Spaces:
Runtime error
Runtime error
| import os | |
| from fastapi import FastAPI, Header, HTTPException, Depends | |
| from pydantic import BaseModel | |
| from text_humanizer import TextHumanizer, download_nltk_resources | |
| import spacy | |
| API_KEY = os.environ.get("API_KEY", "dev-key") | |
| PORT = int(os.environ.get("PORT", 7860)) | |
| app = FastAPI() | |
| humanizer = None | |
| class HumanizeReq(BaseModel): | |
| text: str | |
| use_passive: bool = False | |
| use_synonyms: bool = False | |
| def verify_key(x_api_key: str = Header(None)): | |
| if x_api_key != API_KEY: | |
| raise HTTPException(status_code=403, detail="Forbidden") | |
| return True | |
| def greet_json(): | |
| return {"Hello": "World!"} | |
| def startup(): | |
| # ensure NLTK resources and spacy model are available at runtime | |
| download_nltk_resources() | |
| try: | |
| spacy.load("en_core_web_sm") | |
| except OSError: | |
| import spacy.cli | |
| spacy.cli.download("en_core_web_sm") | |
| global humanizer | |
| humanizer = TextHumanizer() | |
| def humanize(req: HumanizeReq, _=Depends(verify_key)): | |
| return {"humanized": humanizer.humanize_text(req.text, req.use_passive, req.use_synonyms)} | |
| # if __name__ == "__main__": | |
| # import uvicorn | |
| # uvicorn.run(app, host="0.0.0.0", port=PORT) |