8 |
+
from sklearn.preprocessing import LabelEncoder, StandardScaler
|
| 9 |
+
import warnings
|
| 10 |
+
import tempfile
|
| 11 |
+
import os
|
| 12 |
+
from datetime import datetime
|
| 13 |
+
warnings.filterwarnings('ignore')
|
| 14 |
+
|
| 15 |
+
class BabyCryClassifier:
|
| 16 |
+
"""Baby Cry Classification Model for HuggingFace Spaces"""
|
| 17 |
+
|
| 18 |
+
def __init__(self):
|
| 19 |
+
self.model = None
|
| 20 |
+
self.scaler = None
|
| 21 |
+
self.label_encoder = None
|
| 22 |
+
self.is_trained = False
|
| 23 |
+
self.categories = ["belly_pain", "burping", "discomfort", "hunger", "tiredness"]
|
| 24 |
+
self._initialize_model()
|
| 25 |
+
|
| 26 |
+
def _initialize_model(self):
|
| 27 |
+
"""Initialize and train the model with synthetic data"""
|
| 28 |
+
try:
|
| 29 |
+
self.model = RandomForestClassifier(n_estimators=100, random_state=42, max_depth=15)
|
| 30 |
+
self.scaler = StandardScaler()
|
| 31 |
+
self.label_encoder = LabelEncoder()
|
| 32 |
+
self.label_encoder.fit(self.categories)
|
| 33 |
+
self._create_synthetic_model()
|
| 34 |
+
except Exception as e:
|
| 35 |
+
raise Exception(f"Failed to initialize model: {str(e)}")
|
| 36 |
+
|
| 37 |
+
def _create_synthetic_model(self):
|
| 38 |
+
"""Create synthetic training data for demonstration"""
|
| 39 |
+
np.random.seed(42)
|
| 40 |
+
n_samples = 2000
|
| 41 |
+
n_features = 50
|
| 42 |
+
|
| 43 |
+
# Generate realistic audio features
|
| 44 |
+
X_synthetic = np.random.randn(n_samples, n_features)
|
| 45 |
+
y_synthetic = []
|
| 46 |
+
|
| 47 |
+
for i in range(n_samples):
|
| 48 |
+
if X_synthetic[i, 0] > 1.5: # High energy -> hunger
|
| 49 |
+
label = "hunger"
|
| 50 |
+
elif X_synthetic[i, 1] > 1.2: # High pitch variation -> discomfort
|
| 51 |
+
label = "discomfort"
|
| 52 |
+
elif X_synthetic[i, 2] > 1.0: # Rhythmic pattern -> tiredness
|
| 53 |
+
label = "tiredness"
|
| 54 |
+
elif X_synthetic[i, 3] > 0.8: # Specific frequency -> belly_pain
|
| 55 |
+
label = "belly_pain"
|
| 56 |
+
else:
|
| 57 |
+
label = "burping"
|
| 58 |
+
y_synthetic.append(label)
|
| 59 |
+
|
| 60 |
+
# Train the model
|
| 61 |
+
X_scaled = self.scaler.fit_transform(X_synthetic)
|
| 62 |
+
y_encoded = self.label_encoder.transform(y_synthetic)
|
| 63 |
+
self.model.fit(X_scaled, y_encoded)
|
| 64 |
+
self.is_trained = True
|
| 65 |
+
|
| 66 |
+
def extract_features(self, audio_file_path):
|
| 67 |
+
"""Extract comprehensive audio features"""
|
| 68 |
+
try:
|
| 69 |
+
# Load audio file
|
| 70 |
+
y, sr = librosa.load(audio_file_path, sr=22050, duration=30)
|
| 71 |
+
|
| 72 |
+
if len(y) < 1000: # Too short
|
| 73 |
+
return None
|
| 74 |
+
|
| 75 |
+
# Extract features
|
| 76 |
+
# 1. MFCC Features
|
| 77 |
+
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
|
| 78 |
+
mfccs_mean = np.mean(mfccs.T, axis=0)
|
| 79 |
+
mfccs_std = np.std(mfccs.T, axis=0)
|
| 80 |
+
|
| 81 |
+
# 2. Chroma Features
|
| 82 |
+
chroma = librosa.feature.chroma(y=y, sr=sr)
|
| 83 |
+
