Spaces:
Runtime error
Runtime error
File size: 8,249 Bytes
9e7dc23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
#!/usr/bin/env python3
"""
Simple client script to test the AI Text Humanizer API
"""
import requests
import json
import time
# Configuration
API_BASE_URL = "http://localhost:8000"
def test_api_connection():
"""Test if the API server is running"""
try:
response = requests.get(f"{API_BASE_URL}/health", timeout=5)
if response.status_code == 200:
print("β
API server is running!")
return True
else:
print(f"β API server responded with status {response.status_code}")
return False
except requests.exceptions.RequestException as e:
print(f"β Cannot connect to API server: {e}")
print("π‘ Make sure to run: python fastapi_server.py")
return False
def humanize_single_text(text, style="natural", intensity=0.7):
"""Humanize a single piece of text"""
try:
payload = {
"text": text,
"style": style,
"intensity": intensity
}
response = requests.post(
f"{API_BASE_URL}/humanize",
json=payload,
headers={"Content-Type": "application/json"}
)
if response.status_code == 200:
return response.json()
else:
print(f"β API Error: {response.status_code}")
print(response.text)
return None
except requests.exceptions.RequestException as e:
print(f"β Request failed: {e}")
return None
def humanize_batch_texts(texts, style="natural", intensity=0.7):
"""Humanize multiple texts in batch"""
try:
payload = {
"texts": texts,
"style": style,
"intensity": intensity
}
response = requests.post(
f"{API_BASE_URL}/batch_humanize",
json=payload,
headers={"Content-Type": "application/json"}
)
if response.status_code == 200:
return response.json()
else:
print(f"β API Error: {response.status_code}")
print(response.text)
return None
except requests.exceptions.RequestException as e:
print(f"β Request failed: {e}")
return None
def display_result(result):
"""Display humanization result in a formatted way"""
if not result:
return
print("\n" + "="*60)
print("π ORIGINAL TEXT:")
print("-" * 40)
print(result['original_text'])
print("\n⨠HUMANIZED TEXT:")
print("-" * 40)
print(result['humanized_text'])
print(f"\nπ STATS:")
print(f" β’ Similarity Score: {result['similarity_score']:.3f}")
print(f" β’ Processing Time: {result['processing_time_ms']:.1f}ms")
print(f" β’ Style: {result['style'].title()}")
print(f" β’ Intensity: {result['intensity']}")
if result['changes_made']:
print(f"\nπ CHANGES MADE:")
for change in result['changes_made']:
print(f" β’ {change}")
else:
print(f"\nπ CHANGES MADE: None")
def interactive_mode():
"""Interactive mode for testing"""
print("\nπ― Interactive Mode")
print("Type 'quit' to exit\n")
while True:
text = input("π Enter text to humanize: ").strip()
if text.lower() in ['quit', 'exit', 'q']:
print("π Goodbye!")
break
if not text:
print("β οΈ Please enter some text.")
continue
# Get style preference
print("\nπ¨ Choose style:")
print("1. Natural")
print("2. Casual")
print("3. Conversational")
style_choice = input("Enter choice (1-3) or press Enter for Natural: ").strip()
style_map = {'1': 'natural', '2': 'casual', '3': 'conversational'}
style = style_map.get(style_choice, 'natural')
# Get intensity
intensity_input = input("β‘ Enter intensity (0.1-1.0) or press Enter for 0.7: ").strip()
try:
intensity = float(intensity_input) if intensity_input else 0.7
intensity = max(0.1, min(1.0, intensity)) # Clamp between 0.1 and 1.0
except ValueError:
intensity = 0.7
print(f"\nπ Processing with {style} style, intensity {intensity}...")
result = humanize_single_text(text, style, intensity)
display_result(result)
print("\n" + "-"*60 + "\n")
def run_examples():
"""Run example demonstrations"""
print("\nπ― Running Example Tests")
print("=" * 50)
examples = [
{
"text": "Furthermore, it is important to note that artificial intelligence systems demonstrate significant capabilities in natural language processing tasks. Subsequently, these systems can analyze and generate text with remarkable accuracy.",
"style": "conversational",
"intensity": 0.8,
"description": "AI-formal text β Conversational"
},
{
"text": "The implementation of this comprehensive solution will facilitate the optimization of business processes and operational workflows. Moreover, it will demonstrate substantial improvements in efficiency metrics.",
"style": "natural",
"intensity": 0.6,
"description": "Business text β Natural"
},
{
"text": "In conclusion, the systematic analysis reveals that the proposed methodology demonstrates significant potential for enhancing performance indicators.",
"style": "casual",
"intensity": 0.7,
"description": "Academic text β Casual"
}
]
for i, example in enumerate(examples, 1):
print(f"\n㪠Example {i}: {example['description']}")
print("-" * 50)
result = humanize_single_text(
text=example['text'],
style=example['style'],
intensity=example['intensity']
)
display_result(result)
# Small delay between examples
time.sleep(1)
def test_batch_processing():
"""Test batch processing functionality"""
print("\nπ Testing Batch Processing")
print("=" * 50)
texts = [
"Furthermore, the comprehensive analysis demonstrates significant improvements.",
"Subsequently, the implementation will facilitate optimization of processes.",
"Therefore, it is essential to utilize these methodologies effectively."
]
print(f"π¦ Processing {len(texts)} texts in batch...")
start_time = time.time()
result = humanize_batch_texts(texts, style="casual", intensity=0.7)
total_time = time.time() - start_time
if result:
print(f"\nβ
Batch processing completed in {total_time:.1f}s")
print(f"β‘ Total API time: {result['total_processing_time_ms']:.1f}ms")
for i, text_result in enumerate(result['results'], 1):
print(f"\nπ Text {i}:")
print(f" Original: {text_result['original_text'][:50]}...")
print(f" Humanized: {text_result['humanized_text'][:50]}...")
print(f" Similarity: {text_result['similarity_score']:.3f}")
def main():
"""Main function"""
print("π€β‘οΈπ€ AI Text Humanizer - API Client")
print("=" * 50)
# Test API connection
if not test_api_connection():
return
while True:
print("\nπ― Choose an option:")
print("1. Run example demonstrations")
print("2. Test batch processing")
print("3. Interactive mode")
print("4. Exit")
choice = input("\nEnter your choice (1-4): ").strip()
if choice == '1':
run_examples()
elif choice == '2':
test_batch_processing()
elif choice == '3':
interactive_mode()
elif choice == '4':
print("\nπ Thanks for using AI Text Humanizer!")
break
else:
print("β Invalid choice. Please enter 1, 2, 3, or 4.")
if __name__ == "__main__":
main() |