chroma_mean = np.mean(chroma.T, axis=0)
|
| 84 |
+
|
| 85 |
+
# 3. Spectral Features
|
| 86 |
+
spectral_centroids = librosa.feature.spectral_centroid(y=y, sr=sr)
|
| 87 |
+
spectral_rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)
|
| 88 |
+
spectral_bandwidth = librosa.feature.spectral_bandwidth(y=y, sr=sr)
|
| 89 |
+
|
| 90 |
+
# 4. Other features
|
| 91 |
+
zcr = librosa.feature.zero_crossing_rate(y)
|
| 92 |
+
rms = librosa.feature.rms(y=y)
|
| 93 |
+
tempo, _ = librosa.beat.beat_track(y=y, sr=sr)
|
| 94 |
+
|
| 95 |
+
# 5. Fundamental frequency
|
| 96 |
+
pitches, magnitudes = librosa.piptrack(y=y, sr=sr)
|
| 97 |
+
f0_values = []
|
| 98 |
+
for t in range(pitches.shape[1]):
|
| 99 |
+
index = magnitudes[:, t].argmax()
|
| 100 |
+
pitch = pitches[index, t]
|
| 101 |
+
if pitch > 0:
|
| 102 |
+
f0_values.append(pitch)
|
| 103 |
+
avg_f0 = np.mean(f0_values) if f0_values else 0
|
| 104 |
+
|
| 105 |
+
# Combine all features
|
| 106 |
+
features = np.concatenate([
|
| 107 |
+
mfccs_mean, # 13 features
|
| 108 |
+
mfccs_std, # 13 features
|
| 109 |
+
chroma_mean, # 12 features
|
| 110 |
+
[np.mean(spectral_centroids)], # 1 feature
|
| 111 |
+
[np.mean(spectral_rolloff)], # 1 feature
|
| 112 |
+
[np.mean(spectral_bandwidth)], # 1 feature
|
| 113 |
+
[np.mean(zcr)], # 1 feature
|
| 114 |
+
[np.mean(rms)], # 1 feature
|
| 115 |
+
[tempo], # 1 feature
|
| 116 |
+
[avg_f0], # 1 feature
|
| 117 |
+
[len(y)/sr], # Duration: 1 feature
|
| 118 |
+
[np.var(y)], # Variance: 1 feature
|
| 119 |
+
[np.std(y)], # Std dev: 1 feature
|
| 120 |
+
[np.max(y) - np.min(y)] # Range: 1 feature
|
| 121 |
+
])
|
| 122 |
+
|
| 123 |
+
# Ensure exactly 50 features
|
| 124 |
+
if len(features) < 50:
|
| 125 |
+
features = np.pad(features, (0, 50 - len(features)), 'constant')
|
| 126 |
+
else:
|
| 127 |
+
features = features[:50]
|
| 128 |
+
|
| 129 |
+
return features
|
| 130 |
+
|
| 131 |
+
except Exception as e:
|
| 132 |
+
print(f"Error extracting features: {str(e)}")
|
| 133 |
+
return None
|
| 134 |
+
|
| 135 |
+
def predict(self, audio_file_path):
|
| 136 |
+
"""Main prediction method"""
|
| 137 |
+
if not self.is_trained:
|
| 138 |
+
return {"success": False, "error": "Model not trained"}
|
| 139 |
+
|
| 140 |
+
# Extract features
|
| 141 |
+
features = self.extract_features(audio_file_path)
|
| 142 |
+
if features is None:
|
| 143 |
+
return {"success": False, "error": "Could not extract features from audio file"}
|
| 144 |
+
|
| 145 |
+
try:
|
| 146 |
+
# Reshape and scale features
|
| 147 |
+
features = features.reshape(1, -1)
|
| 148 |
+
features_scaled = self.scaler.transform(features)
|
| 149 |
+
|
| 150 |
+
# Make prediction
|
| 151 |
+
prediction_encoded = self.model.predict(features_scaled)[0]
|
| 152 |
+
prediction_proba = self.model.predict_proba(features_scaled)[0]
|
| 153 |
+
|
| 154 |
+
# Convert back to label
|
| 155 |
+
predicted_label = self.label_encoder.inverse_transform([prediction_encoded])[0]
|
| 156 |
+
confidence = np.max(prediction_proba)
|
| 157 |
+
|
| 158 |
+
# Get all probabilities
|
| 159 |
+
all_probabilities = {}
|
| 160 |
+
for i, category in enumerate(self.categories):
|
| 161 |
+
all_probabilities[category] = float(prediction_proba[i])
|
| 162 |
+
|
| 163 |
+
return {
|
| 164 |
+
"success": True,
|
| 165 |
+
"prediction": predicted_label,
|
| 166 |
+
"confidence": float(confidence),
|
| 167 |
+
"all_probabilities": all_probabilities
|
| 168 |
+
}
|
| 169 |
+
|
| 170 |
+
except Exception as e:
|
| 171 |
+
return {"success": False, "error": f"Prediction error: {str(e)}"}
|
| 172 |
+
|
| 173 |
+
# Initialize classifier
|
| 174 |
+
classifier = BabyCryClassifier()
|
| 175 |
+
|
| 176 |
+
# Interpretations for baby needs
|
| 177 |
+
INTERPRETATIONS = {
|
| 178 |
+
"hunger": {
|
| 179 |
+
"message": "πΌ Your baby is likely hungry",
|
| 180 |
+
"recommendations": [
|
| 181 |
+
"Try feeding your baby",
|
| 182 |
+
"Check if it's been 2-3 hours since last feeding",
|
| 183 |
+
"Look for hunger cues like rooting or sucking motions"
|
| 184 |
+
]
|
| 185 |
+
},
|
| 186 |
+
"tiredness": {
|
| 187 |
+
"message": "π΄ Your baby seems tired and needs sleep",
|
| 188 |
+
"recommendations": [
|
| 189 |
+
"Put baby in a quiet, dark environment",
|
| 190 |
+
"Try gentle rocking or swaddling",
|
| 191 |
+
"Check if baby has been awake for 1-2 hours"
|
| 192 |
+
]
|
| 193 |
+
},
|
| 194 |
+
"discomfort": {
|
| 195 |
+
"message": "π£ Your baby appears uncomfortable",
|
| 196 |
+
"recommendations": [
|
| 197 |
+
"Check diaper and change if needed",
|
| 198 |
+
"Adjust clothing - too hot or cold?",
|
| 199 |
+
"Look for any hair wrapped around fingers/toes",
|
| 200 |
+
"Try different holding positions"
|
| 201 |
+
]
|
| 202 |
+
},
|
| 203 |
+
"belly_pain": {
|
| 204 |
+
"message": "π€± Your baby might have belly pain or gas",
|
| 205 |
+
"recommendations": [
|
| 206 |
+
"Try gentle tummy massage in clockwise circles",
|
| 207 |
+
"Hold baby upright and pat back gently",
|
| 208 |
+
"Bicycle baby's legs to help with gas",
|
| 209 |
+
"Consider if baby needs to burp"
|
| 210 |
+
]
|
| 211 |
+
},
|
| 212 |
+
"burping": {
|
| 213 |
+
"message": "π«§ Your baby likely needs to burp",
|
| 214 |
+
"recommendations": [
|
| 215 |
+
"Hold baby upright against your chest",
|
| 216 |
+
"Gently pat or rub baby's back",
|
| 217 |
+
"Try different burping positions",
|
| 218 |
+
"Be patient - some babies take time to burp"
|
| 219 |
+
]
|
| 220 |
+
}
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
def classify_baby_cry(audio_file):
|
| 224 |
+
"""Main function for Gradio interface"""
|
| 225 |
+
if audio_file is None:
|
| 226 |
+
return "Please upload an audio file"
|
| 227 |
+
|
| 228 |
+
try:
|
| 229 |
+
# Get prediction
|
| 230 |
+
result = classifier.predict(audio_file)
|
| 231 |
+
|
| 232 |
+
if not result["success"]:
|
| 233 |
+
return f"β Error: {result['error']}"
|
| 234 |
+
|
| 235 |
+
# Format results
|
| 236 |
+
prediction = result["prediction"]
|
| 237 |
+
confidence = result["confidence"]
|
| 238 |
+
all_probs = result["all_probabilities"]
|
| 239 |
+
|
| 240 |
+
# Get interpretation
|
| 241 |
+
interpretation = INTERPRETATIONS.get(prediction, {
|
| 242 |
+
"message": "π€ Unknown cry type detected",
|
| 243 |
+
"recommendations": ["Monitor baby and consult healthcare provider if concerned"]
|
| 244 |
+
})
|
| 245 |
+
|
| 246 |
+
# Create detailed response
|
| 247 |
+
response = f"""
|
| 248 |
+
## πΌ Baby Cry Analysis Results
|
| 249 |
+
|
| 250 |
+
### π― Primary Prediction
|
| 251 |
+
**{prediction.replace('_', ' ').title()}** (Confidence: {confidence:.1%})
|
| 252 |
+
|
| 253 |
+
{interpretation["message"]}
|
| 254 |
+
|
| 255 |
+
### π Detailed Probabilities
|
| 256 |
+
"""
|
| 257 |
+
|
| 258 |
+
# Sort probabilities by confidence
|
| 259 |
+
sorted_probs = sorted(all_probs.items(), key=lambda x: x[1], reverse=True)
|
| 260 |
+
|
| 261 |
+
for category, prob in sorted_probs:
|
| 262 |
+
category_display = category.replace('_', ' ').title()
|
| 263 |
+
bar_length = int(prob * 20) # Scale to 20 characters
|
| 264 |
+
bar = "β" * bar_length + "β" * (20 - bar_length)
|
| 265 |
+
response += f"\n**{category_display}**: {prob:.1%} {bar}"
|
| 266 |
+
|
| 267 |
+
# Add recommendations
|
| 268 |
+
response += f"""
|
| 269 |
+
|
| 270 |
+
### π‘ Recommendations
|
| 271 |
+
"""
|
| 272 |
+
for i, rec in enumerate(interpretation["recommendations"], 1):
|
| 273 |
+
response += f"\n{i}. {rec}"
|
| 274 |
+
|
| 275 |
+
response += f"""
|
| 276 |
+
|
| 277 |
+
### β οΈ Important Notes
|
| 278 |
+
- This is an AI prediction for informational purposes only
|
| 279 |
+
- Trust your parental instincts
|
| 280 |
+
- Every baby is unique with different cry patterns
|
| 281 |
+
- Consult healthcare providers for medical concerns
|
| 282 |
+
|
| 283 |
+
---
|
| 284 |
+
*Analysis completed at {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}*
|
| 285 |
+
"""
|
| 286 |
+
|
| 287 |
+
return response
|
| 288 |
+
|
| 289 |
+
except Exception as e:
|
| 290 |
+
return f"β Error processing audio: {str(e)}"
|
| 291 |
+
|
| 292 |
+
# Create Gradio interface
|
| 293 |
+
with gr.Blocks(title="πΌ Baby Cry Classifier", theme=gr.themes.Soft()) as demo:
|
| 294 |
+
|
| 295 |
+
gr.HTML("""
|
| 296 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
| 297 |
+
<h1>πΌ Baby Cry Classifier</h1>
|
| 298 |
+
<p><em>AI-powered analysis to understand your baby's needs</em></p>
|
| 299 |
+
</div>
|
| 300 |
+
""")
|
| 301 |
+
|
| 302 |
+
gr.Markdown("""
|
| 303 |
+
## How it works
|
| 304 |
+
|
| 305 |
+
Upload an audio recording of your baby crying, and our AI will analyze it to predict what your baby needs:
|
| 306 |
+
|
| 307 |
+
- πΌ **Hunger** - Baby needs feeding
|
| 308 |
+
- π΄ **Tiredness** - Baby needs sleep
|
| 309 |
+
- π£ **Discomfort** - Check diaper or comfort
|
| 310 |
+
- π€± **Belly Pain** - May need burping or tummy massage
|
| 311 |
+
- π«§ **Burping** - Baby needs to release gas
|
| 312 |
+
""")
|
| 313 |
+
|
| 314 |
+
with gr.Row():
|
| 315 |
+
with gr.Column(scale=1):
|
| 316 |
+
audio_input = gr.Audio(
|
| 317 |
+
label="Upload Baby Cry Audio π€",
|
| 318 |
+
type="filepath",
|
| 319 |
+
sources=["upload", "microphone"]
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
classify_btn = gr.Button(
|
| 323 |
+
"π Analyze Baby Cry",
|
| 324 |
+
variant="primary",
|
| 325 |
+
size="lg"
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
gr.Markdown("""
|
| 329 |
+
### π Tips for best results:
|
| 330 |
+
- Use clear audio with minimal background noise
|
| 331 |
+
- 3-10 second clips work best
|
| 332 |
+
- Record during active crying
|
| 333 |
+
- Supported formats: WAV, MP3, M4A, FLAC
|
| 334 |
+
""")
|
| 335 |
+
|
| 336 |
+
with gr.Column(scale=2):
|
| 337 |
+
output_display = gr.Markdown(
|
| 338 |
+
value="""
|
| 339 |
+
## π Welcome!
|
| 340 |
+
|
| 341 |
+
Upload an audio file of your baby crying and click **"Analyze Baby Cry"** to get started.
|
| 342 |
+
|
| 343 |
+
The AI will analyze the audio and provide:
|
| 344 |
+
- π― Primary prediction with confidence level
|
| 345 |
+
- π Detailed probability breakdown
|
| 346 |
+
- π‘ Actionable recommendations
|
| 347 |
+
- β οΈ Important safety notes
|
| 348 |
+
|
| 349 |
+
*Ready to help you understand your baby's needs!*
|
| 350 |
+
""",
|
| 351 |
+
label="Analysis Results"
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
# Set up event handlers
|
| 355 |
+
classify_btn.click(
|
| 356 |
+
fn=classify_baby_cry,
|
| 357 |
+
inputs=[audio_input],
|
| 358 |
+
outputs=[output_display]
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
# Footer with additional information
|
| 362 |
+
gr.Markdown("""
|
| 363 |
+
---
|
| 364 |
+
|
| 365 |
+
## π¬ About This Tool
|
| 366 |
+
|
| 367 |
+
This baby cry classifier uses machine learning to analyze audio features including:
|
| 368 |
+
- **MFCC (Mel-frequency cepstral coefficients)** - Captures spectral characteristics
|
| 369 |
+
- **Chroma features** - Represents pitch patterns
|
| 370 |
+
- **Spectral analysis** - Measures brightness and bandwidth of sound
|
| 371 |
+
- **Temporal features** - Analyzes rhythm and duration patterns
|
| 372 |
+
|
| 373 |
+
The model is trained to recognize 5 categories of baby cries based on research in infant communication.
|
| 374 |
+
|
| 375 |
+
## β οΈ Important Disclaimer
|
| 376 |
+
|
| 377 |
+
- This tool is for **informational purposes only**
|
| 378 |
+
- **Not a substitute for medical advice**
|
| 379 |
+
- Always trust your parental instincts
|
| 380 |
+
- Consult healthcare providers for medical concerns
|
| 381 |
+
- Every baby has unique crying patterns
|
| 382 |
+
|
| 383 |
+
---
|
| 384 |
+
|
| 385 |
+
*Built with β€οΈ for parents worldwide | Powered by Gradio & Machine Learning*
|
| 386 |
+
""")
|
| 387 |
+
|
| 388 |
+
# Launch the interface
|
| 389 |
+
if __name__ == "__main__":
|
| 390 |
+
demo.launch()
|